Macrophage-mediated tissue response evoked by subchronic inhalation of lead oxide nanoparticles is associated with the alteration of phospholipases C and cholesterol transporters
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35922858
PubMed Central
PMC9351260
DOI
10.1186/s12989-022-00494-7
PII: 10.1186/s12989-022-00494-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cholesterol metabolism, Inhalation, Lead oxide nanoparticles, Liver macrophages, Lung macrophages,
- MeSH
- cholesterol MeSH
- fosfolipasy typu C * MeSH
- kovové nanočástice * chemie MeSH
- lidé MeSH
- makrofágy MeSH
- olovo MeSH
- oxidy MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- fosfolipasy typu C * MeSH
- lead oxide MeSH Prohlížeč
- olovo MeSH
- oxidy MeSH
BACKGROUND: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. RESULTS: The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCβ1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. CONCLUSION: Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Department of Geological Sciences Faculty of Science Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Aleksiichuk V, Omelchuk S, Sokurenko L, Kaminsky R, Kovalchuk O, Chaikovsky Y. The influence of lead nanoparticles on the morpho-functional changes of rat liver during the postexposure period. Microsc Res Technol. 2018;81(7):781–788. doi: 10.1002/jemt.23036. PubMed DOI
Areecheewakul S, Adamcakova-Dodd A, Haque E, Jing X, Meyerholz DK, O’Shaughnessy PT. Time course of pulmonary inflammation and trace element biodistribution during and after sub-acute inhalation exposure to copper oxide nanoparticles in a murine model. Part Fibre Toxicol. 2022;19:40. doi: 10.1186/s12989-022-00480-z. PubMed DOI PMC
Asgharian B, Price OT, Oldham M, Chen LC, Saunders EL, Gordon T, Mikheev VB, Minard KR, Teeguarden JG. Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract. Inhal Toxicol. 2014;26(14):829–842. doi: 10.3109/08958378.2014.935535. PubMed DOI PMC
Bae YS, Lee HY, Jung YS, Lee M, Suh PG. Phospholipase Cγ in Toll-like receptor-mediated inflammation and innate immunity. Adv Biol Regul. 2017;63:92–97. doi: 10.1016/j.jbior.2016.09.006. PubMed DOI
Bide RW, Armour SJ, Yee E. Allometric respiration/body mass data for animals to be used for estimates of inhalation toxicity to young adult humans. J Appl Toxicol. 2000;20(4):273–290. doi: 10.1002/1099-1263(200007/08)20:4<273::AID-JAT657>3.0.CO;2-X. PubMed DOI
Blum JL, Rosenblum LK, Grunig G, Beasley MB, Xiong JQ, Zelikoff JT. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal Toxicol. 2014;26(1):48–58. doi: 10.3109/08958378.2013.851746. PubMed DOI PMC
Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. Cadmium associated with inhaled cadmium oxide Nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci. 2012;126:66. doi: 10.1093/toxsci/kfs008. PubMed DOI PMC
Blahova L, Novakova Z, Vecera Z, Vrlikova L, Docekal B, Dumkova J, et al. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology. 2020;14:214–231. doi: 10.1080/17435390.2019.1685696. PubMed DOI
Bratovcic A. Synthesis, characterization, applications, and toxicity of lead oxide nanoparticles. Lead Chem. 2020;6:66.
