Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1508
Ministerstvo Školství, Mládeže a Tělovýchovy
P503/12/G147
Grantová Agentura České Republiky
PubMed
32197515
PubMed Central
PMC7153614
DOI
10.3390/nano10030550
PII: nano10030550
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, copper(II) oxide nanoparticles, gene expression, inhalation, mouse,
- Publikační typ
- časopisecké články MeSH
We investigated the transcriptomic response and epigenetic changes in the lungs of mice exposed to inhalation of copper(II) oxide nanoparticles (CuO NPs) (8 × 105 NPs/m3) for periods of 3 days, 2 weeks, 6 weeks, and 3 months. A whole genome transcriptome and miRNA analysis was performed using next generation sequencing. Global DNA methylation was assessed by ELISA. The inhalation resulted in the deregulation of mRNA transcripts: we detected 170, 590, 534, and 1551 differentially expressed transcripts after 3 days, 2 weeks, 6 weeks, and 3 months of inhalation, respectively. Biological processes and pathways affected by inhalation, differed between 3 days exposure (collagen formation) and longer treatments (immune response). Periods of two weeks exposure further induced apoptotic processes, 6 weeks of inhalation affected the cell cycle, and 3 months of treatment impacted the processes related to cell adhesion. The expression of miRNA was not affected by 3 days of inhalation. Prolonged exposure periods modified miRNA levels, although the numbers were relatively low (17, 18, and 38 miRNAs, for periods of 2 weeks, 6 weeks, and 3 months, respectively). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis based on miRNA-mRNA interactions, revealed the deregulation of processes implicated in the immune response and carcinogenesis. Global DNA methylation was not significantly affected in any of the exposure periods. In summary, the inhalation of CuO NPs impacted on both mRNA and miRNA expression. A significant transcriptomic response was already observed after 3 days of exposure. The affected biological processes and pathways indicated the negative impacts on the immune system and potential role in carcinogenesis.
Department of Chemistry and Toxicology Veterinary Research Institute 62100 Brno Czech Republic
Department of Computer Science Czech Technical University Prague 12135 Prague Czech Republic
Zobrazit více v PubMed
Magaye R., Zhao J., Bowman L., Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp. Ther. Med. 2012;4:551–561. doi: 10.3892/etm.2012.656. PubMed DOI PMC
Sengupta J., Ghosh S., Datta P., Gomes A., Gomes A. Physiologically important metal nanoparticles and their toxicity. J. Nanosci. Nanotechnol. 2014;14:990–1006. doi: 10.1166/jnn.2014.9078. PubMed DOI
Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013;87:1181–1200. doi: 10.1007/s00204-013-1079-4. PubMed DOI PMC
Rubilar O., Rai M., Tortella G., Diez M.C., Seabra A.B., Durán N. Biogenic nanoparticles: Copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett. 2013;35:1365–1375. doi: 10.1007/s10529-013-1239-x. PubMed DOI
Su Y., Zheng X., Chen Y., Li M., Liu K. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci. Rep. 2015;5:15824. doi: 10.1038/srep15824. PubMed DOI PMC
Ahamed M., Akhtar M.J., Alhadlaq H.A., Alrokayan S.A. Assessment of the lung toxicity of copper oxide nanoparticles: Current status. Nanomedicine. 2015;10:2365–2377. doi: 10.2217/nnm.15.72. PubMed DOI
Liu Y., Gao Y., Zhang L., Wang T., Wang J., Jiao F., Li W., Liu Y., Li Y., Li B., et al. Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J. Nanosci. Nanotechnol. 2009;9:6335–6343. doi: 10.1166/jnn.2009.1320. PubMed DOI
Holan V., Javorkova E., Vrbova K., Vecera Z., Mikuska P., Coufalik P., Kulich P., Skoupy R., Machala M., Zajicova A., et al. A murine model of the effects of inhaled CuO nanoparticles on cells of innate and adaptive immunity—a kinetic study of a continuous three-month exposure. Nanotoxicology. 2019;13:952–963. doi: 10.1080/17435390.2019.1602679. PubMed DOI
Yokohira M., Hashimoto N., Yamakawa K., Suzuki S., Saoo K., Kuno T., Imaida K. Lung Carcinogenic Bioassay of CuO and TiO2 Nanoparticles with Intratracheal Instillation Using F344 Male Rats. J. Toxicol. Pathol. 2009;22:71–78. doi: 10.1293/tox.22.71. PubMed DOI PMC
Costa P.M., Gosens I., Williams A., Farcal L., Pantano D., Brown D.M., Stone V., Cassee F.R., Halappanavar S., Fadeel B. Transcriptional profiling reveals gene expression changes associated with inflammation and cell proliferation following short-term inhalation exposure to copper oxide nanoparticles. J. Appl. Toxicol. 2018;38:385–397. doi: 10.1002/jat.3548. PubMed DOI
Vecera Z., Mikuska P., Moravec P., Smolik J. Unique Exposure System for the Whole Body Inhalation Experiments with Small Animals. Tanger Ltd; Brno, Czech Republic: 2011.
