DNA-vaccination via tattooing induces stronger humoral and cellular immune responses than intramuscular delivery supported by molecular adjuvants
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
18257910
PubMed Central
PMC2267179
DOI
10.1186/1479-0556-6-4
PII: 1479-0556-6-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Tattooing is one of a number of DNA delivery methods which results in an efficient expression of an introduced gene in the epidermal and dermal layers of the skin. The tattoo procedure causes many minor mechanical injuries followed by hemorrhage, necrosis, inflammation and regeneration of the skin and thus non-specifically stimulates the immune system. DNA vaccines delivered by tattooing have been shown to induce higher specific humoral and cellular immune responses than intramuscularly injected DNA. In this study, we focused on the comparison of DNA immunization protocols using different routes of administrations of DNA (intradermal tattoo versus intramuscular injection) and molecular adjuvants (cardiotoxin pre-treatment or GM-CSF DNA co-delivery). For this comparison we used the major capsid protein L1 of human papillomavirus type 16 as a model antigen. L1-specific immune responses were detected after three and four immunizations with 50 microg plasmid DNA. Cardiotoxin pretreatment or GM-CSF DNA co-delivery substantially enhanced the efficacy of DNA vaccine delivered intramuscularly by needle injection but had virtually no effect on the intradermal tattoo vaccination. The promoting effect of both adjuvants was more pronounced after three rather than four immunizations. However, three DNA tattoo immunizations without any adjuvant induced significantly higher L1-specific humoral immune responses than three or even four intramuscular DNA injections supported by molecular adjuvants. Tattooing also elicited significantly higher L1-specific cellular immune responses than intramuscularly delivered DNA in combination with adjuvants. In addition, the lymphocytes of mice treated with the tattoo device proliferated more strongly after mitogen stimulation suggesting the presence of inflammatory responses after tattooing. The tattoo delivery of DNA is a cost-effective method that may be used in laboratory conditions when more rapid and more robust immune responses are required.
Zobrazit více v PubMed
Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–1468. doi: 10.1126/science.1690918. PubMed DOI
Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther. 2004;11:1363–1369. doi: 10.1038/sj.gt.3302337. PubMed DOI
Gopee NV, Cui Y, Olson G, Warbritton AR, Miller BJ, Couch LH, Wamer WG, Howard PC. Response of mouse skin to tattooing: use of SKH-1 mice as a surrogate model for human tattooing. Toxicol Appl Pharmacol. 2005;209:145–158. doi: 10.1016/j.taap.2005.04.003. PubMed DOI
Naeini FF, Najafian J, Ahmadpour K. Bleomycin tattooing as a promising therapeutic modality in large keloids and hypertrophic scars. Dermatol Surg. 2006;32:1023–9; discussion 1029-30. doi: 10.1111/j.1524-4725.2006.32225.x. PubMed DOI
Reuter JD, Gomez D, Brandsma JL, Rose JK, Roberts A. Optimization of cottontail rabbit papilloma virus challenge technique. J Virol Methods. 2001;98:127–134. doi: 10.1016/S0166-0934(01)00370-6. PubMed DOI
Corder WT, Hogan MB, Wilson NW. Comparison of two disposable plastic skin test devices with the bifurcated needle for epicutaneous allergy testing. Ann Allergy Asthma Immunol. 1996;77:222–226. PubMed
Sakurada K, Toida I, Sakai I, Sekiguchi K, Shiraishi T, Takatori T. The BCG scar after percutaneous multiple puncture vaccination may help establish the nationalities of unidentified cadavers. J Clin Forensic Med. 2003;10:235–241. doi: 10.1016/j.jcfm.2003.08.004. PubMed DOI