Broeg K, Westernhagen HV, Zander S, Körting W, Koehler A. The bioeffect assessment index (BAI). A concept for the quantification of effects of marine pollution by an integrated biomarker approach. Mar Pollut Bull. 2005;50(5):495–503. doi: 10.1016/j.marpolbul.2005.02.042. PubMed DOI
Brown JJ, Parashar B, Moshage H, Tanaka KE, Engelhardt D, Rabbani E, et al. A long-term hepatitis B viremia model generated by transplanting nontumorigenic immortalized human hepatocytes in Rag-2–deficient mice. Hepatology. 2000;31(1):173–181. doi: 10.1002/hep.510310126. PubMed DOI
Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT, Rousselet E, Seidah NG, Oddo S, LaFerla FM, Spencer TA, Hickey WF, Chang TY. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci USA. 2010;107(7):3081–3086. doi: 10.1073/pnas.0913828107. PubMed DOI PMC
Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4(7):3623–3632. doi: 10.1021/nn901372t. PubMed DOI
Casals E, Vazquez-Campos S, Bastus N, Puntes V. Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. Trac-Trends AnalChem. 2008;27:66. doi: 10.1016/j.trac.2007.11.005. DOI
Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med. 2016;20(1):17–28. doi: 10.1111/jcmm.12689. PubMed DOI PMC
Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, et al. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology. 2012;6:66. doi: 10.3109/17435390.2011.552810. PubMed DOI
Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, et al. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect. 2010;118(12):1699–706. doi: 10.1289/ehp.1002201. PubMed DOI PMC
Cigankova H, Mikuska P, Hegrova J, Pokorna P, Schwarz J, Krajcovic J. Seasonal variation and sources of elements in urban submicron and fine aerosol in Brno, Czech Republic. Aerosol Air Qual Res. 2021;21(5):200556. doi: 10.4209/aaqr.2020.09.0556. DOI
Daley GM, Pretorius CJ, Ungerer JPJ. Lead toxicity: an Australian perspective. Clin Biochem Rev. 2018;39(4):61. PubMed PMC
De Winter-Sorkina R, Cassee FR. From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats. 2003. National Institute of Public Health and the Environment (RIVM), The Netherlands. Report 650010031/2002. http://www.rivm.nl/bibliotheek/rapporten/650010031.pdf. Accessed 10 Nov 2020.
Dukhinova MS, Prilepskii A, Shtil AA, Vinogradov VV. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials. 2019;9(11):1631. doi: 10.3390/nano9111631. PubMed DOI PMC
Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, et al. Inhaled cadmium oxide nanoparticles: their in vivo fate and effect on target organs. Int J Mol Sci. 2016;17(6):874. doi: 10.3390/ijms17060874. PubMed DOI PMC
Dumkova J, Smutna T, Vrliková L, Le Coustumer P, Vecera Z, Docekal B, et al. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol. 2017;14(1):55. doi: 10.1186/s12989-017-0236-y. PubMed DOI PMC
Dumkova J, Smutna T, Vrlikova L, Kotasova H, Docekal B, Capka L, et al. Variability in the clearance of lead oxide nanoparticles is associated with alteration of specific membrane transporters. ACS Nano. 2020;14(3):3096–3120. doi: 10.1021/acsnano.9b08143. PubMed DOI
Dumkova J, Smutna T, Vrlikova L, Docekal B, Kristekova D, Vecera Z, et al. A clearance period after soluble lead nanoparticle inhalation did not ameliorate the negative effects on target tissues due to decreased immune response. Int J Mol Sci. 2020;21(22):8738. doi: 10.3390/ijms21228738. PubMed DOI PMC
Elango G, Roopan SM. Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;139:367–373. doi: 10.1016/j.saa.2014.12.066. PubMed DOI