Chen J., Bardes E.E., Aronow B.J., Jegga A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–W311. doi: 10.1093/nar/gkp427. PubMed DOI PMC
Vila-Casadesús M., Gironella M., Lozano J.J. MiRComb: An R Package to Analyse miRNA–mRNA Interactions. Examples across Five Digestive Cancers. PLoS ONE. 2016;11:e0151127. doi: 10.1371/journal.pone.0151127. PubMed DOI PMC
Ru Y., Kechris K.J., Tabakoff B., Hoffman P., Radcliffe R.A., Bowler R., Mahaffey S., Rossi S., Calin G.A., Bemis L., et al. The multiMiR R package and database: Integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42:e133. doi: 10.1093/nar/gku631. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Chibber S., Shanker R. Can CuO nanoparticles lead to epigenetic regulation of antioxidant enzyme system? CuO NPs can result in epigenetic regulation: A hypothetical view. J. Appl. Toxicol. 2017;37:84–91. doi: 10.1002/jat.3392. PubMed DOI
Kung M.-L., Hsieh S.-L., Wu C.-C., Chu T.-H., Lin Y.-C., Yeh B.-W., Hsieh S. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale. 2015;7:1820–1829. doi: 10.1039/C4NR05843G. PubMed DOI
Rabbani G., Khan M.J., Ahmad A., Maskat M.Y., Khan R.H. Effect of copper oxide nanoparticles on the conformation and activity of β-galactosidase. Colloids Surf. B Biointerfaces. 2014;123:96–105. doi: 10.1016/j.colsurfb.2014.08.035. PubMed DOI
Cheng T.F., Choudhuri S., Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: A review of the literature. J. Appl. Toxicol. 2012;32:643–653. doi: 10.1002/jat.2717. PubMed DOI
Lai X., Zhao H., Zhang Y., Guo K., Xu Y., Chen S., Zhang J. Intranasal Delivery of Copper Oxide Nanoparticles Induces Pulmonary Toxicity and Fibrosis in C57BL/6 mice. Sci. Rep. 2018;8:4499. doi: 10.1038/s41598-018-22556-7. PubMed DOI PMC
Luo C., Li Y., Yang L., Long J., Zheng Y., Liu J., Xiao S., Jia J. Activation of Erk and p53 regulates copper oxide nanoparticle-induced cytotoxicity in keratinocytes and fibroblasts. Int. J. Nanomed. 2014;9:4763–4772. doi: 10.2147/IJN.S67688. PubMed DOI PMC
Song H., Wang W., Zhao P., Qi Z., Zhao S. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale. 2014;6:3206. doi: 10.1039/c3nr04363k. PubMed DOI
Andl C.D. The Misregulation of Cell Adhesion Components during Tumorigenesis: Overview and Commentary. J. Oncol. 2010;2010:1–9. doi: 10.1155/2010/174715. PubMed DOI PMC
Dymacek J., Snyder-Talkington B.N., Porter D.W., Mercer R.R., Wolfarth M.G., Castranova V., Qian Y., Guo N.L. mRNA and miRNA Regulatory Networks Reflective of Multi-Walled Carbon Nanotube-Induced Lung Inflammatory and Fibrotic Pathologies in Mice. Toxicol. Sci. 2015;144:51–64. doi: 10.1093/toxsci/kfu262. PubMed DOI PMC
Halappanavar S., Jackson P., Williams A., Jensen K.A., Hougaard K.S., Vogel U., Yauk C.L., Wallin H. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: A toxicogenomic study. Environ. Mol. Mutagen. 2011;52:425–439. doi: 10.1002/em.20639. PubMed DOI PMC
Conickx G., Avila Cobos F., Van den Berge M., Faiz A., Timens W., Hiemstra P.S., Joos G.F., Brusselle G.G., Mestdagh P., Bracke K.R. microRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: A translational approach. Sci. Rep. 2017;7:12871. doi: 10.1038/s41598-017-13265-8. PubMed DOI PMC
Yokoyama Y., Mise N., Suzuki Y., Tada-Oikawa S., Izuoka K., Zhang L., Zong C., Takai A., Yamada Y., Ichihara S. MicroRNAs as Potential Mediators for Cigarette Smoking Induced Atherosclerosis. Int. J. Mol. Sci. 2018;19:1097. doi: 10.3390/ijms19041097. PubMed DOI PMC
Pei W., Tao L., Zhang L.W., Zhang S., Cao J., Jiao Y., Tong J., Nie J. Circular RNA profiles in mouse lung tissue induced by radon. Environ. Health Prev. Med. 2017;22:36. doi: 10.1186/s12199-017-0627-6. PubMed DOI PMC
Luettich K., Xiang Y., Iskandar A., Sewer A., Martin F., Talikka M., Vanscheeuwijck P., Berges A., Veljkovic E., Gonzalez-Suarez I., et al. Systems toxicology approaches enable mechanistic comparison of spontaneous and cigarette smoke-related lung tumor development in the A/J mouse model. Interdiscip. Toxicol. 2014;7:73–84. doi: 10.2478/intox-2014-0010. PubMed DOI PMC
Zhou Y., Zhang Q., Du M., Xiong D., Wang Y., Mohammed A., Lubet R., Wang L., You M. Exosomal miRNAs as Novel Pharmacodynamic Biomarkers for Cancer Chemopreventive Agent Early Stage Treatments in Chemically Induced Mouse Model of Lung Squamous Cell Carcinoma. Cancers. 2019;11:477. doi: 10.3390/cancers11040477. PubMed DOI PMC
Xiong D., Pan J., Zhang Q., Szabo E., Miller M.S., Lubet R.A., You M., Wang Y. Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents. Oncotarget. 2017;8:18885–18900. doi: 10.18632/oncotarget.13806. PubMed DOI PMC
Plank M.W., Maltby S., Tay H.L., Stewart J., Eyers F., Hansbro P.M., Foster P.S. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity. PLoS ONE. 2015;10:e0144810. doi: 10.1371/journal.pone.0144810. PubMed DOI PMC
Tan K., Choi H., Jiang X., Yin L., Seet J., Patzel V., Engelward B.P., Chow V.T. Micro-RNAs in regenerating lungs: An integrative systems biology analysis of murine influenza pneumonia. BMC Genom. 2014;15:587. doi: 10.1186/1471-2164-15-587. PubMed DOI PMC
Gomez J.C., Dang H., Kanke M., Hagan R.S., Mock J.R., Kelada S.N.P., Sethupathy P., Doerschuk C.M. Predicted effects of observed changes in the mRNA and microRNA transcriptome of lung neutrophils during S. pneumoniae pneumonia in mice. Sci. Rep. 2017;7:11258. doi: 10.1038/s41598-017-11638-7. PubMed DOI PMC
Choi E.-J., Kim H.B., Baek Y.H., Kim E.-H., Pascua P.N.Q., Park S.-J., Kwon H., Lim G.-J., Kim S., Kim Y.-I., et al. Differential microRNA expression following infection with a mouse-adapted, highly virulent avian H5N2 virus. BMC Microbiol. 2014;14:252. doi: 10.1186/s12866-014-0252-0. PubMed DOI PMC
Liu Y., Dou M., Song X., Dong Y., Liu S., Liu H., Tao J., Li W., Yin X., Xu W. The emerging role of the piRNA/piwi complex in cancer. Mol. Cancer. 2019;18:123. doi: 10.1186/s12943-019-1052-9. PubMed DOI PMC
Nasarre P., Potiron V., Drabkin H., Roche J. Guidance molecules in lung cancer. Cell Adhes. Migr. 2010;4:130–145. doi: 10.4161/cam.4.1.10882. PubMed DOI PMC
Aasen T., Sansano I., Montero M.Á., Romagosa C., Temprana-Salvador J., Martínez-Marti A., Moliné T., Hernández-Losa J.Y., Cajal S.R. Insight into the Role and Regulation of Gap Junction Genes in Lung Cancer and Identification of Nuclear Cx43 as a Putative Biomarker of Poor Prognosis. Cancers. 2019;11:320. doi: 10.3390/cancers11030320. PubMed DOI PMC
Zhan T., Rindtorff N., Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–1473. doi: 10.1038/onc.2016.304. PubMed DOI PMC
Yang H., Zhang Q., He J., Lu W. Regulation of calcium signaling in lung cancer. J. Thorac. Dis. 2010;2:52–56. PubMed PMC
Sanghera C., Wong L.M., Panahi M., Sintou A., Hasham M., Sattler S. Cardiac phenotype in mouse models of systemic autoimmunity. Dis. Model. Mech. 2019;12:036947. doi: 10.1242/dmm.036947. PubMed DOI PMC
Li J.J., Tay H.L., Plank M., Essilfie A.-T., Hansbro P.M., Foster P.S., Yang M. Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production. PLoS ONE. 2013;8:e80148. doi: 10.1371/journal.pone.0080148. PubMed DOI PMC
Tsugita M., Morimoto N., Nakayama M. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses. Part. Fibre Toxicol. 2017;14:11. doi: 10.1186/s12989-017-0192-6. PubMed DOI PMC
Lu X., Miousse I.R., Pirela S.V., Moore J.K., Melnyk S., Koturbash I., Demokritou P. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology. 2016;10:629–639. doi: 10.3109/17435390.2015.1108473. PubMed DOI PMC