A Clearance Period after Soluble Lead Nanoparticle Inhalation Did Not Ameliorate the Negative Effects on Target Tissues Due to Decreased Immune Response

. 2020 Nov 19 ; 21 (22) : . [epub] 20201119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33228049

Grantová podpora
20-02203S Czech Science Foundation

The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO3)2 NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance. We examined (i) lead biodistribution in target organs using laser ablation and inductively coupled plasma mass spectrometry (LA-ICP-MS) and atomic absorption spectrometry (AAS), (ii) lead effect on histopathological changes and immune cells response in secondary target organs and (iii) the clearance ability of target organs. In the lungs and liver, Pb(NO3)2 NP inhalation induced serious structural changes and their damage was present even after a 5-week clearance period despite the lead having been almost completely eliminated from the tissues. The numbers of macrophages significantly decreased after 11-week Pb(NO3)2 NP inhalation; conversely, abundance of alpha-smooth muscle actin (α-SMA)-positive cells, which are responsible for augmented collagen production, increased in both tissues. Moreover, the expression of nuclear factor κB (NF-κB) and selected cytokines, such as tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 (TGFβ1), interleukin 6(IL-6), IL-1α and IL-1β , displayed a tissue-specific response to lead exposure. In summary, diminished inflammatory response in tissues after Pb(NO3)2 NPs inhalation was associated with prolonged negative effect of lead on tissues, as demonstrated by sustained pathological changes in target organs, even after long clearance period.

Zobrazit více v PubMed

Yang W., Omaye S.T. Air pollutants, oxidative stress and human health. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis. 2009;674:45–54. doi: 10.1016/j.mrgentox.2008.10.005. PubMed DOI

Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health. 2001;74:1–8. doi: 10.1007/s004200000185. PubMed DOI

Davidson C.I., Phalen R.F., Solomon P.A. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 2005;39:737–749. doi: 10.1080/02786820500191348. DOI

Stone V., Miller M.R., Clift M.J., Elder A., Mills N.L., Møller P., Schins R.P., Vogel U., Kreyling W.G., Alstrup Jensen K. Nanomaterials versus ambient ultrafine particles: An opportunity to exchange toxicology knowledge. Environ. Health Perspect. 2017;125:106002. doi: 10.1289/EHP424. PubMed DOI PMC

Mukhtar A., Limbeck A. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Anal. Chim. Acta. 2013;774:11–25. doi: 10.1016/j.aca.2013.02.008. PubMed DOI

Schroeder W., Dobson M., Kane D., Johnson N. Toxic trace elements associated with airborne particulate matter: A review. Japca. 1987;37:1267–1285. doi: 10.1080/08940630.1987.10466321. PubMed DOI

Peel J.L., Tolbert P.E., Klein M., Metzger K.B., Flanders W.D., Todd K., Mulholland J.A., Ryan P.B., Frumkin H. Ambient air pollution and respiratory emergency department visits. Epidemiology. 2005;16:164–174. doi: 10.1097/01.ede.0000152905.42113.db. PubMed DOI

Sinclair A.H., Edgerton E.S., Wyzga R., Tolsma D. A two-time-period comparison of the effects of ambient air pollution on outpatient visits for acute respiratory illnesses. J. Air Waste Manag. Assoc. 2010;60:163–175. doi: 10.3155/1047-3289.60.2.163. PubMed DOI

Strickland M.J., Darrow L.A., Klein M., Flanders W.D., Sarnat J.A., Waller L.A., Sarnat S.E., Mulholland J.A., Tolbert P.E. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am. J. Respir. Crit. Care Med. 2010;182:307–316. doi: 10.1164/rccm.200908-1201OC. PubMed DOI PMC

Iijima A., Tago H., Kumagai K., Kato M., Kozawa K., Sato K., Furuta N. Regional and seasonal characteristics of emission sources of fine airborne particulate matter collected in the center and suburbs of Tokyo, Japan as determined by multielement analysis and source receptor models. J. Environ. Monit. 2008;10:1025–1032. doi: 10.1039/b806483k. PubMed DOI

Coufalík P., Mikuška P., Matoušek T., Večeřa Z. Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids. Atmos. Environ. 2016;140:469–475. doi: 10.1016/j.atmosenv.2016.06.031. DOI

Mikuška P., Vojtěšek M., Křůmal K., Mikušková-Čampulová M., Michálek J., Večeřa Z. Characterization and Source Identification of Elements and Water-Soluble Ions in Submicrometre Aerosols in Brno and Šlapanice (Czech Republic) Atmosphere. 2020;11:688. doi: 10.3390/atmos11070688. DOI

Querol X., Viana M., Alastuey A., Amato F., Moreno T., Castillo S., Pey J., De la Rosa J., De La Campa A.S., Artíñano B. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007;41:7219–7231. doi: 10.1016/j.atmosenv.2007.05.022. DOI

Götschi T., Hazenkamp-von Arx M.E., Heinrich J., Bono R., Burney P., Forsberg B., Jarvis D., Maldonado J., Norbäck D., Stern W.B. Elemental composition and reflectance of ambient fine particles at 21 European locations. Atmos. Environ. 2005;39:5947–5958. doi: 10.1016/j.atmosenv.2005.06.049. DOI

Manousakas M., Diapouli E., Papaefthymiou H., Migliori A., Karydas A., Padilla-Alvarez R., Bogovac M., Kaiser R., Jaksic M., Bogdanovic-Radovic I. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atmos. 2015;349:114–124. doi: 10.1016/j.nimb.2015.02.037. DOI

Bláhová L., Nováková Z., Večeřa Z., Vrlíková L., Dočekal B., Dumková J., Křůmal K., Mikuška P., Buchtová M., Hampl A. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology. 2020;14:214–231. doi: 10.1080/17435390.2019.1685696. PubMed DOI

Minigalieva I.A., Katsnelson B.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., Sutunkova M.P., Shur V.Y., Shishkina E.V., Valamina I.E. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017;380:72–93. doi: 10.1016/j.tox.2017.02.007. PubMed DOI

Amiri A., Mohammadi M., Shabani M. Synthesis and toxicity evaluation of lead oxide (PbO) nanoparticles in rats. Electron. J. Biol. 2016;12:110–114.

Dumková J., Smutná T., Vrlíková L., Le Coustumer P., Večeřa Z., Dočekal B., Mikuška P., Čapka L., Fictum P., Hampl A., et al. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol. 2017;14:55. doi: 10.1186/s12989-017-0236-y. PubMed DOI PMC

Elgrabli D., Beaudouin R., Jbilou N., Floriani M., Pery A., Rogerieux F., Lacroix G. Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS ONE. 2015;10:e0124490. doi: 10.1371/journal.pone.0124490. PubMed DOI PMC

Bai K., Chuang K., Chen J., Hua H., Shen Y., Liao W., Lee C., Chen K., Lee K., Hsiao T., et al. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. Nanomed. Nanotechnol. Biol. Med. 2018;14:2329–2339. doi: 10.1016/j.nano.2017.10.003. PubMed DOI

Sutunkova M.P., Solovyeva S.N., Chernyshov I.N., Klinova S.V., Gurvich V.B., Shur V.Y., Shishkina E.V., Zubarev I.V., Privalova L.I., Katsnelson B.A. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int. J. Mol. Sci. 2020;21:690. doi: 10.3390/ijms21030690. PubMed DOI PMC

Pietroiusti A., Bergamaschi E., Campagna M., Campagnolo L., De Palma G., Iavicoli S., Leso V., Magrini A., Miragoli M., Pedata P. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: A consensus paper from a multidisciplinary working group. Part Fibre Toxicol. 2017;14:47. doi: 10.1186/s12989-017-0226-0. PubMed DOI PMC

Dumková J., Smutná T., Vrlíkovaá L., Kotasová H., Docĕkal B., Căpka L.S., Tvrdonŏvá M., Jakesŏvá V., Pelková V., Krŭmal K. Variability in the Clearance of Lead Oxide Nanoparticles Is Associated with Alteration of Specific Membrane Transporters. ACS Nano. 2020;14:3096–3120. doi: 10.1021/acsnano.9b08143. PubMed DOI

Bruning-Fann C.S., Kaneene J. The effects of nitrate, nitrite and N-nitroso compounds on human health: A review. Vet. Hum. Toxicol. 1993;35:521–538. PubMed

Sharma M., Maheshwari M., Morisawa S. Dietary and inhalation intake of lead and estimation of blood lead levels in adults and children in Kanpur, India. Risk Anal. Int. J. 2005;25:1573–1588. doi: 10.1111/j.1539-6924.2005.00683.x. PubMed DOI

Zartarian V., Xue J., Tornero-Velez R., Brown J. Children’s lead exposure: A multimedia modeling analysis to guide public health decision-making. Environ. Health Perspect. 2017;125:097009. doi: 10.1289/EHP1605. PubMed DOI PMC

Zahran S., Laidlaw M.A., McElmurry S.P., Filippelli G.M., Taylor M. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 2013;47:2839–2845. doi: 10.1021/es303854c. PubMed DOI

Air Quality Guidelines for Europe. [(accessed on 11 November 2020)]; Available online: https://www.euro.who.int/__data/assets/pdf_file/0020/123077/AQG2ndEd_6_7Lead.pdf.

Oflaherty E.J. Physiologically based models for bone-seeking elements: IV. Kinetics of lead disposition in humans. Toxicol. Appl. Pharmacol. 1993;118:16–29. doi: 10.1006/taap.1993.1004. PubMed DOI

Air Quality Guidelines for Europe. 2nd ed. [(accessed on 11 November 2020)]; Available online: https://www.euro.who.int/en/publications/abstracts/air-quality-guidelines-for-europe.

International Commission on Radiological Protection . Human Respiratory Tract Model for Radiological Protection. International Commission on Radiological Protection; Stockholm, Sweden: 1994.

MPPD: Multiple-Path Particle Dosimetry Model. [(accessed on 10 November 2020)]; Available online: https://www.ara.com/mppd/

De Winter-Sorkina R., Cassee F. From Concentration to Dose: Factors Influencing Airborne Particulate Matter Deposition in Humans and Rat. National Institute of Public Health and the Environment (RIVM), The Netherlands. Report 650010031/2002. [(accessed on 10 November 2020)]; Available online: http://www.rivm.nl/bibliotheek/rapporten/650010031.pdf.

Miller F.J., Asgharian B., Schroeter J.D., Price O. Improvements and additions to the multiple path particle dosimetry model. J. Aerosol Sci. 2016;99:14–26. doi: 10.1016/j.jaerosci.2016.01.018. DOI

Kuuluvainen H., Rönkkö T., Järvinen A., Saari S., Karjalainen P., Lähde T., Pirjola L., Niemi J.V., Hillamo R., Keskinen J. Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos. Environ. 2016;136:105–113. doi: 10.1016/j.atmosenv.2016.04.019. DOI

Oszlanczi G., Papp A., Szabo A., Nagymajtenyi L., Sapi A., Konya Z., Paulik E., Vezer T. Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal. Toxicol. 2011;23:173–181. doi: 10.3109/08958378.2011.553248. PubMed DOI

Mate Z., Horvath E., Kozma G., Simon T., Konya Z., Paulik E., Papp A., Szabo A. Size-Dependent Toxicity Differences of Intratracheally Instilled Manganese Oxide Nanoparticles: Conclusions of a Subacute Animal Experiment. Biol. Trace Elem. Res. 2016;171:156–166. doi: 10.1007/s12011-015-0508-z. PubMed DOI

Shakeel M., Jabeen F., Shabbir S., Asghar M., Khan M., Chaudhry A. Toxicity of Nano-Titanium Dioxide (TiO2-NP) through Various Routes of Exposure: A Review. Biol. Trace Elem. Res. 2016;172:1–36. doi: 10.1007/s12011-015-0550-x. PubMed DOI

Wan R., Mo Y., Zhang Z., Jiang M., Tang S., Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part. Fibre Toxicol. 2017;14:38. doi: 10.1186/s12989-017-0219-z. PubMed DOI PMC

Scotton C.J., Chambers R.C. Molecular targets in pulmonary fibrosis: The myofibroblast in focus. Chest. 2007;132:1311–1321. doi: 10.1378/chest.06-2568. PubMed DOI

Zhang K., Rekhter M.D., Gordon D., Phan S.H. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am. J. Pathol. 1994;145:114. PubMed PMC