Gerl MJ, Vaz WLC, Domingues N, Klose C, Surma MA, Sampaio JL, et al. Cholesterol is inefficiently converted to cholesteryl esters in the blood of cardiovascular disease patients. Sci Rep. 2018;8:14764. doi: 10.1038/s41598-018-33116-4. PubMed DOI PMC
Gibeon D, Zhu J, Sogbesan A, Banya W, Rossios C, Saito J, et al. Lipid-laden bronchoalveolar macrophages in asthma and chronic cough. Respir Med. 2014;108(1):71–77. doi: 10.1016/j.rmed.2013.10.005. PubMed DOI
Gonen A, Miller YI. From inert storage to biological activity-in search of identity for oxidized cholesteryl esters. Front Endocrinol. 2020;11:602252. doi: 10.3389/fendo.2020.602252. PubMed DOI PMC
Hsieh TH, Yu CP, Oberdorster G. Deposition and clearance models of Ni compounds in the mouse lung and comparisons with the rat models. Aerosol Sci Technol. 1999;31(5):358–372. doi: 10.1080/027868299304084. DOI
Huang H, Polavarapu L, Sichert JA, Susha AS, Urban AS, Rogach AL. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater. 2016;8(11):e328–e328. doi: 10.1038/am.2016.167. DOI
Iancu TC. Ultrastructural aspects of iron storage, transport and metabolism. J Neural Transm. 2011;118(3):329–335. doi: 10.1007/s00702-011-0588-7. PubMed DOI
International Commission on Radiological Protection. Human respiratory tract model for radiological protection. Stockholm: International Commission on Radiological Protection; 1994. PubMed
Ivanova J, Gluhcheva Y, Dimova D, Pavlova E, Arpadjan S. Comparative assessment of the effects of salinomycin and monensin on the biodistribution of lead and some essential metal ions in mice, subjected to subacute lead intoxication. J Trace Elem Med Biol. 2016;33:31–36. doi: 10.1016/j.jtemb.2015.08.003. PubMed DOI
Kou H, Ya J, Gao X, Zhao H. The effects of chronic lead exposure on the liver of female Japanese quail (Coturnix japonica): Histopathological damages, oxidative stress and AMP-activated protein kinase based lipid metabolism disorder. Ecotoxicol Environ Saf. 2020;190:110055. doi: 10.1016/j.ecoenv.2019.110055. PubMed DOI
Krautbauer S, Weiss TS, Wiest R, Schacherer D, Liebisch G, Buechler C. Diagnostic value of systemic cholesteryl ester/free cholesterol ratio in hepatocellular carcinoma. Anticancer Res. 2017;37(7):3527–3535. PubMed
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol. 2009;21:66. doi: 10.1080/08958370902942517. PubMed DOI
Kudo K, Uchida T, Sawada M, Nakamura Y, Yoneda A, Fukami K. Phospholipase C δ1 in macrophages negatively regulates TLR4-induced proinflammatory cytokine production and Fcγ receptor-mediated phagocytosis. Adv Biol Regul. 2016;61:68–79. doi: 10.1016/j.jbior.2015.11.004. PubMed DOI
Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomed Nanotechno Biol Med. 2013;9(1):39–54. doi: 10.1016/j.nano.2012.04.004. PubMed DOI
Lebedova J, Blahova L, Vecera Z, Mikuska P, Docekal B, Buchtova M, et al. Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. Environ Sci Pollut Res. 2016;23(23):24047–24060. doi: 10.1007/s11356-016-7600-6. PubMed DOI
Lebedova J, Novakova Z, Vecera Z, Buchtova M, Dumkova J, Docekal B, et al. Impact of acute and subchronic inhalation exposure to PbO nanoparticles on mice. Nanotoxicology. 2018;12(4):290–304. doi: 10.1080/17435390.2018.1438679. PubMed DOI
Lee S, Choi J, Shin S, Im YM, Song J, Kang SS, et al. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta Biomater. 2011;7:66. PubMed
Li QZ, Hu XL, Bai YP, Alattar M, Ma D, Cao YH, et al. The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung. Food Chem Toxicol. 2013;60:213–217. doi: 10.1016/j.fct.2013.07.046. PubMed DOI
Loghman-Adham M. Aminoaciduria and glycosuria following severe childhood lead poisoning. Pediatr Nephrol. 1998;12(3):218–221. doi: 10.1007/s004670050441. PubMed DOI