Baxby D. Smallpox vaccination techniques; from knives and forks to needles and pins. Vaccine. 2002;20:2140–2149. PubMed
de Moraes JC, Leon ME, Souza VA, Pannuti C, Travisanello C, Halsey NA, de Quadros CA. Intradermal administration of measles vaccines. Bull Pan Am Health Organ. 1994;28:250–255. PubMed
Peachman KK, Rao M, Alving CR. Immunization with DNA through the skin. Methods. 2003;31:232–242. doi: 10.1016/S1046-2023(03)00137-3. PubMed DOI
Ciernik IF, Krayenbuhl BH, Carbone DP. Puncture-mediated gene transfer to the skin. Hum Gene Ther. 1996;7:893–899. PubMed
Eriksson E, Yao F, Svensjo T, Winkler T, Slama J, Macklin MD, Andree C, McGregor M, Hinshaw V, Swain WF. In vivo gene transfer to skin and wound by microseeding. J Surg Res. 1998;78:85–91. doi: 10.1006/jsre.1998.5325. PubMed DOI
Bins AD, Jorritsma A, Wolkers MC, Hung CF, Wu TC, Schumacher TN, Haanen JB. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med. 2005;11:899–904. doi: 10.1038/nm1264. PubMed DOI
Leder C, Kleinschmidt JA, Wiethe C, Müller M. Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J Virol. 2001;75:9201–9209. doi: 10.1128/JVI.75.19.9201-9209.2001. PubMed DOI PMC
Rossner P, Bubenik J, Sobota V, Indrova M, Hajkova R, Mendoza L, Jandlova T, Simova J. Granulocyte-macrophage colony-stimulating factor-producing tumour vaccines. Folia Biol (Praha) 1999;45:173–177. PubMed
Smahel M, Sima P, Ludvikova V, Vonka V. Modified HPV16 E7 Genes as DNA Vaccine against E7-Containing Oncogenic Cells. Virology. 2001;281:231–238. doi: 10.1006/viro.2000.0794. PubMed DOI
Pokorna D, Smahel M, Jinoch P, Janouskova O, Otahal P, Krystofova J, Marinov I, Vonka V. Zlepšení imunizačního účinku DNA vakcíny pro terapii cervikálního karcinomu. Chem Listy. 2002;96
Kuck D, Leder C, Kern A, Müller M, Piuko K, Gissmann L, Kleinschmidt JA. Efficiency of HPV 16 L1/E7 DNA immunization: influence of cellular localization and capsid assembly. Vaccine. 2006;24:2952–2965. doi: 10.1016/j.vaccine.2005.12.023. PubMed DOI
Öhlschlager P, Osen W, Dell K, Faath S, Garcea RL, Jochmus I, Muller M, Pawlita M, Schafer K, Sehr P, Staib C, Sutter G, Gissmann L. Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T lymphocytes and tumor regression in C57BL/6 mice. J Virol. 2003;77:4635–4645. doi: 10.1128/JVI.77.8.4635-4645.2003. PubMed DOI PMC
Wu CJ, Lee SC, Huang HW, Tao MH. In vivo electroporation of skeletal muscles increases the efficacy of Japanese encephalitis virus DNA vaccine. Vaccine. 2004;22:1457–1464. doi: 10.1016/j.vaccine.2003.10.011. PubMed DOI
Fomsgaard A, Nielsen HV, Nielsen C, Johansson K, Machuca R, Bruun L, Hansen J, Buus S. Comparisons of DNA-mediated immunization procedures directed against surface glycoproteins of human immunodeficiency virus type-1 and hepatitis B virus. Apmis. 1998;106:636–646. PubMed
Bins AD, van Rheenen J, Jalink K, Halstead JR, Divecha N, Spencer DM, Haanen JB, Schumacher TN. Intravital imaging of fluorescent markers and FRET probes by DNA tattooing. BMC Biotechnol. 2007;7:2. doi: 10.1186/1472-6750-7-2. PubMed DOI PMC
Rosato A, Zoso A, Milan G, Macino B, Dalla Santa S, Tosello V, Di Carlo E, Musiani P, Whalen RG, Zanovello P. Individual analysis of mice vaccinated against a weakly immunogenic self tumor-specific antigen reveals a correlation between CD8 T cell response and antitumor efficacy. J Immunol. 2003;171:5172–5179. PubMed
Haddad D, Ramprakash J, Sedegah M, Charoenvit Y, Baumgartner R, Kumar S, Hoffman SL, Weiss WR. Plasmid vaccine expressing granulocyte-macrophage colony-stimulating factor attracts infiltrates including immature dendritic cells into injected muscles. J Immunol. 2000;165:3772–3781. PubMed
McMahon JM, Wells KE, Bamfo JE, Cartwright MA, Wells DJ. Inflammatory responses following direct injection of plasmid DNA into skeletal muscle. Gene Ther. 1998;5:1283–1290. doi: 10.1038/sj.gt.3300718. PubMed DOI