Multicellular microorganisms: laboratory versus nature
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
15184977
PubMed Central
PMC1299056
DOI
10.1038/sj.embor.7400145
PII: 7400145
Knihovny.cz E-zdroje
- MeSH
- Bacillus subtilis cytologie fyziologie MeSH
- buněčná diferenciace MeSH
- klinické laboratorní techniky MeSH
- příroda * MeSH
- Saccharomyces cerevisiae fyziologie ultrastruktura MeSH
- signální transdukce MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.
Zobrazit více v PubMed
Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109: 421–424 PubMed
Bonhivers M, Carbrey JM, Gould SJ, Agre P (1998) Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273: 27565–27572 PubMed
Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98: 11621–11626 PubMed PMC
Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorumsensing signal containing boron. Nature 415: 545–549 PubMed
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745 PubMed
Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64: 847–867 PubMed PMC
Deziel E, Comeau Y, Villemur R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183: 1195–1204 PubMed PMC
Engelberg D, Mimran A, Martinetto H, Otto J, Simchen G, Karin M, Fink GR (1998) Multicellular stalk-like structures in Saccharomyces cerevisiae. J Bacteriol 180: 3992–3996 PubMed PMC
Garrod DR, Malkinson AM (1973) Cyclic AMP, pattern formation and movement in the slime mould, Dictyostelium discoideum. Exp Cell Res 81: 492–495 PubMed
Ghigo JM (2003) Are there biofilmspecific physiological pathways beyond a reasonable doubt? Res Microbiol 154: 1–8 PubMed
Gross JD (1994) Developmental decisions in Dictyostelium discoideum. Microbiol Rev 58: 330–351 PubMed PMC
Hellstein J, Vawter-Hugart H, Fotos P, Schmid J, Soll DR (1993) Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity. J Clin Microbiol 31: 3190–3199 PubMed PMC
Henderson IR, Owen P, Nataro JP (1999) Molecular switches-the ON and OFF of bacterial phase variation. Mol Microbiol 33: 919–932 PubMed
Kaiser D (1999) Cell fate and organogenesis in bacteria. Trends Genet 15: 273–277 PubMed
Kell DB, Young M (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 3: 238–243 PubMed
Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47: 745–754 PubMed
Laize V, Gobin R, Rousselet G, Badier C, Hohmann S, Ripoche P, Tacnet F (1999) Molecular and functional study of AQY1 from Saccharomyces cerevisiae: role of the C-terminal domain. Biochem Biophys Res Commun 257: 139–144 PubMed
Matsuhashi M, Pankrushina AN, Endoh K, Watanabe H, Mano Y, Hyodo M, Fujita T, Kunugita K, Kaneko T, Otani S (1995) Studies on carbon material requirements for bacterial proliferation and spore germination under stress conditions: a new mechanism involving transmission of physical signals. J Bacteriol 177: 688–693 PubMed PMC
Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199 PubMed
Minarikova L, Kuthan M, Ricicova M, Forstova J, Palkova Z (2001) Differentiated gene expression in cells within yeast colonies. Exp Cell Res 271: 296–304 PubMed
Odds EC (1997) Switch of phenotype as an escape mechanism of the intruder. Mycoses 40: 9–12 PubMed
Palkova Z, Forstova J (2000) Yeast colonies synchronise their growth and development. J Cell Sci 113: 1923–1928 PubMed
Palkova Z, Vachova L (2003) Ammonia signaling in yeast colony formation. Int Rev Cytol 225: 229–272 PubMed
Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J (1997) Ammonia mediates communication between yeast colonies. Nature 390: 532–536 PubMed
Palkova Z, Devaux F, Icicova M, Minarikova L, Le Crom S, Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13: 3901–3914 PubMed PMC
Perez-Martin J, Uria JA, Johnson AD (1999) Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 18: 2580–2592 PubMed PMC
Radford DR, Challacombe SJ, Walter JD (1994) A scanning electronmicroscopy investigation of the structure of colonies of different morphologies produced by phenotypic switching of Candida albicans. J Med Microbiol 40: 416–423 PubMed
Scherz R, Shinder V, Engelberg D (2001) Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol 183: 5402–5413 PubMed PMC
Shapiro J (1997) Multicellularity: the Rule, not the Exception. Lessons from Escherichia coli Colonies. Oxford Univ Press, New York, USA
Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiol Rev 54: 473–501 PubMed PMC
Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR (1987) “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169: 189–197 PubMed PMC
Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR (2001) The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 183: 4614–4625 PubMed PMC
Velicer GJ, Kroos L, Lenski RE (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci USA 95: 12376–12380 PubMed PMC
Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95: 6578–6583 PubMed PMC
Whittaker DK, Drucker DB (1970) Scanning electron microscopy of intact colonies of microorganisms. J Bacteriol 104: 902–909 PubMed PMC
Spotsizer: High-throughput quantitative analysis of microbial growth
Global changes in gene expression associated with phenotypic switching of wild yeast
Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies
Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies
Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia