Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35547729
PubMed Central
PMC9082266
DOI
10.3389/fimmu.2022.874253
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant defense, copper oxide nanoparticles, cytokines, immune response, immunotoxicity, inflammation, lymphocytes, phagocytic activity and respiratory burst,
- MeSH
- adaptivní imunita MeSH
- antioxidancia MeSH
- cytokiny MeSH
- měď * toxicita MeSH
- myši MeSH
- nanočástice * toxicita MeSH
- oxidy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- cytokiny MeSH
- měď * MeSH
- oxidy MeSH
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czechia
Faculty of Medicine Slovak Medical University Bratislava Slovakia
Faculty of Public Health Slovak Medical University Bratislava Slovakia
Health Effects Laboratory Norwegian Institute for Air Research Kjeller Norway
Zobrazit více v PubMed
TCT Nanotech . Nanotech CuO – Nanoparticles of Copper Oxide. Available at: https://www.tctnanotech.com/nanotech-cuo-nanoparticles-of-copper-oxide.
Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles. Pharmaceut (Basel) (2016) 9:75. doi: 10.3390/ph9040075 PubMed DOI PMC
Waris A, Din M, Ali A, Ali M, Afridi S, Baset A, et al. . A Comprehensive Review of Green Synthesis of Copper Oxide Nanoparticles and Their Diverse Biomedical Applications. Inorg Chem Commun (2021) 123:108369. doi: 10.1016/j.inoche.2020.108369 DOI
Jain M, Yadav M, Chaudhry S. Copper Oxide Nanoparticles for the Removal of Divalent Nickel Ions From Aqueous Solution. Toxin Rev (2021) 40:872–85. doi: 10.1080/15569543.2020.1799407 DOI
Reddy KJ, McDonald KJ, King H. A Novel Arsenic Removal Process for Water Using Cupric Oxide Nanoparticles. J Colloid Interface Sci (2013) 397:96–102. doi: 10.1016/j.jcis.2013.01.041 PubMed DOI
Guan X, Gao X, Avellan A, Spielman-Sun E, Xu J, Laughton S, et al. . CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil. Environ Sci Technol (2020) 54:8699–709. doi: 10.1021/acs.est.0c00036 PubMed DOI
Pelegrino MT, Kohatsu MY, Seabra AB, Monteiro LR, Gomes DG, Oliveira HC, et al. . Effects of Copper Oxide Nanoparticles on Growth of Lettuce (Lactuca Sativa L.) Seedlings and Possible Implications of Nitric Oxide in Their Antioxidative Defense. Environ Monit Assess (2020) 192:232. doi: 10.1007/s10661-020-8188-3 PubMed DOI
Osredkar J, Sustar N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J Clin Toxicol (2011) S3:001. doi: 10.4172/2161-0495.S3-001 DOI
Bhattacharya PT, Misra SR, Hussain M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Sci (Cairo) (2016) 2016:5464373. doi: 10.1155/2016/5464373 PubMed DOI PMC
Gaetke LM, Chow-Johnson HS, Chow CK. Copper: Toxicological Relevance and Mechanisms. Arch Toxicol (2014) 88:1929–38. doi: 10.1007/s00204-014-1355-y PubMed DOI PMC
Naz S, Gul A, Zia M. Toxicity of Copper Oxide Nanoparticles: A Review Study. IET Nanobiotechnol (2020) 14:1–13. doi: 10.1049/iet-nbt.2019.0176 PubMed DOI PMC
Lai X, Zhao H, Zhang Y, Guo K, Xu Y, Chen S, et al. . Intranasal Delivery of Copper Oxide Nanoparticles Induces Pulmonary Toxicity and Fibrosis in C57BL/6 Mice. Sci Rep (2018) 8:4499. doi: 10.1038/s41598-018-22556-7 PubMed DOI PMC
Lee IC, Ko JW, Park SH, Lim JO, Shin IS, Moon C, et al. . Comparative Toxicity and Biodistribution of Copper Nanoparticles and Cupric Ions in Rats. Int J Nanomed (2016) 11:2883–900. doi: 10.2147/IJN.S106346 PubMed DOI PMC
Ameh T, Sayes CM. The Potential Exposure and Hazards of Copper Nanoparticles: A Review. Environ Toxicol Pharmacol (2019) 71:103220. doi: 10.1016/j.etap.2019.103220 PubMed DOI
Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA. Cytotoxicity and Genotoxicity of Copper Oxide Nanoparticles in Human Skin Keratinocytes Cells. Int J Toxicol (2013) 32:296–307. doi: 10.1177/1091581813487563 PubMed DOI
Assadian E, Zarei MH, Gilani AG, Farshin M, Degampanah H, Pourahmad J. Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes. Biol Trace Elem Res (2018) 184:350–7. doi: 10.1007/s12011-017-1170-4 PubMed DOI
