Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 214547-2
European Commission
No. P503/12/G147
the Czech Science Foundation
P503/20/02203S
Czech Science Foundation
COOPERATIO/LF1
Charles University
the Czech MEYS: LM2018121
RECETOX
the Czech MEYS: CZ.02.1.01/0.0/0.0/15_003/0000469
CETOCOEN PLUS
the Czech MEYS: CZ.02.1.01/0.0/0.0/17_043/0009632
CETOCOEN Excellence
No 857560
European Union's Horizon
RECOOP Research Centers
Cedars - Sinai Medical Center's International Research and Innovation in Medicine Program
PubMed
36839135
PubMed Central
PMC9964099
DOI
10.3390/nano13040767
PII: nano13040767
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant defense, cytokines, immune response, immunotoxicity, inflammation, lymphocytes, nanoparticle inhalation, phagocytic activity and respiratory burst, titanium dioxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.
Faculty of Medicine Slovak Medical University 833 03 Bratislava Slovakia
Faculty of Public Health Slovak Medical University 833 03 Bratislava Slovakia
Health Effects Laboratory Norwegian Institute for Air Research 2007 Kjeller Norway
RECETOX Faculty of Science Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Waghmode M.S., Gunjal A.B., Mulla J.A., Patil N.N., Nawani N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 2019;1:310. doi: 10.1007/s42452-019-0337-3. DOI
Nabi G., Aain Q.U., Khalid N.R., Tahir M.B., Rafique M., Rizwan M., Hussain S., Iqbal T., Majid A. A Review on Novel Eco-Friendly Green Approach to Synthesis TiO2 Nanoparticles Using Different Extracts. J. Inorg. Organomet. Polym. Mater. 2018;28:1552–1564. doi: 10.1007/s10904-018-0812-0. DOI
Laux P., Tentschert J., Riebeling C., Braeuning A., Creutzenberg O., Epp A., Fessard V., Haas K.H., Haase A., Hund-Rinke K., et al. Nanomaterials: Certain aspects of application, risk assessment and risk communication. Arch. Toxicol. 2018;92:121–141. doi: 10.1007/s00204-017-2144-1. PubMed DOI PMC
Shi H., Magaye R., Castranova V., Zhao J. Titanium dioxide nanoparticles: A review of current toxicological data. Part. Fibre Toxicol. 2013;10:15. doi: 10.1186/1743-8977-10-15. PubMed DOI PMC
Dunphy-Guzman K.A., Taylor M.R., Banfield J.F. Environmental risks of nanotechnology: National Nanotechnology Initiative Funding, 2000–2004. Environ. Sci. Technol. 2006;40:1401–1407. doi: 10.1021/es0515708. PubMed DOI
Shakeel M., Jabeen F., Shabbir S., Asghar M.S., Khan M.S., Chaudhry A.S. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: A Review. Biol. Trace Elem. Res. 2016;172:1–36. doi: 10.1007/s12011-015-0550-x. PubMed DOI
Yin J., Kang C., Li Y., Li Q., Zhang X., Li W. Aerosol inhalation exposure study of respiratory toxicity induced by 20 nm anatase titanium dioxide nanoparticles. Toxicol. Res. 2014;3:367–374. doi: 10.1039/C4TX00040D. DOI
Fu Y., Zhang Y., Chang X., Zhang Y., Ma S., Sui J., Yin L., Pu Y., Liang G. Systemic immune effects of titanium dioxide nanoparticles after repeated intratracheal instillation in rat. Int. J. Mol. Sci. 2014;15:6961–6973. doi: 10.3390/ijms15046961. PubMed DOI PMC
NIOSH Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide. Current Intelligence Bulletin 63. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. 2011, DHHS (NIOSH) Publication No. 2011-160. [(accessed on 17 January 2023)]; Available online: https://www.cdc.gov/niosh/docs/2011-160/
Lee J.H., Kwon M., Ji J.H., Kang C.S., Ahn K.H., Han J.H., Yu I.J. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal. Toxicol. 2011;23:226–236. doi: 10.3109/08958378.2011.562567. PubMed DOI
Baan R., Straif K., Grosse Y., Secretan B., El Ghissassi F., Cogliano V., WHO International Agency for Research on Cancer Monograph Working Group Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 2006;7:295–296. doi: 10.1016/S1470-2045(06)70651-9. PubMed DOI
EUR-Lex Commission Delegated Regulation (EU) 2020/217 of 4 October 2019 Amending, for the Purposes of Its Adaptation to Technical and Scientific Progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on Classification, Labelling and Packaging of Substances and Mixtures and Correcting that Regulation. OJ L44, 18.2.2020, p.1. [(accessed on 17 January 2023)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2020:044:TOC.
