Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
15939758
PubMed Central
PMC2171614
DOI
10.1083/jcb.200410064
PII: jcb.200410064
Knihovny.cz E-resources
- MeSH
- Ammonia metabolism MeSH
- Apoptosis physiology MeSH
- Caspases metabolism MeSH
- NADH, NADPH Oxidoreductases metabolism MeSH
- Gene Expression Regulation, Fungal physiology MeSH
- Repressor Proteins genetics MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae metabolism MeSH
- Signal Transduction physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- AIF1 protein, S cerevisiae MeSH Browser
- Ammonia MeSH
- Caspases MeSH
- MCA1 protein, S cerevisiae MeSH Browser
- NADH, NADPH Oxidoreductases MeSH
- Repressor Proteins MeSH
- Saccharomyces cerevisiae Proteins MeSH
- SOK2 protein, S cerevisiae MeSH Browser
The existence of programmed cell death (PCD) in yeast and its significance to simple unicellular organisms is still questioned. However, such doubts usually do not reflect the fact that microorganisms in nature exist predominantly within structured, multicellular communities capable of differentiation, in which a profit of individual cells is subordinated to a profit of populations. In this study, we show that some PCD features naturally appear during the development of multicellular Saccharomyces cerevisiae colonies. An ammonia signal emitted by aging colonies triggers metabolic changes that localize yeast death only in the colony center. The remaining population can exploit the released nutrients and survives. In colonies defective in Sok2p transcription factor that are unable to produce ammonia, death is spread throughout the whole population, thus decreasing the lifetime of the colony. The absence of Mca1p metacaspase or Aif1p orthologue of mammalian apoptosis-inducing factor does not prevent regulated death in yeast colonies.
See more in PubMed
Fannjiang, Y., W.C. Cheng, S.J. Lee, B. Qi, J. Pevsner, J.M. McCaffery, R.B. Hill, G. Basanez, and J.M. Hardwick. 2004. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 18:2785–2797. PubMed PMC
Hasek, J., and E. Streiblova. 1996. Fluorescence microscopy methods. Methods Mol. Biol. 53:391–405. PubMed
Herker, E., H. Jungwirth, K.A. Lehmann, C. Maldener, K.U. Frohlich, S. Wissing, S. Buttner, M. Fehr, S. Sigrist, and F. Madeo. 2004. Chronological aging leads to apoptosis in yeast. J. Cell Biol. 164:501–507. PubMed PMC
Hug, H., M. Los, W. Hirt, and K.M. Debatin. 1999. Rhodamine 110-linked amino acids and peptides as substrates to measure caspase activity upon apoptosis induction in intact cells. Biochemistry. 38:13906–13911. PubMed
Laun, P., A. Pichova, F. Madeo, J. Fuchs, A. Ellinger, S. Kohlwein, I. Dawes, K.U. Frohlich, and M. Breitenbach. 2001. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol. Microbiol. 39:1166–1173. PubMed
Leist, M., and M. Jaattela. 2001. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2:589–598. PubMed
Ludovico, P., M.J. Sousa, M.T. Silva, C. Leao, and M. Corte-Real. 2001. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 147:2409–2415. PubMed
Madeo, F., E. Frohlich, and K.U. Frohlich. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139:729–734. PubMed PMC
Madeo, F., E. Frohlich, M. Ligr, M. Grey, S.J. Sigrist, D.H. Wolf, and K.U. Frohlich. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145:757–767. PubMed PMC
Madeo, F., E. Herker, C. Maldener, S. Wissing, S. Lachelt, M. Herlan, M. Fehr, K. Lauber, S.J. Sigrist, S. Wesselborg, and K.U. Frohlich. 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell. 9:911–917. PubMed
Palková, Z. 2004. Multicellular microorganisms: laboratory versus nature. EMBO Rep. 5:470–476. PubMed PMC
Palková, Z., and J. Forstova. 2000. Yeast colonies synchronize their growth and development. J. Cell Sci. 113:1923–1928. PubMed
Palková, Z., and L. Váchová. 2003. Ammonia signalling in yeast colony formation. Int. Rev. Cytol. 225:229–272. PubMed
Palková, Z., F. Devaux, M. Ricicova, L. Minarikova, S. Le Crom, and C. Jacq. 2002. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol. Biol. Cell. 13:3901–3914. PubMed PMC
Shimizu, S., Y. Shinohara, and Y. Tsujimoto. 2000. Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene. 19:4309–4318. PubMed
Váchová, L., F. Devaux, H. Kucerova, M. Ricicova, C. Jacq, and Z. Palková. 2004. Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. J. Biol. Chem. 279:37973–37981. PubMed
Wissing, S., P. Ludovico, E. Herker, S. Buttner, S.M. Engelhardt, T. Decker, A. Link, A. Proksch, F. Rodrigues, M. Corte-Real, et al. 2004. An AIF orthologue regulates apoptosis in yeast. J. Cell Biol. 166:969–974. PubMed PMC
Wysocki, R., and S.J. Kron. 2004. Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. J. Cell Biol. 166:311–316. PubMed PMC
Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops
Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies
Yeast colonies: a model for studies of aging, environmental adaptation, and longevity
Reactive oxygen species in the signaling and adaptation of multicellular microbial communities
General and molecular microbiology and microbial genetics in the IM CAS