Piezoelectric Chemosensors and Biosensors in Medical Diagnostics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40136994
PubMed Central
PMC11940703
DOI
10.3390/bios15030197
PII: bios15030197
Knihovny.cz E-zdroje
- Klíčová slova
- QCM, bedside test, blood, clinical biochemistry, diabetes, inflammation, marker, piezoelectric cantilever beam, point-of-care test, quartz crystal microbalance,
- MeSH
- biologické markery analýza MeSH
- biosenzitivní techniky * MeSH
- elektrochemické techniky MeSH
- lidé MeSH
- vyšetření u lůžka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
This article explores the development and application of innovative piezoelectric sensors in point-of-care diagnostics. It highlights the significance of bedside tests, such as lateral flow and electrochemical tests, in providing rapid and accurate results directly at the patient's location. This paper delves into the principles of piezoelectric assays, emphasizing their ability to detect disease-related biomarkers through mechanical stress-induced electrical signals. Various applications of piezoelectric chemosensors and biosensors are discussed, including their use in the detection of cancer biomarkers, pathogens, and other health-related analytes. This article also addresses the integration of piezoelectric materials with advanced sensing technologies to improve diagnostic accuracy and efficiency, offering a comprehensive overview of current advances and future directions in medical diagnostics.
Zobrazit více v PubMed
Moerman A., De Waele J.J., Boelens J. An overview of point-of-care testing for infections in critically ill patients. Expert Rev. Mol. Diagn. 2024;24:193–200. doi: 10.1080/14737159.2024.2322146. PubMed DOI
Raj R., Khan M.F., Shariq M., Ahsan N., Singh R., Basoya P.K. Point-of-care optical devices in clinical imaging and screening: A review on the state of the art. J. Biophotonics. 2023;16:e202200386. doi: 10.1002/jbio.202200386. PubMed DOI
Plata-Menchaca E.P., Ruiz-Rodriguez J.C., Ferrer R. Early diagnosis of sepsis: The role of biomarkers and rapid microbiological tests. Semin. Respir. Crit. Care Med. 2024;45:479–490. doi: 10.1055/s-0044-1787270. PubMed DOI
Mousavi S.M., Kalashgrani M.Y., Gholami A., Omidifar N., Binazadeh M., Chiang W.H. Recent Advances in quantum dot-based lateral flow immunoassays for the rapid, point-of-care diagnosis of COVID-19. Biosensors. 2023;13:786. doi: 10.3390/bios13080786. PubMed DOI PMC
Najib M.A., Selvam K., Khalid M.F., Ozsoz M., Aziah I. Quantum dot-based lateral flow immunoassay as point-of-care testing for infectious diseases: A narrative review of its principle and performance. Diagnostics. 2022;12:2158. doi: 10.3390/diagnostics12092158. PubMed DOI PMC
Surucu O., Öztürk E., Kuralay F. Nucleic acid integrated technologies for electrochemical point-of-care diagnostics: A comprehensive review. Electroanalysis. 2022;34:148–160. doi: 10.1002/elan.202100309. DOI
Targonskaya A., Maslowski K. Gonadotropin and ovarian hormone monitoring: Lateral flow assays for clinical decision making. Women. 2023;3:471–485. doi: 10.3390/women3040036. DOI
Mattiello C.J., Stickle D.F. Characterization by image analysis of the dose vs response curve for a qualitative serum hCG lateral flow immunoassay. Clin. Chim. Acta. 2023;538:175–180. doi: 10.1016/j.cca.2022.11.020. PubMed DOI
Tel O.Y., Gurbilek S.E., Keskin O., Yucetepe A.G., Karadenizli A. Development of lateral flow test for serological diagnosis of tularemia. Kafkas Univ. Vet. Fak. Derg. 2022;28:579–584. doi: 10.9775/kvfd.2022.27607. DOI
Peto T., Uk C.-L.F.O. COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing. EClinicalMedicine. 2021;36:7. doi: 10.1016/j.eclinm.2021.100924. PubMed DOI PMC
Machiesky L., Cote O., Kirkegaard L.H., Mefferd S.C., Larkin C. A rapid lateral flow immunoassay for identity testing of biotherapeutics. J. Immunol. Methods. 2019;474:112666. doi: 10.1016/j.jim.2019.112666. PubMed DOI
Morinaga Y., Yamada H., Yoshida Y., Kawasuji H., Yamamoto Y. Analytical sensitivity of six lateral flow antigen test kits for variant strains of SARS-CoV-2. J. Infect. Chemother. 2023;29:131–135. doi: 10.1016/j.jiac.2022.10.004. PubMed DOI PMC
Kumar S., Ko T., Chae Y., Jang Y., Lee I., Lee A., Shin S., Nam M.H., Kim B.S., Jun H.S., et al. Proof-of-concept: Smartphone- and cloud-based artificial intelligence quantitative analysis system (SCAISY) for SARS-CoV-2-specific IgG antibody lateral flow assays. Biosensors. 2023;13:623. doi: 10.3390/bios13060623. PubMed DOI PMC
Park J. Smartphone based lateral flow immunoassay quantifications. J. Immunol. Methods. 2024;533:113745. doi: 10.1016/j.jim.2024.113745. PubMed DOI
Kalligosfyri P.M., Tragoulias S.S., Tsikas P., Lamprou E., Christopoulos T.K., Kalogianni D.P. Design and validation of a three-dimensional printer-based system enabling rapid, low-cost construction of the biosensing areas of lateral flow devices for immunoassays and nucleic acid assays. Anal. Chem. 2023;96:572–580. doi: 10.1021/acs.analchem.3c04915. PubMed DOI
Pohanka M. Glucose electrochemical biosensors: The past and current trends. Int. J. Electrochem. Sci. 2021;16:210719. doi: 10.20964/2021.07.52. DOI
Chen H.S., Kuo B.I., Hwu C.M., Shih K.C., Kwok C.F., Ho L.T. Technical and clinical evaluation of an electrochemistry glucose meter: Experience in a diabetes center. Diabetes Res. Clin. Pract. 1998;42:9–15. doi: 10.1016/S0168-8227(98)00077-1. PubMed DOI
Bonyadi F., Kavruk M., Ucak S., Cetin B., Bayramoglu G., Dursun A.D., Arica Y., Ozalp V.C. Real-time biosensing bacteria and virus with quartz crystal microbalance: Recent advances, opportunities, and challenges. Crit. Rev. Anal. Chem. 2023;12:2888–2899. doi: 10.1080/10408347.2023.2211164. PubMed DOI
Behyar M.B., Mirzaie A., Hasanzadeh M., Shadjou N. Advancements in biosensing of hormones: Recent progress and future trends. Trac-Trends Anal. Chem. 2024;173:117600. doi: 10.1016/j.trac.2024.117600. DOI
Ramasamy M.S., Bhaskar R., Han S.S. Piezoelectric biosensors and nanomaterials-based therapeutics for coronavirus and other viruses: A mini-review. Curr. Top. Med. Chem. 2023;23:115–127. doi: 10.2174/1568026623666221226091907. PubMed DOI
Guliy O.I., Zaitsev B.D., Borodina I.A. Electroacoustic biosensor systems for evaluating antibiotic action on microbial cells. Sensors. 2023;23:6292. doi: 10.3390/s23146292. PubMed DOI PMC
Tyskiewicz R., Fedorowicz M., Nakonieczna A., Zielinska P., Kwiatek M., Mizak L. Electrochemical, optical and mass-based immunosensors: A comprehensive review of Bacillus anthracis detection methods. Anal. Biochem. 2023;675:115215. doi: 10.1016/j.ab.2023.115215. PubMed DOI
Zak A.K., Yazdi S.T., Abrishami M.E., Hashim A.M. A review on piezoelectric ceramics and nanostructures: Fundamentals and fabrications. J. Aust. Ceram. Soc. 2024;60:723–753. doi: 10.1007/s41779-024-00990-3. DOI
De Marqui C., Tan D., Erturk A. On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow. J. Fluids Struct. 2018;82:492–504. doi: 10.1016/j.jfluidstructs.2018.07.020. DOI
Fallahpasand S., Dardel M. Piezoelectric energy harvesting from highly flexible cantilever beam. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2019;233:71–92. doi: 10.1177/1464419318791104. DOI
