Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27271611
PubMed Central
PMC4926408
DOI
10.3390/ijms17060874
PII: ijms17060874
Knihovny.cz E-zdroje
- Klíčová slova
- cadmium oxide, electron microscopy, inhalation, kidney, liver, lung, nanoparticles, spleen, toxicity,
- MeSH
- játra metabolismus patologie ultrastruktura MeSH
- kadmium škodlivé účinky krev MeSH
- ledviny metabolismus patologie ultrastruktura MeSH
- myši MeSH
- nadechnutí * MeSH
- nanočástice škodlivé účinky chemie MeSH
- oxidy škodlivé účinky krev chemie metabolismus MeSH
- plíce metabolismus patologie ultrastruktura MeSH
- slezina metabolismus patologie ultrastruktura MeSH
- sloučeniny kadmia škodlivé účinky krev chemie metabolismus MeSH
- velikost částic MeSH
- vystavení vlivu životního prostředí MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cadmium oxide MeSH Prohlížeč
- kadmium MeSH
- oxidy MeSH
- sloučeniny kadmia MeSH
The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.
Zobrazit více v PubMed
Wedepohl K.H. The composition of the continental crust. Geochim. Cosmochim. Acta. 1995;59:1217–1232. doi: 10.1016/0016-7037(95)00038-2. DOI
Kudr J., Hoai Viet N., Gumulec J., Nejdl L., Blazkova I., Ruttkay-Nedecky B., Hynek D., Kynicky J., Adam V., Kizek R. Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network. Sensors. 2015;15:592–610. doi: 10.3390/s150100592. PubMed DOI PMC
Kleckerova A., Docekalova H. Dandelion plants as a biomonitor of urban area contamination by heavy metals. Int. J. Environ. Res. 2014;8:157–164.
Ye X., Xiao W., Zhang Y., Zhao S., Wang G., Zhang Q., Wang Q. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environ. Monit. Assess. 2015;187:378. doi: 10.1007/s10661-015-4604-5. PubMed DOI
Nordlokken M., Berg T., Flaten T.P., Steinnes E. Essential and non-essential elements in natural vegetation in southern Norway: Contribution from different sources. Sci. Total Environ. 2015;502:391–399. doi: 10.1016/j.scitotenv.2014.09.038. PubMed DOI
Maynard A.D., Aitken R.J., Butz T., Colvin V., Donaldson K., Oberdoerster G., Philbert M.A., Ryan J., Seaton A., Stone V., et al. Safe handling of nanotechnology. Nature. 2006;444:267–269. doi: 10.1038/444267a. PubMed DOI
Rani A., Kumar A., Lal A., Pant M. Cellular mechanisms of cadmium-induced toxicity: A review. Int. J. Environ. Health Res. 2014;24:378–399. doi: 10.1080/09603123.2013.835032. PubMed DOI
Jarup L., Akesson A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009;238:201–208. doi: 10.1016/j.taap.2009.04.020. PubMed DOI
Jarup L., Berglund M., Elinder C.G., Nordberg G., Vahter M. Health effects of cadmium exposure—A review of the literature and a risk estimate. Scand. J. Work Environ. Health. 1998;24:1–51. PubMed
Maynard A.D. Nanotechnology: Assessing the risks. Nano Today. 2006;1:22–33. doi: 10.1016/S1748-0132(06)70045-7. DOI
Perez-Campana C., Gomez-Vallejo V.M., Puigivila M., Martin A., Calvo-Fernandez T., Moya S.E., Larsen S.T., Gispert J.D., Llop J. Assessment of lung inflammation after inhalation of ZnO nanoparticles using PET-F-18 FDG. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:S113.
Prodan A.M., Ciobanu C.S., Popa C.L., Iconaru S.L., Predoi D. Toxicity Evaluation following intratracheal instillation of iron oxide in a silica matrix in rats. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/134260. PubMed DOI PMC
Semmler-Behnke M., Kreyling W.G., Lipka J., Fertsch S., Wenk A., Takenaka S., Schmid G., Brandau W. Biodistribution of 1.4- and 18-nm Gold particles in rats. Small. 2008;4:2108–2111. doi: 10.1002/smll.200800922. PubMed DOI
Nalabotu S.K., Kolli M.B., Triest W.E., Ma J.Y., Manne N.D.P.K., Katta A., Addagarla H.S., Rice K.M., Blough E.R. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int. J. Nanomed. 2011;6:2327–2335. doi: 10.2147/IJN.S25119. PubMed DOI PMC
Choi H.S., Ashitate Y., Lee J.H., Kim S.H., Matsui A., Insin N., Bawendi M.G., Semmler-Behnke M., Frangioni J.V., Tsuda A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 2010;28:1300–1303. doi: 10.1038/nbt.1696. PubMed DOI PMC
Hadley J.G., Conklin A.W., Sanders C.L. Rapid solubilization and translocation of (CDO)-CD-109 following pulmonary deposition. Toxicol. Appl. Pharmacol. 1980;54:156–160. doi: 10.1016/0041-008X(80)90016-2. PubMed DOI
Bide R.W., Armour S.J., Yee E. Allometric respiration/body mass data for animals to be used for estimates of inhalation toxicity to young adult humans. J. Appl. Toxicol. 2000;20:273–290. doi: 10.1002/1099-1263(200007/08)20:4<273::AID-JAT657>3.0.CO;2-X. PubMed DOI
Mitchell L.A., Gao J., Wal R.V., Gigliotti A., Burchiel S.W., McDonald J.D. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 2007;100:203–214. doi: 10.1093/toxsci/kfm196. PubMed DOI
Miller F.J. Dosimetry of Particles: Critical factors having risk assessment implications. Inhal. Toxicol. 2000;12:389–395. doi: 10.1080/08958378.2000.11463250. PubMed DOI
Valverde M., Fortoul T.I., Diaz-Barriga F., Mejia J., del Castillo E.R. Induction of genotoxicity by cadmium chloride inhalation in several organs of CD-1 mice. Mutagenesis. 2000;15:109–114. doi: 10.1093/mutage/15.2.109. PubMed DOI
Wu X., Cobbina S.J., Mao G., Xu H., Zhang Z., Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int. 2016;23:8244–8259. doi: 10.1007/s11356-016-6333-x. PubMed DOI
Nawrot T.S., Staessen J.A., Roels H.A., Munters E., Cuypers A., Richart T., Ruttens A., Smeets K., Clijsters H., Vangronsveld J. Cadmium exposure in the population: From health risks to strategies of prevention. Biometals. 2010;23:769–782. doi: 10.1007/s10534-010-9343-z. PubMed DOI
Regassa G., Chandravanshi B.S. Levels of heavy metals in the raw and processed Ethiopian tobacco leaves. Springerplus. 2016;5:232. doi: 10.1186/s40064-016-1770-z. PubMed DOI PMC
Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87. doi: 10.1016/j.tox.2011.03.001. PubMed DOI
Fortoul T.I., Saldivar O.L., Espejel-Maya G., Bazarro N.P., Mussali-Galante P., Avila-Casado Mdel C., Colin-Barenque L., Avila-Costa M.R. Inhalation of cadmium, lead or its mixture effects on the bronchiolar structure and its relation with metal tissue concentrations. Environ. Toxicol. Pharmacol. 2005;19:329–334. doi: 10.1016/j.etap.2004.08.007. PubMed DOI
Fortoul T.I., Osorio L.S., Tovar A.T., Salazar D., Castilla M.E., Olaiz-Fernandez G. Metals in lung tissue from autopsy cases in Mexico City residents: Comparison of cases from the 1950s and the 1980s. Environ. Health Perspect. 1996;104:630–632. doi: 10.1289/ehp.96104630. PubMed DOI PMC
Nordberg G.F. Effects and dose-response relationships of toxic metals. A report from an international meeting. Scand. J. Work Environ. Health. 1976;2:37–43. doi: 10.5271/sjweh.2822. PubMed DOI
Muehlfeld C., Gehr P., Rothen-Rutishauser B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med. Wkly. 2008;138:387–391. PubMed
Gojova A., Guo B., Kota R.S., Rutledge J.C., Kennedy I.M., Barakat A.I. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environ. Health Perspect. 2007;115:403–409. doi: 10.1289/ehp.8497. PubMed DOI PMC
Lee J.A., Kim M.K., Paek H.J., Kim Y.R., Kim M.K., Lee J.K., Jeong J., Choi S.J. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int. J. Nanomed. 2014;9:251–260. PubMed PMC
Llop J., Estrela-Lopis I., Ziolo R.F., Gonzalez A., Fleddermann J., Dorn M., Vallejo V.G., Simon-Vazquez R., Donath E., Mao Z.G., et al. Uptake, biological fate, and toxicity of metal oxide nanoparticles. Part. Part. Syst. Charact. 2014;31:24–35. doi: 10.1002/ppsc.201300323. DOI
Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O.H., Shur V.Y., Beikin Y.B., Sutunkova M.P., Kireyeva E.P., Minigalieva I.A., Loginova N.V., et al. Comparative in vivo assessment of some adverse bioeffects of equidimensional Gold and Silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int. J. Mol. Sci. 2013;14:2449–2483. doi: 10.3390/ijms14022449. PubMed DOI PMC
Blum J.L., Rosenblum L.K., Grunig G., Beasley M.B., Xiong J.Q., Zelikoff J.T. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal. Toxicol. 2014;26:48–58. doi: 10.3109/08958378.2013.851746. PubMed DOI PMC
Takenaka S., Karg E., Kreyling W.G., Lentner B., Schulz H., Ziesenis A., Schramel P., Heyder J. Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal. Toxicol. 2004;16:83–92. doi: 10.1080/08958370490443141. PubMed DOI
Grose E., Richards J., Jaskot R.H., Menache M.G., Graham J.A., Dauterman W.C. A comparative study of the effects of inhaled cadmium chloride and cadmium oxide: Pulmonary response. J. Toxicol. Environ. Health. 1987;21:219–232. doi: 10.1080/15287398709531014. PubMed DOI
Sadauskas E., Danscher G., Stoltenberg M., Vogel U., Larsen A., Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomed. Nanotechnol. Biol. Med. 2009;5:162–169. doi: 10.1016/j.nano.2008.11.002. PubMed DOI
Kermanizadeh A., Gaiser B.K., Johnston H., Brown D.M., Stone V. Toxicological effect of engineered nanomaterials on the liver. Br. J. Pharmacol. 2014;171:3980–3987. doi: 10.1111/bph.12421. PubMed DOI PMC
Liu Y., Gao Y., Zhang L., Wang T., Wang J., Jiao F., Li W., Liu Y., Li Y., Li B., et al. Potential health impact on mice after nasal instillation of nano-sized Copper particles and their translocation in mice. J. Nanosci. Nanotechnol. 2009;9:6335–6343. doi: 10.1166/jnn.2009.1320. PubMed DOI
Cannino G., Ferruggia E., Luparello C., Rinaldi A.M. Cadmium and mitochondria. Mitochondrion. 2009;9:377–384. doi: 10.1016/j.mito.2009.08.009. PubMed DOI
Belyaeva E.A., Dymkowska D., Wieckowski M.R., Wojtczak L. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol. Appl. Pharmacol. 2008;231:34–42. doi: 10.1016/j.taap.2008.03.017. PubMed DOI
Xu S., Pi H., Chen Y., Zhang N., Guo P., Lu Y., He M., Xie J., Zhong M., Zhang Y., et al. Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death Dis. 2013;4 doi: 10.1038/cddis.2013.7. PubMed DOI PMC
Jenne C.N., Kubes P. Immune surveillance by the liver. Nat. Immunol. 2013;14:996–1006. doi: 10.1038/ni.2691. PubMed DOI
Prozialeck W.C., Edwards J.R., Woods J.M. The vascular endothelium as a target of cadmium toxicity. Life Sci. 2006;79:1493–1506. doi: 10.1016/j.lfs.2006.05.007. PubMed DOI
McKim J.M., Liu J., Liu Y.P., Klaassen C.D. Distribution of cadmium chloride and cadmium metallothionein to liver parenchymal, Kupffer, and endothelial cells—Their relative ability to express metallothionein. Toxicol. Appl. Pharmacol. 1992;112:324–330. doi: 10.1016/0041-008X(92)90203-5. PubMed DOI
Rikans L.E., Yamano T. Mechanisms of cadmium-mediated acute hepatotoxicity. J. Biochem. Mol. Toxicol. 2000;14:110–117. doi: 10.1002/(SICI)1099-0461(2000)14:2<110::AID-JBT7>3.0.CO;2-J. PubMed DOI
Habeebu S.S.M., Liu J., Klaassen C.D. Cadmium-induced apoptosis in mouse liver. Toxicol. Appl. Pharmacol. 1998;149:203–209. doi: 10.1006/taap.1997.8334. PubMed DOI
Bilzer M., Roggel F., Gerbes A.L. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26:1175–1186. doi: 10.1111/j.1478-3231.2006.01342.x. PubMed DOI
Yamanobe Y., Nagahara N., Matsukawa T., Ito T., Niimori-Kita K., Chiba M., Yokoyama K., Takizawa T. Sex differences in shotgun proteome analyses for chronic oral intake of cadmium in mice. PLoS ONE. 2015;10:874. doi: 10.1371/journal.pone.0121819. PubMed DOI PMC
Johri N., Jacquillet G., Unwin R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals. 2010;23:783–792. doi: 10.1007/s10534-010-9328-y. PubMed DOI
De Burbure C., Buchet J.P., Leroyer A., Nisse C., Haguenoer J.M., Mutti A., Smerhovsky Z., Cikrt M., Trzcinka-Ochocka M., Razniewska G., et al. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environ. Health Perspect. 2006;114:584–590. doi: 10.1289/ehp.8202. PubMed DOI PMC
Blum J.L., Edwards J.R., Prozialeck W.C., Xiong J.Q., Zelikoff J.T. Effects of maternal exposure to cadmium oxide nanoparticles during pregnancy on maternal and offspring kidney injury markers using a murine model. J. Toxicol. Environ. Health A. 2015;78:711–724. doi: 10.1080/15287394.2015.1026622. PubMed DOI PMC
Zalups R.K., Ahmad S. Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol. 2003;186:163–188. doi: 10.1016/S0041-008X(02)00021-2. PubMed DOI
Blum J.L., Xiong J.Q., Hoffman C., Zelikoff J.T. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol. Sci. 2012;126:478–486. doi: 10.1093/toxsci/kfs008. PubMed DOI PMC
Vesey D.A. Transport pathways for cadmium in the intestine and kidney proximal tubule: Focus on the interaction with essential metals. Toxicol. Lett. 2010;198:13–19. doi: 10.1016/j.toxlet.2010.05.004. PubMed DOI
Saljooghi A.S., Fatemi S.J. Cadmium transport in blood serum. Toxicol. Ind. Health. 2010;26:195–201. doi: 10.1177/0748233710362375. PubMed DOI
Yuan G., Dai S., Yin Z., Lu H., Jia R., Xu J., Song X., Li L., Shu Y., Zhao X. Toxicological assessment of combined lead and cadmium: Acute and sub-chronic toxicity study in rats. Food Chem. Toxicol. 2014;65:260–268. doi: 10.1016/j.fct.2013.12.041. PubMed DOI