Kubo AL, Vasiliev G, Vija H, Krishtal J, Tõugu V, Visnapuu M, et al. . Surface Carboxylation or PEGylation Decreases CuO Nanoparticles' Cytotoxicity to Human Cells In Vitro Without Compromising Their Antibacterial Properties. Arch Toxicol (2020) 94:1561–73. doi: 10.1007/s00204-020-02720-7 PubMed DOI PMC
Zhang J, Zou Z, Wang B, Xu G, Wu Q, Zhang Y, et al. . Lysosomal Deposition of Copper Oxide Nanoparticles Triggers HUVEC Cells Death. Biomaterials (2018) 161:228–39. doi: 10.1016/j.biomaterials.2018.01.048 PubMed DOI
Líbalová H, Costa PM, Olsson M, Farcal L, Ortelli S, Blosi M, et al. . Toxicity of Surface-Modified Copper Oxide Nanoparticles in a Mouse Macrophage Cell Line: Interplay of Particles, Surface Coating and Particle Dissolution. Chemosphere (2018) 196:482–93. doi: 10.1016/j.chemosphere.2017.12.182 PubMed DOI
He H, Zou Z, Wang B, Xu G, Chen C, Qin X, et al. . Copper Oxide Nanoparticles Induce Oxidative DNA Damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells. Int J Nanomed (2020) 15:3291–302. doi: 10.2147/IJN.S241157 PubMed DOI PMC
Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison Between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem Res Toxicol (2008) 21:1726–32. doi: 10.1021/tx800064j PubMed DOI
De Jong WH, De Rijk E, Bonetto A, Wohlleben W, Stone V, Brunelli A, et al. . Toxicity of Copper Oxide and Basic Copper Carbonate Nanoparticles After Short-Term Oral Exposure in Rats. Nanotoxicology (2019) 13:50–72. doi: 10.1080/17435390.2018.1530390 PubMed DOI
Anreddy RNR. Copper Oxide Nanoparticles Induces Oxidative Stress and Liver Toxicity in Rats Following Oral Exposure. Toxicol Rep (2018) 5:903–4. doi: 10.1016/j.toxrep.2018.08.022 PubMed DOI PMC
Bugata LSP, Pitta Venkata P, Gundu AR, Mohammed Fazlur R, Reddy UA, Kumar JM, et al. . Acute and Subacute Oral Toxicity of Copper Oxide Nanoparticles in Female Albino Wistar Rats. J Appl Toxicol (2019) 39:702–16. doi: 10.1002/jat.3760 PubMed DOI
Elkhateeb SA, Ibrahim TR, El-Shal AS, Abdel Hamid OI. Ameliorative Role of Curcumin on Copper Oxide Nanoparticles-Mediated Renal Toxicity in Rats: An Investigation of Molecular Mechanisms. J Biochem Mol Toxicol (2020) 34:e22593. doi: 10.1002/jbt.22593 PubMed DOI
Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, et al. . Organ Burden and Pulmonary Toxicity of Nano-Sized Copper (II) Oxide Particles After Short-Term Inhalation Exposure. Nanotoxicology (2016) 10:1084–95. doi: 10.3109/17435390.2016.1172678 PubMed DOI PMC
Rani VS, Kumar AK, Kumar CP, Reddy ARN. Pulmonary Toxicity of Copper Oxide (CuO) Nanoparticles in Rats. J Med Sci (2013) 13:571–7. doi: 10.3923/jms.2013.571.577 DOI
Pietrofesa RA, Park K, Mishra OP, Johnson-McDaniel D, Myerson JW, Shuvaev VV, et al. . Copper Oxide Nanoparticle-Induced Acute Inflammatory Response and Injury in Murine Lung Is Ameliorated by Synthetic Secoisolariciresinol Diglucoside (Lgm2605). Int J Mol Sci (2021) 22:9477. doi: 10.3390/ijms22179477 PubMed DOI PMC
Holan V, Javorkova E, Vrbova K, Vecera Z, Mikuska P, Coufalik P, et al. . A Murine Model of the Effects of Inhaled CuO Nanoparticles on Cells of Innate and Adaptive Immunity - A Kinetic Study of a Continuous Three-Month Exposure. Nanotoxicology (2019) 13:952–63. doi: 10.1080/17435390.2019.1602679 PubMed DOI
Ilves M, Kinaret PAS, Ndika J, Karisola P, Marwah V, Fortino V, et al. . Surface PEGylation Suppresses Pulmonary Effects of CuO in Allergen-Induced Lung Inflammation. Part Fibre Toxicol (2019) 16:28. doi: 10.1186/s12989-019-0309-1 PubMed DOI PMC
Rossner P, Jr, Vrbova K, Rossnerova A, Zavodna T, Milcova A, Klema J, et al. . Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. Nanomaterials (Basel) (2020) 10:550. doi: 10.3390/nano10030550 PubMed DOI PMC
Schmid O, Stoeger T. Surface Area is the Biologically Most Effective Dose Metric for Acute Nanoparticle Toxicity in the Lung. J Aerosol Sci (2016) 99:133–43. doi: 10.1016/j.jaerosci.2015.12.006 DOI
Vecera Z, Mikuska P, Moravec P, Smolik J. Unique Exposure System for the Whole Body Inhalation Experiments With Small Animals. In: NANOCON 2011: Conference proceedings of 3rd International Conference. Brno, Czech Republic. Ostrava: TANGER Ltd. (2011). p. 652–4.