Bansevicius R., Navickaite S., Jurenas V., Mazeika D., Zvironiene A. Excitation of 2D resonant oscillations in piezoelectric plate with additional masses. J. Vibroeng. 2017;19:1930–1936. doi: 10.21595/jve.2016.18032. DOI
Lau O.W., Shao B. Determination of glucose using a piezoelectric quartz crystal and the silver mirror reaction. Anal. Chim. Acta. 2000;407:17–21. doi: 10.1016/S0003-2670(99)00783-7. DOI
Vélez-Cordero J.R., Flores S.J., Soto B.Y. Finite element simulations of quartz crystal microbalances (QCM): From Sauerbrey to fractional viscoelasticity under water. Phys. Scr. 2024;99:115963. doi: 10.1088/1402-4896/ad82b7. DOI
Guo H.H., Guo A.H., Gao Y., Liu T.T. Influence of external swelling stress on the frequency characteristics of a volatile organic compound (VOC) sensor based on a polymer-coated film bulk acoustic resonator (FBAR) Instrum. Sci. Technol. 2020;48:431–442. doi: 10.1080/10739149.2020.1737540. DOI
Saffari Z., Ghavidel A., Cohan R.A., Hamidi-Fard M., Khobi M., Aghasadeghi M., Norouzian D. Label-free real-time detection of HBsAg using a QCM immunosensor. Clin. Lab. 2022;68:707. doi: 10.7754/Clin.Lab.2021.210537. PubMed DOI
Sharma P., Chauhan R., Pande V., Basu T., Kumar A. Rapid sensing of Tilletia indica—Teliospore in wheat extractby apiezoelectric label free immunosensor. Bioelectrochemistry. 2022;147:108175. doi: 10.1016/j.bioelechem.2022.108175. PubMed DOI
Li H., Long M., Su H.Y., Tan L., Shi X.W., Du Y.M., Luo Y., Deng H.B. Carboxymethyl chitosan assembled piezoelectric biosensor for rapid and label-free quantification of immunoglobulin Y. Carbohydr. Polym. 2022;290:119482. doi: 10.1016/j.carbpol.2022.119482. PubMed DOI
Gui Z.Z., Shao Z.J., Zhang F., Shen T., Zou T., Zhang J.H. Effect of material anisotropy on the first-order vibration of piezoelectric oscillators in circular plate configurations. Sens. Actuator A-Phys. 2024;379:115918. doi: 10.1016/j.sna.2024.115918. DOI
Burdin D.A., Ekonomov N.A., Gordeev S.N., Fetisov Y.K. Anisotropy of magnetoelectric effects in an amorphous ferromagnet-piezoelectric heterostructure. J. Magn. Magn. Mater. 2021;521:167530. doi: 10.1016/j.jmmm.2020.167530. DOI
Kim H.J., Jung M.S., You C.Y., Hong J.I. Controllable magnetic anisotropy of ferromagnet/antiferromagnet bilayers coupled with piezoelectric strain. Acta Mater. 2019;171:170–175. doi: 10.1016/j.actamat.2019.04.015. DOI
Zhao H.B., Ding L.H., Ren N., Yu X., Wang A.Z., Zhao M.W. Multiferroic properties and giant piezoelectric effect of a 2D Janus WO3F monolayer. Phys. Chem. Chem. Phys. 2024;26:26594–26602. doi: 10.1039/D4CP02985B. PubMed DOI
Imran M., Windmann T., Vrabec J. Speed of sound measurements for liquid squalane up to a pressure of 20 MPa. Int. J. Thermophys. 2024;45:161. doi: 10.1007/s10765-024-03445-w. DOI
Qiao H.M., Jones J.L., Balke N. Effect of sub-coercive degradation on the local piezoelectric properties in lead zirconate titanate ceramics. J. Am. Ceram. Soc. 2024;11:e20277. doi: 10.1111/jace.20277. DOI
Qu Y.H., Chen X., Liu Y., Wang S.X., Gu X.Y., Wei M., Huang X.M., Liu Z.S., Ding J.Q., Wen Z.W., et al. Novel AlN/ScAlN composite film SAW for achieving highly sensitive temperature sensors. Sens. Actuator A-Phys. 2025;381:8. doi: 10.1016/j.sna.2024.116079. DOI
Lemine A.S., Bhadra J., Sadasivuni K.K., Popelka A., Yempally S., Ahmad Z., Al-Thani N.J., Hasan A. 3D printing flexible Ga-doped ZnO films for wearable energy harvesting: Thermoelectric and piezoelectric nanogenerators. J. Mater. Sci.-Mater. Electron. 2024;35:1639. doi: 10.1007/s10854-024-13372-z. DOI