Ma J., Bishoff B., Mercer R., Barger M., Schwegler-Berry D., Castranova V. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis. Toxicol. Appl. Pharmacol. 2017;323:16–25. doi: 10.1016/j.taap.2017.03.015. PubMed DOI PMC

Rossner P., Vrbova K., Rossnerova A., Zavodna T., Milcova A., Klema J., Vecera Z., Mikuska P., Coufalik P., Capka L. Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper (II) Oxide Nanoparticles. Nanomaterials. 2020;10:550. doi: 10.3390/nano10030550. PubMed DOI PMC

Lai X., Zhao H., Zhang Y., Guo K., Xu Y., Chen S., Zhang J. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci. Rep. 2018;8:4499. doi: 10.1038/s41598-018-22556-7. PubMed DOI PMC

Liu T., Zhang L., Joo D., Sun S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC

Jeon K.-I., Jeong J.-Y., Jue D.-M. Thiol-reactive metal compounds inhibit NF-κB activation by blocking IκB kinase. J. Immunol. 2000;164:5981–5989. doi: 10.4049/jimmunol.164.11.5981. PubMed DOI

Turner M.D., Nedjai B., Hurst T., Pennington D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res. 2014;1843:2563–2582. doi: 10.1016/j.bbamcr.2014.05.014. PubMed DOI

Kabadi P.K., Rodd A.L., Simmons A.E., Messier N.J., Hurt R.H., Kane A.B. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part. Fibre Toxicol. 2019;16:15. doi: 10.1186/s12989-019-0298-0. PubMed DOI PMC

Čokić V.P., Mitrović-Ajtić O., Beleslin-Čokić B.B., Marković D., Buač M., Diklić M., Kraguljac-Kurtović N., Damjanović S., Milenković P., Gotić M. Proinflammatory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediat. Inflamm. 2015;2015:453020. doi: 10.1155/2015/453020. PubMed DOI PMC

Schaper F., Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015;26:475–487. doi: 10.1016/j.cytogfr.2015.07.004. PubMed DOI

Dukhinova M.S., Prilepskii A., Shtil A.A., Vinogradov V.V. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. Nanomaterials. 2019;9:1631. doi: 10.3390/nano9111631. PubMed DOI PMC

Ortega V., Katzenback B., Stafford J., Belosevic M., Goss G. Effects of polymer-coated metal oxide nanoparticles on goldfish (Carassius auratus L.) neutrophil viability and function. Nanotoxicology. 2015;9:23–33. doi: 10.3109/17435390.2013.861943. PubMed DOI

Penido M.G.M., Alon U.S. Phosphate homeostasis and its role in bone health. Pediatric Nephrol. 2012;27:2039–2048. doi: 10.1007/s00467-012-2175-z. PubMed DOI PMC

Imel E.A., Econs M.J. Approach to the hypophosphatemic patient. J. Clin. Endocrinol. Metab. 2012;97:696–706. doi: 10.1210/jc.2011-1319. PubMed DOI PMC

Pal M., Sachdeva M., Gupta N., Mishra P., Yadav M., Tiwari A. Lead Exposure in Different Organs of Mammals and Prevention by Curcumin–Nanocurcumin: A Review. Biol. Trace Elem. Res. 2015;168:380–391. doi: 10.1007/s12011-015-0366-8. PubMed DOI

Pounds J.G., Long G.J., Rosen J.F. Cellular and molecular toxicity of lead in bone. Environ. Health Perspect. 1991;91:17–32. doi: 10.1289/ehp.919117. PubMed DOI PMC

Lu H., Yuan G., Yin Z., Dai S., Jia R., Xu J., Song X., Li L., Lv C. Effects of subchronic exposure to lead acetate and cadmium chloride on rat’s bone: Ca and Pi contents, bone density, and histopathological evaluation. Int. J. Clin. Exp. Pathol. 2014;7:640–647. PubMed PMC

Cretacci Y., Parsons P. Localized accumulation of lead within and among bones from lead-dosed goats. Environ. Res. 2010;110:26–32. doi: 10.1016/j.envres.2009.09.005. PubMed DOI PMC

Griffin T.B., Coulston F., Wills H., Russell J.C. Biologic effects of airborne particulate lead on continuously exposed rats and rhesus monkeys. Environ. Qual. Saf. Suppl. 1975;2:202–220. PubMed

Leonas R., Noor Z., Rasyid H.N., Madjid T.H., Tanjung F.A. Effect of Lead Nanoparticles Inhalation on Bone Calcium Sensing Receptor, Hydroxyapatite Crystal and Receptor Activator of Nuclear Factor-Kappa B in Rats. Acta Inform. Med. 2016;24:343. doi: 10.5455/aim.2016.24.343-346. PubMed DOI PMC

Daley G.M., Pretorius C.J., Ungerer J.P. Lead Toxicity: An Australian Perspective. Clin. Biochem. Rev. 2018;39:61. PubMed PMC

Takano T., Okutomi Y., Mochizuki M., Ochiai Y., Yamada F., Mori M., Ueda F. Biological index of environmental lead pollution: Accumulation of lead in liver and kidney in mice. Environ. Monit. Assess. 2015;187:744. doi: 10.1007/s10661-015-4958-8. PubMed DOI

Togao M., Nakayama S.M., Ikenaka Y., Mizukawa H., Makino Y., Kubota A., Matsukawa T., Yokoyama K., Hirata T., Ishizuka M. Bioimaging of Pb and STIM1 in mice liver, kidney and brain using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and immunohistochemistry. Chemosphere. 2020;238:124581. doi: 10.1016/j.chemosphere.2019.124581. PubMed DOI

Bonta M., Török S., Hegedus B., Döme B., Limbeck A. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS. Anal. Bioanal. Chem. 2017;409:1805–1814. doi: 10.1007/s00216-016-0124-6. PubMed DOI PMC

Massry S.G. Disorders of Mineral Metabolism. Elsevier; Amsterdam, The Netherlands: 1982. Renal handling of calcium; pp. 189–235.

Victery W., Miller C., Zhu S., Goyer R. Effect of different levels and periods of lead-exposure on tissue-levels and excretion of lead, zinc, and calcium in the rat. Fundam. Appl. Toxicol. 1987;8:506–516. doi: 10.1016/0272-0590(87)90136-9. PubMed DOI

Zhang D., Gao J., Zhang K., Liu X., Li J. Effects of Chronic Cadmium Poisoning on Zn, Cu, Fe, Ca, and Metallothionein in Liver and Kidney of Rats. Biol. Trace Elem. Res. 2012;149:57–63. doi: 10.1007/s12011-012-9394-9. PubMed DOI

Dumkova J., Vrlikova L., Vecera Z., Putnova B., Docekal B., Mikuska P., Fictum P., Hampl A., Buchtova M. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs. Int. J. Mol. Sci. 2016;17:874. doi: 10.3390/ijms17060874. PubMed DOI PMC

Skoczyńska A., Smolik R., Jeleń M. Lipid abnormalities in rats given small doses of lead. Arch. Toxicol. 1993;67:200–204. doi: 10.1007/BF01973308. PubMed DOI

Xia J., Jin C., Pan Z., Sun L., Fu Z., Jin Y. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice. Sci. Total Environ. 2018;631:439–448. doi: 10.1016/j.scitotenv.2018.03.053. PubMed DOI

Ademuyiwa O., Agarwal R., Chandra R., Behari J.R. Lead-induced phospholipidosis and cholesterogenesis in rat tissues. Chem. Biol. Interact. 2009;179:314–320. doi: 10.1016/j.cbi.2008.10.057. PubMed DOI

Serfilippi L.M., Stackhouse Pallman D.R., Russell B., Spainhour C.B. Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. J. Am. Assoc. Lab. Anim. Sci. 2003;42:46–52. PubMed

Mikuška P. Generator of fine polydisperse aerosol. Collect. Czechoslov. Chem. Commun. 2004;69:1453–1463. doi: 10.1135/cccc20041453. DOI

Večeřa Z., Mikuška P., Moravec P., Smolík J. Unique Exposure System for the Whole Body Inhalation Experiments with Small Animals. Tanger Ltd. Nanocon; Brno, Czech Republic: 2011. pp. 652–654.

Miller F.J. Dosimetry of particles in laboratory animals and humans in relationship to issues surrounding lung overload and human health risk assessment: A critical review. Inhal. Toxicol. 2000;12:19–57. doi: 10.1080/089583700196536. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...