Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
P503/11/2315
Czech Science Foundation - International
P503/12/G147
Czech Science Foundation - International
1318/2017
Grant Agency of the Masaryk University - International
PubMed
29268755
PubMed Central
PMC5740755
DOI
10.1186/s12989-017-0236-y
PII: 10.1186/s12989-017-0236-y
Knihovny.cz E-zdroje
- Klíčová slova
- Brain, Electron microscopy, Inhalation, Kidney, Lead oxide, Liver, Lung, Nanoparticles, Spleen, Toxicity,
- MeSH
- hodnocení rizik MeSH
- inhalační expozice MeSH
- játra účinky léků metabolismus ultrastruktura MeSH
- kovové nanočástice * aplikace a dávkování chemie toxicita MeSH
- látky znečišťující životní prostředí aplikace a dávkování chemie farmakokinetika toxicita MeSH
- ledviny účinky léků metabolismus ultrastruktura MeSH
- mozek účinky léků metabolismus ultrastruktura MeSH
- myši inbrední ICR MeSH
- olovo aplikace a dávkování chemie farmakokinetika toxicita MeSH
- oxidy aplikace a dávkování chemie farmakokinetika toxicita MeSH
- plíce účinky léků metabolismus ultrastruktura MeSH
- slezina účinky léků metabolismus ultrastruktura MeSH
- tkáňová distribuce MeSH
- toxikokinetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- látky znečišťující životní prostředí MeSH
- lead oxide MeSH Prohlížeč
- olovo MeSH
- oxidy MeSH
BACKGROUND: Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. METHODS: Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. RESULTS: Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. CONCLUSIONS: Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs.
Bordeaux University UF STE Allée G Saint Hilaire 33615 Pessac Cedex France
Institute of Analytical Chemistry of the Czech Academy of Sciences 602 00 Brno Czech Republic
UMR 5254 IPREM CNRS UPPA Technopole Hélioparc 2 av P Angot 64053 Pau Cedex9 France
Zobrazit více v PubMed
Grandjean P. Even low-dose lead exposure is hazardous. Lancet. 2010;376:855–856. doi: 10.1016/S0140-6736(10)60745-3. PubMed DOI
Lippmann M. Environmental toxicants: human exposures and their health effects. Hoboken: Wiley; 2000. PubMed PMC
Wang M, Chen WH, Zhu DM, She JQ, Ruan DY. Effects of carbachol on lead-induced impairment of the long-term potentiation/depotentiation in rat dentate gyrus in vivo. Food Chem Toxicol. 2007;45:412–418. doi: 10.1016/j.fct.2006.08.025. PubMed DOI
Nascimento C, Risso W, Martinez C. Lead accumulation and metallothionein content in female rats of different ages and generations after daily intake of Pb-contaminated food. Environ Toxicol Pharmacol. 2016;48:272–277. doi: 10.1016/j.etap.2016.11.001. PubMed DOI
Sobanska S, Ricq N, Laboudigue A, Guillermo R, Bremard C, Laureyns J, Merlin J, Wignacourt J. Microchemical investigations of dust emitted by a lead smelter. Environmental Science & Technology. 1999;33:1334–1339. doi: 10.1021/es9805270. DOI
Mushak P, Berry M, Elias R. Gastrointestinal absorption of lead in children and adults - overview of biological and biophysico-chemical aspects. Chemical Speciation and Bioavailability, Vol 3, Nos 3–4, December. 1991;1991:87–104. doi: 10.1080/09542299.1991.11083160. DOI
Mohamed M, Ugarte-Torres A, Groshaus H, Rioux K, Yarema M. Lead poisoning from a ceramic jug presenting as recurrent abdominal pain and jaundice. ACG Case Rep J. 2016;3:141–143. doi: 10.14309/crj.2016.27. PubMed DOI PMC
Rabinowitz MB, Wetherill GW, Kopple JD. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976;58:260–270. doi: 10.1172/JCI108467. PubMed DOI PMC
Rabinowitz MB. Toxicokinetics of bone lead. Environ Health Perspect. 1991;91:33–37. doi: 10.1289/ehp.919133. PubMed DOI PMC
Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne NDPK, Katta A, Addagarla HS, Rice KM, Blough ER. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomedicine. 2011;6:2327–2335. doi: 10.2147/IJN.S25119. PubMed DOI PMC
Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect. 2010;118:1699–1706. doi: 10.1289/ehp.1002201. PubMed DOI PMC
Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Li Y, Li B, Chai Z, et al. Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol. 2009;9:6335–6343. doi: 10.1166/jnn.2009.1320. PubMed DOI
Oravisjarvi K, Timonen K, Wiikinkoski T, Ruuskanen A, Heinanen K, Ruuskanen J. Source contributions to PM2.5 particles in the urban air of a town situated close to a steel works. Atmos Environ. 2003;37:1013–1022. doi: 10.1016/S1352-2310(02)01048-8. DOI
Sammut ML, Noack Y, Rose J, Hazemann JL, Proux O, Depoux M, Ziebel A, Fiani E. Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere. 2010;78:445–450. doi: 10.1016/j.chemosphere.2009.10.039. PubMed DOI
Casals E, Vazquez-Campos S, Bastus N, Puntes V. Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. Trac-Trends in Analytical Chemistry. 2008;27:672–683. doi: 10.1016/j.trac.2008.06.004. DOI
Agency for Toxic Substances and Disease Registry (ATSDR). 2016. https://www.atsdr.cdc.gov/csem/csem.asp?csem=7&po=8. PubMed
Gurjar B, Ravindra K, Nagpure A. Air pollution trends over Indian megacities and their local-to-global implications. Atmos Environ. 2016;142:475–495. doi: 10.1016/j.atmosenv.2016.06.030. DOI
Huang K, Zhuang G, Lin Y, Wang Q, Fu J, Fu Q, Liu T, Deng C. How to improve the air quality over megacities in China: pollution characterization and source analysis in shanghai before, during, and after the 2010 world expo. Atmos Chem Phys. 2013;13:5927–5942. doi: 10.5194/acp-13-5927-2013. DOI
Vignal C, Pichavant M, Alleman LY, Djouina M, Dingreville F, Perdrix E, Waxin C, Ouali Alami A, Gower-Rousseau C, Desreumaux P, Body-Malapel M. Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part Fibre Toxicol. 2017;14:46. doi: 10.1186/s12989-017-0227-z. PubMed DOI PMC
Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 2016;99:133–143. doi: 10.1016/j.jaerosci.2015.12.006. DOI
Večeřa Z, Mikuška P, Moravec P, Smolík J. Unique exposure system for the whole body inhalation experiments with small animals. Brno, Czech Republic: TANGER Ltd NANOCON; 2011:652–4.
Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 2007;100:203–214. doi: 10.1093/toxsci/kfm196. PubMed DOI
Bide RW, Armour SJ, Yee E. Allometric respiration/body mass data for animals to be used for estimates of inhalation toxicity to young adult humans. J Appl Toxicol. 2000;20:273–290. doi: 10.1002/1099-1263(200007/08)20:4<273::AID-JAT657>3.0.CO;2-X. PubMed DOI
Miller FJ. Dosimetry of particles in laboratory animals and humans in relationship to issues surrounding lung overload and human health risk assessment: a critical review. Inhal Toxicol. 2000;12:19–57. doi: 10.1080/089583700196536. PubMed DOI
Kendall M, Ding P, Kendall K. Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology. Nanotoxicology. 2011;5:55–65. doi: 10.3109/17435390.2010.489724. PubMed DOI
Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, Poland CA, Tran CL, Donaldson K. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci. 2012;126:469–477. doi: 10.1093/toxsci/kfs006. PubMed DOI
Li Q, Hu X, Bai Y, Alattar M, Ma D, Cao Y, Hao Y, Wang L, Jiang C. The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung. Food Chem Toxicol. 2013;60:213–217. doi: 10.1016/j.fct.2013.07.046. PubMed DOI
Lee S, Choi J, Shin S, Im YM, Song J, Kang SS, Nam TH, Webster TJ, Kim SH, Khang D. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta Biomater. 2011;7:2337–2344. doi: 10.1016/j.actbio.2011.01.006. PubMed DOI
Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. Cadmium associated with inhaled cadmium oxide Nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci. 2012;126:478–486. doi: 10.1093/toxsci/kfs008. PubMed DOI PMC
Cao Y, Liu H, Li Q, Wang Q, Zhang W, Chen Y, Wang D, Cai Y. Effect of lead sulfide nanoparticles exposure on calcium homeostasis in rat hippocampus neurons. J Inorg Biochem. 2013;126:70–75. doi: 10.1016/j.jinorgbio.2013.05.008. PubMed DOI
Ambrose T, Al-Lozi M, Scott M. Bone lead concentrations assessed by in vivo X-ray fluorescence. Clin Chem. 2000;46:1171–1178. PubMed
Braakhuis H, Park M, Gosens I, De Jong W, Cassee F. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Particle and Fibre Toxicology. 2014;11 PubMed PMC
Abid A, Anderson D, Das G, Van Winkle L, Kennedy I. Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation. Particle and Fibre Toxicology. 2013;10 PubMed PMC
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol. 2009;21(Suppl 1):55–60. doi: 10.1080/08958370902942517. PubMed DOI
Pietroiusti A, Bergamaschi E, Campagna M, Campagnolo L, De Palma G, Iavicoli S, Leso V, Magrini A, Miragoli M, Pedata P, et al. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group. Part Fibre Toxicol. 2017;14:47. doi: 10.1186/s12989-017-0226-0. PubMed DOI PMC
Schwartz J. Low-level lead exposure and children's IQ: a meta-analysis and search for a threshold. Environ Res. 1994;65:42–55. doi: 10.1006/enrs.1994.1020. PubMed DOI
Kelada SN, Shelton E, Kaufmann RB, Khoury MJ. Delta-aminolevulinic acid dehydratase genotype and lead toxicity: a HuGE review. Am J Epidemiol. 2001;154:1–13. doi: 10.1093/aje/154.1.1. PubMed DOI
Kapoor SC, van Rossum GD. Effects of Pb2+ added in vitro on Ca2+ movements in isolated mitochondria and slices of rat kidney cortex. Biochem Pharmacol. 1984;33:1771–1778. doi: 10.1016/0006-2952(84)90348-4. PubMed DOI
Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Giorgi C, Marchi S, Missiroli S, Poletti F, et al. Calcium signaling around mitochondria associated membranes (MAMs) Cell Commun Signal. 2011;9:19. doi: 10.1186/1478-811X-9-19. PubMed DOI PMC
Giorgi C, Romagnoli A, Pinton P, Rizzuto R. Ca2+ signaling, mitochondria and cell death. Curr Mol Med. 2008;8:119–130. doi: 10.2174/156652408783769571. PubMed DOI
Blum JL, Rosenblum LK, Grunig G, Beasley MB, Xiong JQ, Zelikoff JT. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal Toxicol. 2014;26:48–58. doi: 10.3109/08958378.2013.851746. PubMed DOI PMC
Takenaka S, Karg E, Kreyling WG, Lentner B, Schulz H, Ziesenis A, Schramel P, Heyder J. Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal Toxicol. 2004;16(Suppl 1):83–92. doi: 10.1080/08958370490443141. PubMed DOI
Nemmar A, Melghit K, Ali BH. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp Biol Med (Maywood) 2008;233:610–619. doi: 10.3181/0706-RM-165. PubMed DOI
Roursgaard M, Jensen KA, Poulsen SS, Jensen NE, Poulsen LK, Hammer M, Nielsen GD, Larsen ST. Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. ScientificWorldJournal. 2011;11:801–825. doi: 10.1100/tsw.2011.67. PubMed DOI PMC
Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, Bradley M, Megson IL, Donaldson K. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology. 2012;6:22–35. doi: 10.3109/17435390.2011.552810. PubMed DOI
Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146:882–893. doi: 10.1038/sj.bjp.0706386. PubMed DOI PMC
Broeg K, Westernhagen HV, Zander S, Körting W, Koehler A. The “bioeffect assessment index” (BAI). A concept for the quantification of effects of marine pollution by an integrated biomarker approach. Mar Pollut Bull. 2005;50:495–503. doi: 10.1016/j.marpolbul.2005.02.042. PubMed DOI
Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:S99–S112. doi: 10.1002/hep.20973. PubMed DOI
Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009;13:9–19. PubMed PMC
Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li Y, Li B, et al. Potential health impact on mice after nasal instillation of Nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol. 2009;9:6335–6343. doi: 10.1166/jnn.2009.1320. PubMed DOI
Seely JC. Kidney. In: Maronpot RR, Boorman GA, Gaul BW, editors. Pathology of the mouse: reference and atlas. Vienna, IL: Cache River Press; 1999. pp. 207–234.
Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, Fictum P, Hampl A, Buchtova M. Inhaled cadmium oxide Nanoparticles: their in vivo fate and effect on target organs. Int J Mol Sci. 2016;17 PubMed PMC
Katsnelson BA, Privalova LI, Gurvich VB, Makeyev OH, Shur VY, Beikin YB, Sutunkova MP, Kireyeva EP, Minigalieva IA, Loginova NV, et al. Comparative in vivo assessment of some adverse bioeffects of Equidimensional gold and silver Nanoparticles and the attenuation of Nanosilver's effects with a complex of innocuous bioprotectors. Int J Mol Sci. 2013;14:2449–2483. doi: 10.3390/ijms14022449. PubMed DOI PMC
Skalska J, Frontczak-Baniewicz M, Strużyńska L. Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology. 2015;46:145–154. doi: 10.1016/j.neuro.2014.11.002. PubMed DOI
Thomson RM, Parry GJ. Neuropathies associated with excessive exposure to lead. Muscle Nerve. 2006;33:732–741. doi: 10.1002/mus.20510. PubMed DOI
Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, Li Y, Ge C, Zhou G, Li B, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology. 2008;254:82–90. doi: 10.1016/j.tox.2008.09.014. PubMed DOI
Alshuaib WB, Cherian SP, Hasan MY, Fahim MA. Drug effects on calcium homeostasis in mouse CA1 hippocampal neurons. Int J Neurosci. 2003;113:1317–1332. doi: 10.1080/00207450390231455. PubMed DOI