Multicellular microorganisms: laboratory versus nature

. 2004 May ; 5 (5) : 470-6.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid15184977

Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.

Zobrazit více v PubMed

Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109: 421–424 PubMed

Bonhivers M, Carbrey JM, Gould SJ, Agre P (1998) Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273: 27565–27572 PubMed

Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98: 11621–11626 PubMed PMC

Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorumsensing signal containing boron. Nature 415: 545–549 PubMed

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745 PubMed

Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64: 847–867 PubMed PMC

Deziel E, Comeau Y, Villemur R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183: 1195–1204 PubMed PMC

Engelberg D, Mimran A, Martinetto H, Otto J, Simchen G, Karin M, Fink GR (1998) Multicellular stalk-like structures in Saccharomyces cerevisiae. J Bacteriol 180: 3992–3996 PubMed PMC

Garrod DR, Malkinson AM (1973) Cyclic AMP, pattern formation and movement in the slime mould, Dictyostelium discoideum. Exp Cell Res 81: 492–495 PubMed

Ghigo JM (2003) Are there biofilmspecific physiological pathways beyond a reasonable doubt? Res Microbiol 154: 1–8 PubMed

Gross JD (1994) Developmental decisions in Dictyostelium discoideum. Microbiol Rev 58: 330–351 PubMed PMC

Hellstein J, Vawter-Hugart H, Fotos P, Schmid J, Soll DR (1993) Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity. J Clin Microbiol 31: 3190–3199 PubMed PMC

Henderson IR, Owen P, Nataro JP (1999) Molecular switches-the ON and OFF of bacterial phase variation. Mol Microbiol 33: 919–932 PubMed

Kaiser D (1999) Cell fate and organogenesis in bacteria. Trends Genet 15: 273–277 PubMed

Kell DB, Young M (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 3: 238–243 PubMed

Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47: 745–754 PubMed

Laize V, Gobin R, Rousselet G, Badier C, Hohmann S, Ripoche P, Tacnet F (1999) Molecular and functional study of AQY1 from Saccharomyces cerevisiae: role of the C-terminal domain. Biochem Biophys Res Commun 257: 139–144 PubMed

Matsuhashi M, Pankrushina AN, Endoh K, Watanabe H, Mano Y, Hyodo M, Fujita T, Kunugita K, Kaneko T, Otani S (1995) Studies on carbon material requirements for bacterial proliferation and spore germination under stress conditions: a new mechanism involving transmission of physical signals. J Bacteriol 177: 688–693 PubMed PMC

Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199 PubMed

Minarikova L, Kuthan M, Ricicova M, Forstova J, Palkova Z (2001) Differentiated gene expression in cells within yeast colonies. Exp Cell Res 271: 296–304 PubMed

Odds EC (1997) Switch of phenotype as an escape mechanism of the intruder. Mycoses 40: 9–12 PubMed

Palkova Z, Forstova J (2000) Yeast colonies synchronise their growth and development. J Cell Sci 113: 1923–1928 PubMed

Palkova Z, Vachova L (2003) Ammonia signaling in yeast colony formation. Int Rev Cytol 225: 229–272 PubMed

Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J (1997) Ammonia mediates communication between yeast colonies. Nature 390: 532–536 PubMed

Palkova Z, Devaux F, Icicova M, Minarikova L, Le Crom S, Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13: 3901–3914 PubMed PMC

Perez-Martin J, Uria JA, Johnson AD (1999) Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 18: 2580–2592 PubMed PMC

Radford DR, Challacombe SJ, Walter JD (1994) A scanning electronmicroscopy investigation of the structure of colonies of different morphologies produced by phenotypic switching of Candida albicans. J Med Microbiol 40: 416–423 PubMed

Scherz R, Shinder V, Engelberg D (2001) Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol 183: 5402–5413 PubMed PMC

Shapiro J (1997) Multicellularity: the Rule, not the Exception. Lessons from Escherichia coli Colonies. Oxford Univ Press, New York, USA

Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiol Rev 54: 473–501 PubMed PMC

Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR (1987) “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169: 189–197 PubMed PMC

Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR (2001) The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 183: 4614–4625 PubMed PMC

Velicer GJ, Kroos L, Lenski RE (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci USA 95: 12376–12380 PubMed PMC

Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95: 6578–6583 PubMed PMC

Whittaker DK, Drucker DB (1970) Scanning electron microscopy of intact colonies of microorganisms. J Bacteriol 104: 902–909 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace