A Clearance Period after Soluble Lead Nanoparticle Inhalation Did Not Ameliorate the Negative Effects on Target Tissues Due to Decreased Immune Response
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-02203S
Czech Science Foundation
PubMed
33228049
PubMed Central
PMC7699374
DOI
10.3390/ijms21228738
PII: ijms21228738
Knihovny.cz E-zdroje
- Klíčová slova
- LA-ICP-MS imaging, clearance, inhalation, lead nanoparticles, toxicity,
- MeSH
- aktiny agonisté genetika imunologie MeSH
- alveolární makrofágy účinky léků imunologie patologie MeSH
- aplikace inhalační MeSH
- biologická dostupnost MeSH
- dusičnany farmakokinetika toxicita MeSH
- exprese genu MeSH
- inhalační expozice analýza MeSH
- interleukin-1alfa agonisté genetika imunologie MeSH
- interleukin-1beta agonisté genetika imunologie MeSH
- interleukin-6 agonisté genetika imunologie MeSH
- játra účinky léků imunologie patologie MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- látky znečišťující vzduch farmakokinetika toxicita MeSH
- myši inbrední ICR MeSH
- myši MeSH
- NF-kappa B agonisté genetika imunologie MeSH
- olovo farmakokinetika toxicita MeSH
- plíce účinky léků imunologie patologie MeSH
- poločas MeSH
- spektrofotometrie atomová MeSH
- tkáňová distribuce MeSH
- TNF-alfa agonisté genetika imunologie MeSH
- transformující růstový faktor beta1 agonisté genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
- alpha-smooth muscle actin, mouse MeSH Prohlížeč
- dusičnany MeSH
- Il1a protein, mouse MeSH Prohlížeč
- IL1B protein, mouse MeSH Prohlížeč
- interleukin-1alfa MeSH
- interleukin-1beta MeSH
- interleukin-6, mouse MeSH Prohlížeč
- interleukin-6 MeSH
- látky znečišťující vzduch MeSH
- lead nitrate MeSH Prohlížeč
- NF-kappa B MeSH
- olovo MeSH
- Tgfb1 protein, mouse MeSH Prohlížeč
- TNF-alfa MeSH
- transformující růstový faktor beta1 MeSH
The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO3)2 NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance. We examined (i) lead biodistribution in target organs using laser ablation and inductively coupled plasma mass spectrometry (LA-ICP-MS) and atomic absorption spectrometry (AAS), (ii) lead effect on histopathological changes and immune cells response in secondary target organs and (iii) the clearance ability of target organs. In the lungs and liver, Pb(NO3)2 NP inhalation induced serious structural changes and their damage was present even after a 5-week clearance period despite the lead having been almost completely eliminated from the tissues. The numbers of macrophages significantly decreased after 11-week Pb(NO3)2 NP inhalation; conversely, abundance of alpha-smooth muscle actin (α-SMA)-positive cells, which are responsible for augmented collagen production, increased in both tissues. Moreover, the expression of nuclear factor κB (NF-κB) and selected cytokines, such as tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 (TGFβ1), interleukin 6(IL-6), IL-1α and IL-1β , displayed a tissue-specific response to lead exposure. In summary, diminished inflammatory response in tissues after Pb(NO3)2 NPs inhalation was associated with prolonged negative effect of lead on tissues, as demonstrated by sustained pathological changes in target organs, even after long clearance period.