Löfgren L, Forsberg GB, Ståhlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016;6(1):1–11. doi: 10.1038/srep27688. PubMed DOI PMC
Ma DC, Yoon AJ, Faull KF, Desharnais R, Zemanick ET, Porter E. Cholesteryl esters are elevated in the lipid fraction of bronchoalveolar lavage fluid collected from pediatric cystic fibrosis patients. PLoS ONE. 2015;10(4):e0125326. doi: 10.1371/journal.pone.0125326. PubMed DOI PMC
Makhdoumi P, Karimi H, Khazaei M. Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem Res Toxicol. 2020;33(10):2503–2514. doi: 10.1021/acs.chemrestox.9b00438. PubMed DOI
Malhotra P, Gill RK, Saksena S, Alrefai WA. Disturbances in cholesterol homeostasis and non-alcoholic fatty liver diseases. Front Med. 2020;7:467. doi: 10.3389/fmed.2020.00467. PubMed DOI PMC
Maynard AD. Nanotechnology: assessing the risks. Nano Today. 2006;1(2):22–33. doi: 10.1016/S1748-0132(06)70045-7. DOI
Méndez LB, Gookin G, Phalen RF. Inhaled aerosol particle dosimetry in mice: a review. Inhalation Toxicol. 2010;22(S2):15–20. doi: 10.3109/08958378.2010.541337. PubMed DOI
Mikuska P, Capka L, Vecera Z. Aerosol sampler for analysis of fine and ultrafine aerosols. Anal Chim Acta. 2018;1020:123–133. doi: 10.1016/j.aca.2018.02.070. PubMed DOI
Miller FJ. Dosimetry of particles in laboratory animals and humans in relationship to issues surrounding lung overload and human health risk assessment: a critical review. Inhal Toxicol. 2000;12(1–2):19–57. doi: 10.1080/089583700196536. PubMed DOI
Minigalieva IA, Katsnelson BA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017;380:72–93. doi: 10.1016/j.tox.2017.02.007. PubMed DOI
Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 2007;100(1):203–214. doi: 10.1093/toxsci/kfm196. PubMed DOI
Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006;26(8):1702–1711. doi: 10.1161/01.ATV.0000229218.97976.43. PubMed DOI
MPPD: Multiple-Path Particle Dosimetry Model. 2020. https://www.ara.com/mppd/.
Muehlfeld C, Gehr P, Rothen-Rutishauser B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly. 2008;138(27–28):387–391. PubMed
Nakamura Y, Fukami K. Regulation and physiological functions of mammalian phospholipase C. J Biochem. 2017;161(4):315–321. PubMed
Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne NDPK, Katta A, et al. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague–Dawley rats. Int J Nanomed. 2011;6:66. PubMed PMC
Nassir F, Rector RS, Hammoud GM, Ibdah JA. Pathogenesis and prevention of hepatic steatosis. Gastroenterol Hepatol. 2015;11(3):167. PubMed PMC
Nemmar A, Melghit K, Ali BH. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp Biol Med. 2008;233(5):610–619. doi: 10.3181/0706-RM-165. PubMed DOI
Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150(1):5–22. doi: 10.1016/j.envpol.2007.06.006. PubMed DOI
Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2000;74:1–8. doi: 10.1007/s004200000185. PubMed DOI
Oldham MJ, Robinson RJ. Predicted tracheobronchial and pulmonary deposition in a murine asthma model. Anat Rec. 2007;290:1309–1314. doi: 10.1002/ar.20593. PubMed DOI
Oszlanczi G, Papp A, Szabo A, Nagymajtenyi L, Sapi A, Konya Z, et al. Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal Toxicol. 2011;23(4):173–181. doi: 10.3109/08958378.2011.553248. PubMed DOI
Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit. 2005;11(10):329–336. PubMed
Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 2008;4(11):1000–204. doi: 10.1371/journal.ppat.1000204. PubMed DOI PMC