Tulinska J, Masanova V, Liskova A, Mikusova ML, Rollerova E, Krivosikova Z, et al. . Six-Week Inhalation of CdO Nanoparticles in Mice: The Effects on Immune Response, Oxidative Stress, Antioxidative Defense, Fibrotic Response, and Bones. Food Chem Toxicol (2020) 136:110954. doi: 10.1016/j.fct.2019.110954 PubMed DOI
Ellman G. Tissue Sulfhydryl Groups. Arch Biochem Biophys (1959) 82:70–7. doi: 10.1016/0003-9861(59)90090-6 PubMed DOI
Tietze F. Enzymic Method for Quantitative Determination of Nanogram Amounts of Total and Oxidized Glutathione: Applications to Mammalian Blood and Other Tissues. Anal Biochem (1969) 27:502–22. doi: 10.1016/0003-2697(69)90064-5 PubMed DOI
Vysloužil J, Kulich P, Zeman T, Vaculovič T, Tvrdoňová M, Mikuška P, et al. . Subchronic Continuous Inhalation Exposure to Zinc Oxide Nanoparticles Induces Pulmonary Cell Response in Mice. J Trace Elem Med Bio (2020) 61:126511. doi: 10.1016/j.jtemb.2020.126511 PubMed DOI
Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, et al. . Inhaled Cadmium Oxide Nanoparticles: Their In Vivo Fate and Effect on Target Organs. Int J Mol Sci (2016) 17:874. doi: 10.3390/ijms17060874 PubMed DOI PMC
Dumková J, Smutná T, Vrlíková L, Le Coustumer P, Večeřa Z, Dočekal B, et al. . Sub-Chronic Inhalation of Lead Oxide Nanoparticles Revealed Their Broad Distribution and Tissue-Specific Subcellular Localization in Target Organs. Part Fibre Toxicol (2017) 14:55. doi: 10.1186/s12989-017-0236-y PubMed DOI PMC
Zhou X, Zhao L, Luo J, Tang H, Xu M, Wang Y, et al. . The Toxic Effects and Mechanisms of Nano-Cu on the Spleen of Rats. Int J Mol Sci (2019) 20:1469. doi: 10.3390/ijms20061469 PubMed DOI PMC
Easo SL, Mohanan PV. In Vitro Hematological and In Vivo Immunotoxicity Assessment of Dextran Stabilized Iron Oxide Nanoparticles. Colloids Surf B Biointerf (2015) 134:122–30. doi: 10.1016/j.colsurfb.2015.06.046 PubMed DOI
Fu Y, Zhang Y, Chang X, Zhang Y, Ma S, Sui J, et al. . Systemic Immune Effects of Titanium Dioxide Nanoparticles After Repeated Intratracheal Instillation in Rat. Int J Mol Sci (2014) 15:6961–73. doi: 10.3390/ijms15046961 PubMed DOI PMC
Feray A, Guillet É, Szely N, Hullo M, Legrand FX, Brun E, et al. . Synthetic Amorphous Silica Nanoparticles Promote Human Dendritic Cell Maturation and CD4+ T-Lymphocyte Activation. Toxicol Sci (2021) 185:105–16. doi: 10.1093/toxsci/kfab120 PubMed DOI
Lozano-Fernández T, Ballester-Antxordoki L, Pérez-Temprano N, Rojas E, Sanz D, Iglesias-Gaspar M, et al. . Potential Impact of Metal Oxide Nanoparticles on the Immune System: The Role of Integrins, L-Selectin and the Chemokine Receptor CXCR4. Nanomedicine (2014) 10:1301–10. doi: 10.1016/j.nano.2014.03.007 PubMed DOI
Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, et al. . A Single Intratracheal Instillation of Single-Walled Carbon Nanotubes Induced Early Lung Fibrosis and Subchronic Tissue Damage in Mice. Arch Toxicol (2011) 85:1121–31. doi: 10.1007/s00204-011-0655-8 PubMed DOI
Fatkhutdinova LM, Khaliullin TO, Vasil'yeva OL, Zalyalov RR, Mustafin IG, Kisin ER, et al. . Fibrosis Biomarkers in Workers Exposed to MWCNTs. Toxicol Appl Pharmacol (2016) 299:125–31. doi: 10.1016/j.taap.2016.02.016 PubMed DOI PMC
Chen Y, Li C, Lu Y, Zhuang H, Gu W, Liu B, et al. . IL-10-Producing CD1dhiCD5+ Regulatory B Cells May Play a Critical Role in Modulating Immune Homeostasis in Silicosis Patients. Front Immunol (2017) 8:110. doi: 10.3389/fimmu.2017.00110 PubMed DOI PMC
Ma Q. Polarization of Immune Cells in the Pathologic Response to Inhaled Particulates. Front Immunol (2020) 11:1060. doi: 10.3389/fimmu.2020.01060 PubMed DOI PMC
Arancibia S, Barrientos A, Torrejón J, Escobar A, Beltrán CJ. Copper Oxide Nanoparticles Recruit Macrophages and Modulate Nitric Oxide, Proinflammatory Cytokines and PGE2 Production Through Arginase Activation. Nanomed (Lond) (2016) 11:1237–51. doi: 10.2217/nnm.16.39 PubMed DOI
Ray A, Gautam A, Das S, Pal K, Das S, Karmakar P, et al. . Effects of Copper Oxide Nanoparticle on Gill Filtration Rate, Respiration Rate, Hemocyte Associated Immune Parameters and Oxidative Status of an Indian Freshwater Mussel. Comp Biochem Physiol C Toxicol Pharmacol (2020) 237:108855. doi: 10.1016/j.cbpc.2020.108855 PubMed DOI
Gautam A, Ray A, Mukherjee S, Das S, Pal K, Das S, et al. . Immunotoxicity of Copper Nanoparticle and Copper Sulfate in a Common Indian Earthworm. Ecotoxicol Environ Saf (2018) 148:620–31. doi: 10.1016/j.ecoenv.2017.11.008 PubMed DOI
Hou J, Liu H, Wang L, Duan L, Li S, Wang X. Molecular Toxicity of Metal Oxide Nanoparticles in Danio Rerio. Environ Sci Technol (2018) 52:7996–8004. doi: 10.1021/acs.est.8b01464 PubMed DOI
Mwaanga P, Carraway ER, van den Hurk P. The Induction of Biochemical Changes in Daphnia Magna by CuO and ZnO Nanoparticles. Aquat Toxicol (2014) 150:201–9. doi: 10.1016/j.aquatox.2014.03.011 PubMed DOI
Srikanth K, Pereira E, Duarte AC, Rao JV. Evaluation of Cytotoxicity, Morphological Alterations and Oxidative Stress in Chinook Salmon Cells Exposed to Copper Oxide Nanoparticles. Protoplasma (2016) 253:873–84. doi: 10.1007/s00709-015-0849-7 PubMed DOI
Klaper R, Crago J, Barr J, Arndt D, Setyowati K, Chen J. Toxicity Biomarker Expression in Daphnids Exposed to Manufactured Nanoparticles: Changes in Toxicity With Functionalization. Environ Pollut (2009) 157:1152–6. doi: 10.1016/j.envpol.2008.11.010 PubMed DOI
Salazar-Medina AJ, García-Rico L, García-Orozco KD, Valenzuela-Soto E, Contreras-Vergara CA, Arreola R, et al. . Inhibition by Cu2+ and Cd2+ of a Mu-Class Glutathione S-Transferase From Shrimp Litopenaeus Vannamei. J Biochem Mol Toxicol (2010) 24:218–22. doi: 10.1002/jbt.20326 PubMed DOI
Chibber S, Shanker R. Can CuO Nanoparticles Lead to Epigenetic Regulation of Antioxidant Enzyme System? J Appl Toxicol (2017) 37:84–91. doi: 10.1002/jat.3392 PubMed DOI
Bulcke F, Thiel K, Dringen R. Uptake and Toxicity of Copper Oxide Nanoparticles in Cultured Primary Brain Astrocytes. Nanotoxicology (2014) 8:775–85. doi: 10.3109/17435390.2013.829591 PubMed DOI