Titanium Dioxide Manufacturers Association (TDMA) [(accessed on 17 January 2023)]. Available online: https://tdma.info/what-you-should-know-about-eu-titanium-dioxide-regulations/
Fiordaliso F., Bigini P., Salmona M., Diomede D. Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on human and environmental health. Environ. Sci. Nano. 2022;9:1199–1211. doi: 10.1039/D1EN00833A. DOI
Kreyling W.G., Holzwarth U., Schleh C., Hirn S., Wenk A., Schäffler M., Haberl N., Semmler-Behnke M., Gibson N. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure. Part. Fibre Toxicol. 2019;16:29. doi: 10.1186/s12989-019-0303-7. PubMed DOI PMC
Geraets L., Oomen A.G., Krystek P., Jacobsen N.R., Wallin H., Laurentie M., Verharen H.W., Brandon E.F., de Jong W.H. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre Toxicol. 2014;11:30. doi: 10.1186/1743-8977-11-30. PubMed DOI PMC
Winkler H.C., Notter T., Meyer U., Naegeli H. Critical review of the safety assessment of titanium dioxide additives in food. J. Nanobiotechnol. 2018;16:51. doi: 10.1186/s12951-018-0376-8. PubMed DOI PMC
Shah S.N., Shah Z., Hussain M., Khan M. Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg. Chem. Appl. 2017;2017:4101735. doi: 10.1155/2017/4101735. PubMed DOI PMC
Song B., Liu J., Feng X., Wei L., Shao L. A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res. Lett. 2015;10:342. doi: 10.1186/s11671-015-1042-9. PubMed DOI PMC
Fuster E., Candela H., Estévez J., Vilanova E., Sogorb M.A. Titanium Dioxide, but Not Zinc Oxide, Nanoparticles Cause Severe Transcriptomic Alterations in T98G Human Glioblastoma Cells. Int. J. Mol. Sci. 2021;22:2084. doi: 10.3390/ijms22042084. PubMed DOI PMC
Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004;16:437–445. doi: 10.1080/08958370490439597. PubMed DOI
Shabbir S., Kulyar M.F., Bhutta Z.A., Boruah P., Asif M. Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO2 NPs) and Their Jeopardy to Human Population. Bionanoscience. 2021;11:621–632. doi: 10.1007/s12668-021-00836-3. PubMed DOI PMC
Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. PubMed DOI
Habib G.M., Shi Z.Z., Lieberman M.W. Glutathione protects cells against arsenite-induced toxicity. Free Radic. Biol. Med. 2007;42:191–201. doi: 10.1016/j.freeradbiomed.2006.10.036. PubMed DOI PMC
Dar G.I., Saeed M., Wu A. Toxicity of TiO2 Nanoparticles. In: Wu A., Ren W., editors. TiO2 Nanoparticles Applications in Nanobiotechnology and Nanomedicine. Wiley; Hoboken, NJ, USA: 2020. pp. 67–103. DOI
Hu H., Fan X., Yin Y., Guo Q., Yang D., Wei X., Zhang B., Liu J., Wu Q., Oh Y., et al. Mechanisms of titanium dioxide nanoparticle-induced oxidative stress and modulation of plasma glucose in mice. Environ. Toxicol. 2019;34:1221–1235. doi: 10.1002/tox.22823. PubMed DOI
Lappas C.M. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem. Toxicol. 2015;85:78–83. doi: 10.1016/j.fct.2015.05.015. PubMed DOI
Gonçalves D.M., Chiasson S., Girard D. Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. Toxicol. In Vitro. 2010;24:1002–1008. doi: 10.1016/j.tiv.2009.12.007. PubMed DOI
Sang X., Zheng L., Sun Q., Li N., Cui Y., Hu R., Gao G., Cheng Z., Cheng J., Gui S., et al. The chronic spleen injury of mice following long-term exposure to titanium dioxide nanoparticles. J. Biomed. Mater. Res. A. 2012;100:894–902. doi: 10.1002/jbm.a.34024. PubMed DOI
Moon E.Y., Yi G.H., Kang J.S., Lim J.S., Kim H.M., Pyo S. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J. Immunotoxicol. 2011;8:56–67. doi: 10.3109/1547691X.2010.543995. PubMed DOI
Duan Y., Liu J., Ma L., Li N., Liu H., Wang J., Zheng L., Liu C., Wang X., Zhao X., et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials. 2010;31:894–899. doi: 10.1016/j.biomaterials.2009.10.003. PubMed DOI
Grassian V.H., O’Shaughnessy P.T., Adamcakova-Dodd A., Pettibone J.M., Thorne P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 2007;115:397–402. doi: 10.1289/ehp.9469. PubMed DOI PMC
Nemmar A., Melghit K., Ali B.H. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp. Biol. Med. 2008;233:610–619. doi: 10.3181/0706-RM-165. PubMed DOI
Gustafsson Å., Lindstedt E., Elfsmark L.S., Bucht A. Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the Dark Agouti rat. J. Immunotoxicol. 2011;8:111–121. doi: 10.3109/1547691X.2010.546382. PubMed DOI PMC
Park E.J., Yoon J., Choi K., Yi J., Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology. 2009;260:37–46. doi: 10.1016/j.tox.2009.03.005. PubMed DOI
Akhtar M.K., Vemury S., Pratsinis S.E. Competition between TiCl4 hydrolysis and oxidation and its effect on product TiO2 powder. AIChE J. 1994;40:1183–1192. doi: 10.1002/aic.690400709. DOI
Xia B., Li W., Zhang B., Xie Y. Low temperature vapor-phase preparation of TiO2 nanopowders. J. Mater. Sci. 1999;34:3505–3511. doi: 10.1023/A:1004666106670. DOI
Akhtar M.K., Xiong Y., Pratsinis S.E. Vapor synthesis of titania powder by titanium tetrachloride oxidation. AIChE J. 1991;37:1561–1570. doi: 10.1002/aic.690371013. DOI
Xiong Y., Akhtar M.K., Pratsinis S.E. Formation of agglomerate particles by coagulation and sintering—Part II. The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders. J. Aerosol Sci. 1993;24:301–313. doi: 10.1016/0021-8502(93)90004-S. DOI
Nakaso K., Okuyama K., Shimada M., Pratsinis S.E. Effect of Reaction Temperature on CVD-Made TiO2 Primary Particle Diameter. Chem. Eng. Sci. 2003;58:3327–3335. doi: 10.1016/S0009-2509(03)00213-6. DOI
Schleich D.M., Walter B. Formation of titania nanoparticles by vapor phase reactions of titanium tetraisopropoxide in oxygen/ozone containing atmospheres. Nanostruct. Mater. 1997;8:579–586. doi: 10.1016/S0965-9773(97)00191-8. DOI
Kim S.Y., Yu J.H., Lee J.S. The Characteristics of Nanosized TiO2 Powders Synthesized by Chemical Vapor Condensation. NanoStruct. Mater. 1999;12:471–474. doi: 10.1016/S0965-9773(99)00161-0. DOI
Choi J.G., Park K.J. Effect of Reaction Atmosphere on Particle Morphology of TiO2 Produced by Thermal Decomposition of Titanium Tetraisopropoxide. J. Nanopart. Res. 2006;8:269–278. doi: 10.1007/s11051-005-9042-9. DOI
Komiyama H., Kanai T., Inoue H. Preparation of Porous, Amorphous, and Ultrafine TiO2 Particles by Chemical Vapor Deposition. Chem. Lett. 1984;13:1283–1286. doi: 10.1246/cl.1984.1283. DOI
Koivisto A.J., Mäkinen M., Rossi E.M., Lindberg H.K., Miettinen M., Falck G.C.-M., Norppa H., Alenius H., Korpi A., Riikonen J., et al. Aerosol Characterization and Lung Deposition of Synthesized TiO2 Nanoparticles for Murine Inhalation Studies. J. Nanopart. Res. 2011;13:2949–2961. doi: 10.1007/s11051-010-0186-x. DOI
Moravec P., Schwarz J., Vodicka P., Kostejn M. Study of TiO2 nanoparticle generation for follow-up inhalation experiments with laboratory animals. Aerosol Sci. Technol. 2016;50:1068–1076. doi: 10.1080/02786826.2016.1224803. DOI
Schmid O., Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J. Aerosol Sci. 2016;99:133–143. doi: 10.1016/j.jaerosci.2015.12.006. DOI
Vecera Z., Mikuska P., Moravec P., Smolik J. Unique exposure system for the whole body inhalation experiments with small animals; Proceedings of the 3rd International Conference NANOCON 2011; Brno, Czech Republic. 21–23 September 2011; pp. 652–654.
Dumková J., Smutná T., Vrlíková L., Le Coustumer P., Večeřa Z., Dočekal B., Mikuška P., Čapka L., Fictum P., Hampl A., et al. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part. Fibre Toxicol. 2017;14:55. doi: 10.1186/s12989-017-0236-y. PubMed DOI PMC
Tulinska J., Masanova V., Liskova A., Mikusova M.L., Rollerova E., Krivosikova Z., Stefikova K., Uhnakova I., Ursinyova M., Babickova J., et al. Six-week inhalation of CdO nanoparticles in mice: The effects on immune response, oxidative stress, antioxidative defense, fibrotic response, and bones. Food Chem. Toxicol. 2020;136:110954. doi: 10.1016/j.fct.2019.110954. PubMed DOI
Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969;27:502–522. doi: 10.1016/0003-2697(69)90064-5. PubMed DOI
Yamano S., Takeda T., Goto Y., Hirai S., Furukawa Y., Kikuchi Y., Kasai T., Misumi K., Suzuki M., Takanobu K., et al. Lack of pulmonary fibrogenicity and carcinogenicity of titanium dioxide nanoparticles in 26-week inhalation study in rasH2 mouse model. bioRxiv. 2021:2021.12.23.473959. doi: 10.1101/2021.12.23.473959. PubMed DOI PMC
Farrera C., Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur. J. Pharm. Biopharm. 2015;95 Pt A:3–12. doi: 10.1016/j.ejpb.2015.03.007. PubMed DOI
You D.J., Lee H.Y., Bonner J.C. Macrophages: First Innate Immune Responders to Nanomaterials. In: Bonner J., Brown J., editors. Molecular and Integrative Toxicology. Springer; Cham, Switzerland: 2020. pp. 15–34. DOI
Sund J., Palomäki J., Ahonen N., Savolainen K., Alenius H., Puustinen A. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J. Proteom. 2014;108:469–483. doi: 10.1016/j.jprot.2014.06.011. PubMed DOI
Liu R., Zhang X., Pu Y., Yin L., Li Y., Zhang X., Liang G., Li X., Zhang J. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J. Nanosci. Nanotechnol. 2010;10:5161–5169. doi: 10.1166/jnn.2010.2420. PubMed DOI
Ghanbary F., Seydi E., Naserzadeh P., Salimi A. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria. Environ. Sci. Pollut. Res. 2018;25:6739–6750. doi: 10.1007/s11356-017-0974-2. PubMed DOI
Ispanixtlahuatl-Meráz O., Delgado-Buenrostro N.L., Déciga-Alcaraz A., Ramos-Godinez M.D.P., Oliva-Rico D., López-Villegas E.O., Vázquez-Zapién G.J., Mata-Miranda M.M., Ilhuicatzi-Alvarado D., Moreno-Fierros L., et al. Differential response of immobile (pneumocytes) and mobile (monocytes) barriers against 2 types of metal oxide nanoparticles. Chem. Biol. Interact. 2021;347:109596. doi: 10.1016/j.cbi.2021.109596. PubMed DOI
Luster M.I. A historical perspective of immunotoxicology. J. Immunotoxicol. 2014;11:197–202. doi: 10.3109/1547691X.2013.837121. PubMed DOI
Boraschi D., Costantino L., Italiani P. Interaction of nanoparticles with immunocompetent cells: Nanosafety considerations. Nanomedicine. 2012;7:121–131. doi: 10.2217/nnm.11.169. PubMed DOI
Liu H.-L., Yang H.-L., Lin B.-C., Zhang W., Tian L., Zhang H.-S., Xi Z.-G. Toxic effect comparison of three typical sterilization nanoparticles on oxidative stress and immune inflammation response in rats. Toxicol. Res. 2015;4:486–493. doi: 10.1039/C4TX00154K. DOI
Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., Benada O., Kofroňová O., Pinsino A. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. J. Hazard. Mater. 2020;384:121389. doi: 10.1016/j.jhazmat.2019.121389. PubMed DOI
Huang C., Sun M., Yang Y., Wang F., Ma X., Li J., Wang Y., Ding Q., Ying H., Song H., et al. Titanium dioxide nanoparticles prime a specific activation state of macrophages. Nanotoxicology. 2017;11:737–750. doi: 10.1080/17435390.2017.1349202. PubMed DOI
Mishra V., Baranwal V., Mishra R.K., Sharma S., Paul B., Pandey A.C. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-κB pathway in murine model of asthma. Biomaterials. 2016;92:90–102. doi: 10.1016/j.biomaterials.2016.03.016. PubMed DOI
Latha T.S., Reddy M.C., Durbaka P.V.R., Muthukonda S.V., Lomada D. Immunomodulatory properties of titanium dioxide nanostructural materials. Indian J. Pharmacol. 2017;49:458–464. doi: 10.4103/ijp.IJP_536_16. PubMed DOI PMC
Hashiguchi S., Yoshida H., Akashi T., Komemoto K., Ueda T., Ikarashi Y., Miyauchi A., Konno K., Yamanaka S., Hirose A., et al. Titanium dioxide nanoparticles exacerbate pneumonia in respiratory syncytial virus (RSV)-infected mice. Environ. Toxicol. Pharmacol. 2015;39:879–886. doi: 10.1016/j.etap.2015.02.017. PubMed DOI
Wang J.X., Fan Y.B., Gao Y., Hu Q.H., Wang T.C. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials. 2009;30:4590–4600. doi: 10.1016/j.biomaterials.2009.05.008. PubMed DOI
Sangeetha A., Samyuktha L., Atya K., Neha H., Rakesh K.S., Shantveer G.U., Kaiser J. In Vivo Interactions of Nanosized Titania Anatase and Rutile Particles Following Oral Administration. Nano Prog. 2020;2:11–20.
Sauer U.G., Vogel S., Aumann A., Hess A., Kolle S.N., Ma-Hock L., Wohlleben W., Dammann M., Strauss V., Treumann S., et al. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation. Toxicol. Appl. Pharmacol. 2014;276:1–20. doi: 10.1016/j.taap.2013.12.017. PubMed DOI
Murugadoss S., Mülhopt S., Diabaté S., Ghosh M., Paur H.R., Stapf D., Weiss C., Hoet P.H. Agglomeration State of Titanium-Dioxide (TiO2) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface. Nanomaterials. 2021;11:3226. doi: 10.3390/nano11123226. PubMed DOI PMC
Relier C., Dubreuil M., Lozano Garcìa O., Cordelli E., Mejia J., Eleuteri P., Robidel F., Loret T., Pacchierotti F., Lucas S., et al. Study of TiO2 P25 Nanoparticles Genotoxicity on Lung, Blood, and Liver Cells in Lung Overload and Non-Overload Conditions After Repeated Respiratory Exposure in Rats. Toxicol. Sci. 2017;156:527–537. doi: 10.1093/toxsci/kfx006. PubMed DOI
Wang J., Chen C., Liu Y., Jiao F., Li W., Lao F., Li Y., Li B., Ge C., Zhou G., et al. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett. 2008;183:72–80. doi: 10.1016/j.toxlet.2008.10.001. PubMed DOI
Wang J., Liu Y., Jiao F., Lao F., Li W., Gu Y., Li Y., Ge C., Zhou G., Li B., et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology. 2008;254:82–90. doi: 10.1016/j.tox.2008.09.014. PubMed DOI
Carmo T.L.L., Siqueira P.R., Azevedo V.C., Tavares D., Pesenti E.C., Cestari M.M., Martinez C.B.R., Fernandes M.N. Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environ. Toxicol. 2019;34:457–468. doi: 10.1002/tox.22699. PubMed DOI
Modrzynska J., Mortensen A., Berthing T., Ravn-Haren G., Szarek J., Saber A.T., Vogel U. Effect on Mouse Liver Morphology of CeO2, TiO2 and Carbon Black Nanoparticles Translocated from Lungs or Deposited Intravenously. Appl. Nano. 2021;2:222–241. doi: 10.3390/applnano2030016. DOI
Nemmar A., Melghit K., Al-Salam S., Zia S., Dhanasekaran S., Attoub S., Al-Amri I., Ali B.H. Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO2 nanorods. Toxicology. 2011;279:167–175. doi: 10.1016/j.tox.2010.10.007. PubMed DOI
Eydner M., Schaudien D., Creutzenberg O., Ernst H., Hansen T., Baumgärtner W., Rittinghausen S. Impacts after inhalation of nano- and fine-sized titanium dioxide particles: Morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index. Inhal. Toxicol. 2012;24:557–569. doi: 10.3109/08958378.2012.697494. PubMed DOI