Phillips GR, Hancock SE, Brown SHJ, Jenner AM, Kreilaus F, Newell KA, Mitchell TW. Cholesteryl ester levels are elevated in the caudate and putamen of Huntington's disease patients. Sci Rep. 2020;10(1):20314. doi: 10.1038/s41598-020-76973-8. PubMed DOI PMC
Pietroiusti A, Bergamaschi E, Campagna M, Campagnolo L, De Palma G, Iavicoli S, et al. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group. Part Fibre Toxicol. 2017;14(1):47. doi: 10.1186/s12989-017-0226-0. PubMed DOI PMC
Reyes NJ, O'Koren EG, Saban DR. New insights into mononuclear phagocyte biology from the visual system. Nat Rev Immunol. 2017;17(5):322. doi: 10.1038/nri.2017.13. PubMed DOI PMC
Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol. 2009;10(9):943–948. doi: 10.1038/ni.1781. PubMed DOI PMC
Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 2016;99:133–143. doi: 10.1016/j.jaerosci.2015.12.006. DOI
Shen WJ, Azhar S, Kraemer FB. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol. 2018;80:95–116. doi: 10.1146/annurev-physiol-021317-121550. PubMed DOI PMC
Suzuki Y, Tada-Oikawa S, Ichihara G, Yabata M, Izuoka K, Suzuki M, et al. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicol Appl Pharmacol. 2014;278(1):16–25. doi: 10.1016/j.taap.2014.04.010. PubMed DOI
Takenaka S, Karg E, Kreyling WG, Lentner B, Schulz H, Ziesenis A, et al. Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal Toxicol. 2004;16 (Suppl 1):83–92. doi: 10.1080/08958370490443141. PubMed DOI
Thomas LB, Stemple JC, Andreatta RD, Andrade FH. Establishing a new animal model for the study of laryngeal biology and disease: an anatomic study of the mouse larynx. J Speech Lang Hear Res. 2009;52(3):802–811. doi: 10.1044/1092-4388(2008/08-0087). PubMed DOI
Togao M, Nakayama SMM, Ikenaka Y, Mizukawa H, Makino Y, Kubota A, et al. Bioimaging of Pb and STIM1 in mice liver, kidney and brain using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and immunohistochemistry. Chemosphere. 2020;238:124581. doi: 10.1016/j.chemosphere.2019.124581. PubMed DOI
Tran C, Buchanan D, Cullen R, Searl A, Jones A, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology. 2000, 12, 1113−1126. PubMed
Tulinska J, Krivosikova Z, Liskova A, Lehotska Mikusova M, Masanova V, Rollerova E, et al. Six-week inhalation of lead oxide nanoparticles in mice affects antioxidant defense, immune response, kidneys, intestine and bones. Environ Sci Nano. 2022;9:751–766. doi: 10.1039/D1EN00957E. DOI
Vecera Z, Mikuska P, Moravec P, Smolík J. Unique exposure system for the whole body inhalation experiments with small animals. NANOCON 2011 Brno, Czech Republic, conference proceedings; 2011.
Wang CS, ed. Inhaled particles. Elsevier; 2005.
Winkler-Heil R, Hofmann W. Modeling particle deposition in the Balb/c mouse respiratory tract. Inhal Toxicol. 2016;28(4):180–191. doi: 10.3109/08958378.2016.1148801. PubMed DOI
Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019;10:792. doi: 10.3389/fimmu.2019.00792. PubMed DOI PMC
Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4(2):178–201. doi: 10.3390/cells4020178. PubMed DOI PMC
Zhang J, Wang Y, Fu L, Feng YJ, Ji YL, Wang H, et al. Subchronic cadmium exposure upregulates the mRNA level of genes associated to hepatic lipid metabolism in adult female CD1 mice. J Appl Toxicol. 2018;38(7):1026–1035. doi: 10.1002/jat.3612. PubMed DOI
Zhao Y, Zhang Z, Dang H. Fabrication and tribological properties of Pb nanoparticles. J Nanopart Res. 2004;6(1):47–51. doi: 10.1023/B:NANO.0000023223.79545.af. DOI
Zhu L, Jones C, Zhang G. The role of phospholipase C signaling in macrophage-mediated inflammatory response. Journal of Immunology Research. 6, 66 2018. PubMed PMC