Zobrazit více v PubMed
Yang W., Omaye S.T. Air pollutants, oxidative stress and human health. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis. 2009;674:45–54. doi: 10.1016/j.mrgentox.2008.10.005. PubMed DOI
Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health. 2001;74:1–8. doi: 10.1007/s004200000185. PubMed DOI
Davidson C.I., Phalen R.F., Solomon P.A. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 2005;39:737–749. doi: 10.1080/02786820500191348. DOI
Stone V., Miller M.R., Clift M.J., Elder A., Mills N.L., Møller P., Schins R.P., Vogel U., Kreyling W.G., Alstrup Jensen K. Nanomaterials versus ambient ultrafine particles: An opportunity to exchange toxicology knowledge. Environ. Health Perspect. 2017;125:106002. doi: 10.1289/EHP424. PubMed DOI PMC
Mukhtar A., Limbeck A. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Anal. Chim. Acta. 2013;774:11–25. doi: 10.1016/j.aca.2013.02.008. PubMed DOI
Schroeder W., Dobson M., Kane D., Johnson N. Toxic trace elements associated with airborne particulate matter: A review. Japca. 1987;37:1267–1285. doi: 10.1080/08940630.1987.10466321. PubMed DOI
Peel J.L., Tolbert P.E., Klein M., Metzger K.B., Flanders W.D., Todd K., Mulholland J.A., Ryan P.B., Frumkin H. Ambient air pollution and respiratory emergency department visits. Epidemiology. 2005;16:164–174. doi: 10.1097/01.ede.0000152905.42113.db. PubMed DOI
Sinclair A.H., Edgerton E.S., Wyzga R., Tolsma D. A two-time-period comparison of the effects of ambient air pollution on outpatient visits for acute respiratory illnesses. J. Air Waste Manag. Assoc. 2010;60:163–175. doi: 10.3155/1047-3289.60.2.163. PubMed DOI
Strickland M.J., Darrow L.A., Klein M., Flanders W.D., Sarnat J.A., Waller L.A., Sarnat S.E., Mulholland J.A., Tolbert P.E. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am. J. Respir. Crit. Care Med. 2010;182:307–316. doi: 10.1164/rccm.200908-1201OC. PubMed DOI PMC
Iijima A., Tago H., Kumagai K., Kato M., Kozawa K., Sato K., Furuta N. Regional and seasonal characteristics of emission sources of fine airborne particulate matter collected in the center and suburbs of Tokyo, Japan as determined by multielement analysis and source receptor models. J. Environ. Monit. 2008;10:1025–1032. doi: 10.1039/b806483k. PubMed DOI
Coufalík P., Mikuška P., Matoušek T., Večeřa Z. Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids. Atmos. Environ. 2016;140:469–475. doi: 10.1016/j.atmosenv.2016.06.031. DOI
Mikuška P., Vojtěšek M., Křůmal K., Mikušková-Čampulová M., Michálek J., Večeřa Z. Characterization and Source Identification of Elements and Water-Soluble Ions in Submicrometre Aerosols in Brno and Šlapanice (Czech Republic) Atmosphere. 2020;11:688. doi: 10.3390/atmos11070688. DOI
Querol X., Viana M., Alastuey A., Amato F., Moreno T., Castillo S., Pey J., De la Rosa J., De La Campa A.S., Artíñano B. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007;41:7219–7231. doi: 10.1016/j.atmosenv.2007.05.022. DOI
Götschi T., Hazenkamp-von Arx M.E., Heinrich J., Bono R., Burney P., Forsberg B., Jarvis D., Maldonado J., Norbäck D., Stern W.B. Elemental composition and reflectance of ambient fine particles at 21 European locations. Atmos. Environ. 2005;39:5947–5958. doi: 10.1016/j.atmosenv.2005.06.049. DOI
Manousakas M., Diapouli E., Papaefthymiou H., Migliori A., Karydas A., Padilla-Alvarez R., Bogovac M., Kaiser R., Jaksic M., Bogdanovic-Radovic I. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atmos. 2015;349:114–124. doi: 10.1016/j.nimb.2015.02.037. DOI
Bláhová L., Nováková Z., Večeřa Z., Vrlíková L., Dočekal B., Dumková J., Křůmal K., Mikuška P., Buchtová M., Hampl A. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology. 2020;14:214–231. doi: 10.1080/17435390.2019.1685696. PubMed DOI
Minigalieva I.A., Katsnelson B.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., Sutunkova M.P., Shur V.Y., Shishkina E.V., Valamina I.E. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017;380:72–93. doi: 10.1016/j.tox.2017.02.007. PubMed DOI
Amiri A., Mohammadi M., Shabani M. Synthesis and toxicity evaluation of lead oxide (PbO) nanoparticles in rats. Electron. J. Biol. 2016;12:110–114.
Dumková J., Smutná T., Vrlíková L., Le Coustumer P., Večeřa Z., Dočekal B., Mikuška P., Čapka L., Fictum P., Hampl A., et al. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol. 2017;14:55. doi: 10.1186/s12989-017-0236-y. PubMed DOI PMC
Elgrabli D., Beaudouin R., Jbilou N., Floriani M., Pery A., Rogerieux F., Lacroix G. Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS ONE. 2015;10:e0124490. doi: 10.1371/journal.pone.0124490. PubMed DOI PMC
Bai K., Chuang K., Chen J., Hua H., Shen Y., Liao W., Lee C., Chen K., Lee K., Hsiao T., et al. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. Nanomed. Nanotechnol. Biol. Med. 2018;14:2329–2339. doi: 10.1016/j.nano.2017.10.003. PubMed DOI
Sutunkova M.P., Solovyeva S.N., Chernyshov I.N., Klinova S.V., Gurvich V.B., Shur V.Y., Shishkina E.V., Zubarev I.V., Privalova L.I., Katsnelson B.A. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int. J. Mol. Sci. 2020;21:690. doi: 10.3390/ijms21030690. PubMed DOI PMC
Pietroiusti A., Bergamaschi E., Campagna M., Campagnolo L., De Palma G., Iavicoli S., Leso V., Magrini A., Miragoli M., Pedata P. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: A consensus paper from a multidisciplinary working group. Part Fibre Toxicol. 2017;14:47. doi: 10.1186/s12989-017-0226-0. PubMed DOI PMC
Dumková J., Smutná T., Vrlíkovaá L., Kotasová H., Docĕkal B., Căpka L.S., Tvrdonŏvá M., Jakesŏvá V., Pelková V., Krŭmal K. Variability in the Clearance of Lead Oxide Nanoparticles Is Associated with Alteration of Specific Membrane Transporters. ACS Nano. 2020;14:3096–3120. doi: 10.1021/acsnano.9b08143. PubMed DOI
Bruning-Fann C.S., Kaneene J. The effects of nitrate, nitrite and N-nitroso compounds on human health: A review. Vet. Hum. Toxicol. 1993;35:521–538. PubMed
Sharma M., Maheshwari M., Morisawa S. Dietary and inhalation intake of lead and estimation of blood lead levels in adults and children in Kanpur, India. Risk Anal. Int. J. 2005;25:1573–1588. doi: 10.1111/j.1539-6924.2005.00683.x. PubMed DOI
Zartarian V., Xue J., Tornero-Velez R., Brown J. Children’s lead exposure: A multimedia modeling analysis to guide public health decision-making. Environ. Health Perspect. 2017;125:097009. doi: 10.1289/EHP1605. PubMed DOI PMC
Zahran S., Laidlaw M.A., McElmurry S.P., Filippelli G.M., Taylor M. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 2013;47:2839–2845. doi: 10.1021/es303854c. PubMed DOI
Air Quality Guidelines for Europe. [(accessed on 11 November 2020)]; Available online: https://www.euro.who.int/__data/assets/pdf_file/0020/123077/AQG2ndEd_6_7Lead.pdf.
Oflaherty E.J. Physiologically based models for bone-seeking elements: IV. Kinetics of lead disposition in humans. Toxicol. Appl. Pharmacol. 1993;118:16–29. doi: 10.1006/taap.1993.1004. PubMed DOI
Air Quality Guidelines for Europe. 2nd ed. [(accessed on 11 November 2020)]; Available online: https://www.euro.who.int/en/publications/abstracts/air-quality-guidelines-for-europe.
International Commission on Radiological Protection . Human Respiratory Tract Model for Radiological Protection. International Commission on Radiological Protection; Stockholm, Sweden: 1994.
MPPD: Multiple-Path Particle Dosimetry Model. [(accessed on 10 November 2020)]; Available online: https://www.ara.com/mppd/
De Winter-Sorkina R., Cassee F. From Concentration to Dose: Factors Influencing Airborne Particulate Matter Deposition in Humans and Rat. National Institute of Public Health and the Environment (RIVM), The Netherlands. Report 650010031/2002. [(accessed on 10 November 2020)]; Available online: http://www.rivm.nl/bibliotheek/rapporten/650010031.pdf.
Miller F.J., Asgharian B., Schroeter J.D., Price O. Improvements and additions to the multiple path particle dosimetry model. J. Aerosol Sci. 2016;99:14–26. doi: 10.1016/j.jaerosci.2016.01.018. DOI
Kuuluvainen H., Rönkkö T., Järvinen A., Saari S., Karjalainen P., Lähde T., Pirjola L., Niemi J.V., Hillamo R., Keskinen J. Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos. Environ. 2016;136:105–113. doi: 10.1016/j.atmosenv.2016.04.019. DOI
Oszlanczi G., Papp A., Szabo A., Nagymajtenyi L., Sapi A., Konya Z., Paulik E., Vezer T. Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal. Toxicol. 2011;23:173–181. doi: 10.3109/08958378.2011.553248. PubMed DOI
Mate Z., Horvath E., Kozma G., Simon T., Konya Z., Paulik E., Papp A., Szabo A. Size-Dependent Toxicity Differences of Intratracheally Instilled Manganese Oxide Nanoparticles: Conclusions of a Subacute Animal Experiment. Biol. Trace Elem. Res. 2016;171:156–166. doi: 10.1007/s12011-015-0508-z. PubMed DOI
Shakeel M., Jabeen F., Shabbir S., Asghar M., Khan M., Chaudhry A. Toxicity of Nano-Titanium Dioxide (TiO2-NP) through Various Routes of Exposure: A Review. Biol. Trace Elem. Res. 2016;172:1–36. doi: 10.1007/s12011-015-0550-x. PubMed DOI
Wan R., Mo Y., Zhang Z., Jiang M., Tang S., Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part. Fibre Toxicol. 2017;14:38. doi: 10.1186/s12989-017-0219-z. PubMed DOI PMC
Scotton C.J., Chambers R.C. Molecular targets in pulmonary fibrosis: The myofibroblast in focus. Chest. 2007;132:1311–1321. doi: 10.1378/chest.06-2568. PubMed DOI
Zhang K., Rekhter M.D., Gordon D., Phan S.H. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am. J. Pathol. 1994;145:114. PubMed PMC
Ma J., Bishoff B., Mercer R., Barger M., Schwegler-Berry D., Castranova V. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis. Toxicol. Appl. Pharmacol. 2017;323:16–25. doi: 10.1016/j.taap.2017.03.015. PubMed DOI PMC
Rossner P., Vrbova K., Rossnerova A., Zavodna T., Milcova A., Klema J., Vecera Z., Mikuska P., Coufalik P., Capka L. Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper (II) Oxide Nanoparticles. Nanomaterials. 2020;10:550. doi: 10.3390/nano10030550. PubMed DOI PMC
Lai X., Zhao H., Zhang Y., Guo K., Xu Y., Chen S., Zhang J. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci. Rep. 2018;8:4499. doi: 10.1038/s41598-018-22556-7. PubMed DOI PMC
Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Jeon K.-I., Jeong J.-Y., Jue D.-M. Thiol-reactive metal compounds inhibit NF-κB activation by blocking IκB kinase. J. Immunol. 2000;164:5981–5989. doi: 10.4049/jimmunol.164.11.5981. PubMed DOI
Turner M.D., Nedjai B., Hurst T., Pennington D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res. 2014;1843:2563–2582. doi: 10.1016/j.bbamcr.2014.05.014. PubMed DOI
Kabadi P.K., Rodd A.L., Simmons A.E., Messier N.J., Hurt R.H., Kane A.B. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part. Fibre Toxicol. 2019;16:15. doi: 10.1186/s12989-019-0298-0. PubMed DOI PMC
Čokić V.P., Mitrović-Ajtić O., Beleslin-Čokić B.B., Marković D., Buač M., Diklić M., Kraguljac-Kurtović N., Damjanović S., Milenković P., Gotić M. Proinflammatory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediat. Inflamm. 2015;2015:453020. doi: 10.1155/2015/453020. PubMed DOI PMC
Schaper F., Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015;26:475–487. doi: 10.1016/j.cytogfr.2015.07.004. PubMed DOI
Dukhinova M.S., Prilepskii A., Shtil A.A., Vinogradov V.V. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. Nanomaterials. 2019;9:1631. doi: 10.3390/nano9111631. PubMed DOI PMC
Ortega V., Katzenback B., Stafford J., Belosevic M., Goss G. Effects of polymer-coated metal oxide nanoparticles on goldfish (Carassius auratus L.) neutrophil viability and function. Nanotoxicology. 2015;9:23–33. doi: 10.3109/17435390.2013.861943. PubMed DOI
Penido M.G.M., Alon U.S. Phosphate homeostasis and its role in bone health. Pediatric Nephrol. 2012;27:2039–2048. doi: 10.1007/s00467-012-2175-z. PubMed DOI PMC
Imel E.A., Econs M.J. Approach to the hypophosphatemic patient. J. Clin. Endocrinol. Metab. 2012;97:696–706. doi: 10.1210/jc.2011-1319. PubMed DOI PMC
Pal M., Sachdeva M., Gupta N., Mishra P., Yadav M., Tiwari A. Lead Exposure in Different Organs of Mammals and Prevention by Curcumin–Nanocurcumin: A Review. Biol. Trace Elem. Res. 2015;168:380–391. doi: 10.1007/s12011-015-0366-8. PubMed DOI
Pounds J.G., Long G.J., Rosen J.F. Cellular and molecular toxicity of lead in bone. Environ. Health Perspect. 1991;91:17–32. doi: 10.1289/ehp.919117. PubMed DOI PMC
Lu H., Yuan G., Yin Z., Dai S., Jia R., Xu J., Song X., Li L., Lv C. Effects of subchronic exposure to lead acetate and cadmium chloride on rat’s bone: Ca and Pi contents, bone density, and histopathological evaluation. Int. J. Clin. Exp. Pathol. 2014;7:640–647. PubMed PMC
Cretacci Y., Parsons P. Localized accumulation of lead within and among bones from lead-dosed goats. Environ. Res. 2010;110:26–32. doi: 10.1016/j.envres.2009.09.005. PubMed DOI PMC
Griffin T.B., Coulston F., Wills H., Russell J.C. Biologic effects of airborne particulate lead on continuously exposed rats and rhesus monkeys. Environ. Qual. Saf. Suppl. 1975;2:202–220. PubMed
Leonas R., Noor Z., Rasyid H.N., Madjid T.H., Tanjung F.A. Effect of Lead Nanoparticles Inhalation on Bone Calcium Sensing Receptor, Hydroxyapatite Crystal and Receptor Activator of Nuclear Factor-Kappa B in Rats. Acta Inform. Med. 2016;24:343. doi: 10.5455/aim.2016.24.343-346. PubMed DOI PMC
Daley G.M., Pretorius C.J., Ungerer J.P. Lead Toxicity: An Australian Perspective. Clin. Biochem. Rev. 2018;39:61. PubMed PMC
Takano T., Okutomi Y., Mochizuki M., Ochiai Y., Yamada F., Mori M., Ueda F. Biological index of environmental lead pollution: Accumulation of lead in liver and kidney in mice. Environ. Monit. Assess. 2015;187:744. doi: 10.1007/s10661-015-4958-8. PubMed DOI
Togao M., Nakayama S.M., Ikenaka Y., Mizukawa H., Makino Y., Kubota A., Matsukawa T., Yokoyama K., Hirata T., Ishizuka M. Bioimaging of Pb and STIM1 in mice liver, kidney and brain using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and immunohistochemistry. Chemosphere. 2020;238:124581. doi: 10.1016/j.chemosphere.2019.124581. PubMed DOI
Bonta M., Török S., Hegedus B., Döme B., Limbeck A. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS. Anal. Bioanal. Chem. 2017;409:1805–1814. doi: 10.1007/s00216-016-0124-6. PubMed DOI PMC
Massry S.G. Disorders of Mineral Metabolism. Elsevier; Amsterdam, The Netherlands: 1982. Renal handling of calcium; pp. 189–235.
Victery W., Miller C., Zhu S., Goyer R. Effect of different levels and periods of lead-exposure on tissue-levels and excretion of lead, zinc, and calcium in the rat. Fundam. Appl. Toxicol. 1987;8:506–516. doi: 10.1016/0272-0590(87)90136-9. PubMed DOI
Zhang D., Gao J., Zhang K., Liu X., Li J. Effects of Chronic Cadmium Poisoning on Zn, Cu, Fe, Ca, and Metallothionein in Liver and Kidney of Rats. Biol. Trace Elem. Res. 2012;149:57–63. doi: 10.1007/s12011-012-9394-9. PubMed DOI
Dumkova J., Vrlikova L., Vecera Z., Putnova B., Docekal B., Mikuska P., Fictum P., Hampl A., Buchtova M. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs. Int. J. Mol. Sci. 2016;17:874. doi: 10.3390/ijms17060874. PubMed DOI PMC
Skoczyńska A., Smolik R., Jeleń M. Lipid abnormalities in rats given small doses of lead. Arch. Toxicol. 1993;67:200–204. doi: 10.1007/BF01973308. PubMed DOI
Xia J., Jin C., Pan Z., Sun L., Fu Z., Jin Y. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice. Sci. Total Environ. 2018;631:439–448. doi: 10.1016/j.scitotenv.2018.03.053. PubMed DOI
Ademuyiwa O., Agarwal R., Chandra R., Behari J.R. Lead-induced phospholipidosis and cholesterogenesis in rat tissues. Chem. Biol. Interact. 2009;179:314–320. doi: 10.1016/j.cbi.2008.10.057. PubMed DOI
Serfilippi L.M., Stackhouse Pallman D.R., Russell B., Spainhour C.B. Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. J. Am. Assoc. Lab. Anim. Sci. 2003;42:46–52. PubMed
Mikuška P. Generator of fine polydisperse aerosol. Collect. Czechoslov. Chem. Commun. 2004;69:1453–1463. doi: 10.1135/cccc20041453. DOI
Večeřa Z., Mikuška P., Moravec P., Smolík J. Unique Exposure System for the Whole Body Inhalation Experiments with Small Animals. Tanger Ltd. Nanocon; Brno, Czech Republic: 2011. pp. 652–654.
Miller F.J. Dosimetry of particles in laboratory animals and humans in relationship to issues surrounding lung overload and human health risk assessment: A critical review. Inhal. Toxicol. 2000;12:19–57. doi: 10.1080/089583700196536. PubMed DOI