Du Y., Zou Y.S., Zhu B.X., Jiang H., Chai Y., Tsoi C.C., Zhang X.M., Wang C.X. Asymmetric proton-exchange-enhanced lithium niobate and silicon low-temperature direct bonding with an ultrathin heterogeneous interface. ACS Appl. Mater. Interfaces. 2024;10:64287–64296. doi: 10.1021/acsami.4c14350. PubMed DOI
Makhare S.B., Jadhav T.K., Kapadi N.J., Darvade T.C., Dhotre A.V., Kolekar Y.D., Dindore U.B., Kambale R.C. Ferroelectric fatigue and stabilized piezoelectric properties of BaTiO3–BaZrO3 electroceramics with optimized electric poling conditions. J. Korean Ceram. Soc. 2024;14:139–152. doi: 10.1007/s43207-024-00453-2. DOI
Wekalao J., Patel S.K., Kumar O.P., Al-zahrani F.A. Machine learning optimized design of THz piezoelectric perovskite-based biosensor for the detection of formalin in aqueous environments. Sci. Rep. 2025;15:4498. doi: 10.1038/s41598-025-88766-y. PubMed DOI PMC
Kaczmarek H., Królikowski B., Klimiec E., Chylinska M., Bajer D. Advances in the study of piezoelectric polymers. Russ. Chem. Rev. 2019;88:749–774. doi: 10.1070/RCR4860. PubMed DOI PMC
Fukada E. Recent developments of polar piezoelectric polymers. IEEE Trans. Dielectr. Electr. Insul. 2006;13:1110–1119. doi: 10.1109/TDEI.2006.247839. DOI
Amiri M.T.H., Kermanshahi P.K., Bagherzadeh R., Yousefzadeh M., Fakhri P. A multilayer piezoelectric nanogenerator based on PVDF and BaTiO3 nanocomposite with enhanced performance induced by simultaneously electrospinning and electrospraying. J. Ind. Text. 2024;54:15280837241302259. doi: 10.1177/15280837241302259. DOI
Poudel A., Fernandez M.A., Tofail S.A.M., Biggs M.J.P. Boron nitride nanotube addition enhances the crystallinity and cytocompatibility of PVDF-TrFE. Front. Chem. 2019;7:364. doi: 10.3389/fchem.2019.00364. PubMed DOI PMC
Panda S., Hajra S., Jeong H., Panigrahi B.K., Pakawanit P., Dubal D., Hong S.K., Kim H.J. Biocompatible CaTiO3-PVDF composite-based piezoelectric nanogenerator for exercise evaluation and energy harvesting. Nano Energy. 2022;102:9. doi: 10.1016/j.nanoen.2022.107682. DOI
Kalinin S.V., Jesse S., Liu W.L., Balandin A.A. Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Appl. Phys. Lett. 2006;88:153902. doi: 10.1063/1.2194008. DOI
Yang Y., Zhang N.H., Liu H.L., Ling J.W., Tan Z.Q. Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers. Appl. Math. Mech.-Engl. Ed. 2023;44:1547–1562. doi: 10.1007/s10483-023-3026-5. DOI
Lin S.J., Yu Y.Y., He C.Y., Zhang Z.H., Yang J.W., Yang Z.M., Zhang L., Kan J.W. A novel pendulum-like deformation-limited piezoelectric vibration energy harvester triggered indirectly via a smoothly plucked drive plate. Mech. Syst. Signal Proc. 2025;224:112154. doi: 10.1016/j.ymssp.2024.112154. DOI
Abdur-Rashid K., Saha S.K., Mugisha J., Teale S., Wang S.S., Saber M., Lough A.J., Sargent E.H., Fekl U. Organic polar crystals, second harmonic generation, and piezoelectric effects from heteroadamantanes in the space group R3m. Chem.-Eur. J. 2024;30:e202302998. doi: 10.1002/chem.202302998. PubMed DOI
Iwanski J., Korona K.P., Tokarczyk M., Kowalski G., Dabrowska A.K., Tatarczak P., Rogala I., Bilska M., Wójcik M., Kret S., et al. Revealing polytypism in 2D boron nitride with UV photoluminescence. npj 2d Mater. Appl. 2024;8:72. doi: 10.1038/s41699-024-00511-7. DOI
Diaz J.O.T., Velásquez A.F. QCM Biosensorsfor pathogen detection in water and food: Review of published literature. Ing. Solidar. 2024;20:30. doi: 10.16925/2357-6014.2024.02.02. DOI
Barrias S., Fernandes J.R., Martins-Lopes P. Newly developed QCM-DNA biosensor for SNP detection in small DNA fragments: A wine authenticity case study. Food Control. 2025;169:111036. doi: 10.1016/j.foodcont.2024.111036. DOI
Higuchi R., Kanno Y. New analysis from the strength of materials of Sauerbrey’s equation concerning the quartz crystal microbalance. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap. 2006;45:4232–4233. doi: 10.1143/JJAP.45.4232. DOI
Wang X.H., Li M., Chen S.Y. Long memory from Sauerbrey equation: A case in coated quartz crystal microbalance in terms of ammonia. Math. Probl. Eng. 2011;2011:758245. doi: 10.1155/2011/758245. DOI
Ding X., Li J., Chen X.D., Zhang J.S., Zhu M.X. Derivation for mass-frequency relationship of a quartz crystal microbalance based on an equivalent circuit network analysis method. IEEE Trans. Instrum. Meas. 2022;71:9510208. doi: 10.1109/TIM.2022.3203442. DOI
Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959;155:206–222. doi: 10.1007/BF01337937. DOI
Huang X., Chen Q., Pan W., Yao Y. Advances in the mass sensitivity distribution of quartz crystal microbalances: A review. Sensors. 2022;22:5112. doi: 10.3390/s22145112. PubMed DOI PMC
Kanazawa K.K., Gordon J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985;57:1770–1771. doi: 10.1021/ac00285a062. DOI
Bai Q.S., Huang X.H. Using quartz crystal microbalance for field measurement of liquid viscosities. J. Sens. 2016;2016:7580483. doi: 10.1155/2016/7580483. DOI
Wang Y., Li C., Zhao B.R. Measurement of liquid viscosity using series resonant resistance response of quartz crystal microbalance. Jpn. J. Appl. Phys. 2022;61:046503. doi: 10.35848/1347-4065/ac57aa. DOI
Wasilewski T., Kamysz W., Gebicki J. AI-assisted detection of biomarkers by sensors and biosensors for early diagnosis and monitoring. Biosensors. 2024;14:356. doi: 10.3390/bios14070356. PubMed DOI PMC
Matsuo T., Wurster S., Hoenigl M., Kontoyiannis D.P. Current and emerging technologies to develop point-of-care diagnostics in medical mycology. Expert Rev. Mol. Diagn. 2024;24:841–858. doi: 10.1080/14737159.2024.2397515. PubMed DOI
Sani A., Khan M.I., Shah S., Tian Y.L., Zha G.H., Fan L.Y., Zhang Q., Cao C.X. Diagnosis and screening of abnormal hemoglobins. Clin. Chim. Acta. 2024;552:117685. doi: 10.1016/j.cca.2023.117685. PubMed DOI
Lee S., Bi L.Y., Chen H., Lin D., Mei R.C., Wu Y.X., Chen L.X., Joo S.W., Choo J. Recent advances in point-of-care testing of COVID-19. Chem. Soc. Rev. 2023;52:8500–8530. doi: 10.1039/D3CS00709J. PubMed DOI
Khan A.I., Khan M., Khan R. Artificial Intelligence in point-of-care testing. Ann. Lab. Med. 2023;43:401–407. doi: 10.3343/alm.2023.43.5.401. PubMed DOI PMC
Theriault-Lauzier P., Cobin D., Tastet O., Langlais E.L., Taji B., Kang G.S., Chong A.Y., So D., Tang A., Gichoya J.W., et al. A responsible framework for applying artificial intelligence on medical images and signals at the point of care: The PACS-AI platform. Can. J. Cardiol. 2024;40:1828–1840. doi: 10.1016/j.cjca.2024.05.025. PubMed DOI
Haghayegh F., Norouziazad A., Haghani E., Feygin A.A., Rahimi R.H., Ghavamabadi H.A., Sadighbayan D., Madhoun F., Papagelis M., Felfeli T., et al. Revolutionary point-of-care wearable diagnostics for early disease detection and biomarker discovery through intelligent technologies. Adv. Sci. 2024;11:2400595. doi: 10.1002/advs.202400595. PubMed DOI PMC
El Amrani S., Tossens B., Van Belle L., Gonda J., Midoun S., Beauloye C., Gruson D. Point of care testing for high-sensitive troponin measurement: Experience from a tertiary care hospital clinical laboratory. Adv. Lab. Med.-Av. Med. Lab. 2024;4:455–458. doi: 10.1515/almed-2024-0058. PubMed DOI PMC
Santarelli G., Marcos P.S., Talavera J., Aznar-Cervantes S.D., del Palacio J.F. Evaluation of a rapid test for point-of-care detection of cardiac troponin I in serum of healthy and diseased dogs and cats. J. Vet. Emerg. Crit. Care. 2024;6:539–544. doi: 10.1111/vec.13438. PubMed DOI
Pickering J.W., Joyce L.R., Florkowski C.M., Buchan V., Hamill L., Than M.P. Emergency department use of a high-sensitivity point-of-care troponin assay reduces length of stay: An implementation study preliminary report. Eur. Heart J.-Acute Cardiovasc. Care. 2024;5:838–842. doi: 10.1093/ehjacc/zuae114. PubMed DOI PMC
Hatherley J., Dakshi A., Collinson P., Miller G., Davies S., Bailey L., Fearon H., Phillips S., Lambert A., Sekulska K., et al. Imprecision and real-time clinical performance of a whole blood high sensitivity point of care troponin i: Ready for prime time? Heart J. 2024;45:ehae666-1598. doi: 10.1093/eurheartj/ehae666.1598. DOI
Pañero-Moreno M., Guix-Comellas E.M., Villamor-Ordozgoiti A. Clinical trial protocol for continuous glucose monitoring in critical care at Hospital Clinic of Barcelona (CGM-UCI23) Nurs. Crit. Care. 2024. early view . PubMed DOI
Mader J.K., Baumstark A., Tüting J., Sokol G., Schuebel R., Tong Y.H., Roetschke J., Slingerland R.J. Monitoring of the analytical performance of four different blood glucose monitoring systems: A post-market performance follow-up study. Diabetes Ther. 2024;15:2525–2535. doi: 10.1007/s13300-024-01665-9. PubMed DOI PMC
Castaño R.A., Granados M.A., Trujillo N., Bernal J.P., Trujillo J.F., Trasmondi P., Maestre A.F., Cardona J.S., Gonzalez R., Larrarte M.A., et al. Does performing a Point-Of-Care HbA1c test increase the chances of undertaking an OGTT among individuals at risk of diabetes? A randomized controlled trial. Prim. Care Diabetes. 2024;18:624–631. doi: 10.1016/j.pcd.2024.09.005. PubMed DOI
Çelik M., Polat M.R., Avkan-Oguz V. Diagnostic utility of rapid antigen testing as point-of-care test for influenza and other respiratory viruses in patients with acute respiratory illness. Diagn. Microbiol. Infect. Dis. 2025;111:6. doi: 10.1016/j.diagmicrobio.2024.116600. PubMed DOI
Savolainen L.E., Peltola J., Hilla R., Åman T., Broas M., Junttila I.S. Clinical performance of two commercially available rapid antigen tests for influenza, RSV, and SARS-CoV-2 diagnostics. Microbiol. Spectr. 2024;7:e01630-24. doi: 10.1128/spectrum.01630-24. PubMed DOI PMC
Boegner D.J., Rzasa J.R., Benke E.H., White I.M. Saliva-STAT: Sample-to-answer saliva test for COVID-19. Sens. Actuator B-Chem. 2024;421:136510. doi: 10.1016/j.snb.2024.136510. PubMed DOI PMC
Domnich A., Massaro E., Icardi G., Orsi A. Multiplex molecular assays for the laboratory-based and point-of-care diagnosis of infections caused by seasonal influenza, COVID-19, and RSV. Expert Rev. Mol. Diagn. 2024;12:997–1008. doi: 10.1080/14737159.2024.2408745. PubMed DOI
Reilly C., Mylonakis E., Dewar R., Young B., Nordwall J., Bhagani S., Chia P.Y., Davis R., Files C., Ginde A.A., et al. Evaluation of the feasibility and efficacy of point-of-care antibody tests for biomarker-guided management of coronavirus disease 2019. J. Infect. Dis. 2024;7:jiae452. doi: 10.1093/infdis/jiae452. PubMed DOI PMC
Ansu-Mensah M., Ginindza T.G., Amponsah S.K., Shimbre M.S., Bawontuo V., Kuupiel D. Geographical access to point-of-care diagnostic tests for diabetes, anaemia, Hepatitis B, and human immunodeficiency virus in the Bono region, Ghana. BMC Health Serv. Res. 2024;24:1303. doi: 10.1186/s12913-024-11830-2. PubMed DOI PMC
Futschik M.E., Tunkel S.A., Turek E., Chapman D., Thorlu-Bangura Z., Kulasegaran-Shylini R., Blandford E., Dodgson A., Klapper P.E., Sudhanva M., et al. Double testing with lateral flow antigen test devices for COVID-19: Does a second test in quick succession add value? J. Virol. Methods. 2024;329:115000. doi: 10.1016/j.jviromet.2024.115000. PubMed DOI
Geuer L., Otteny A., Wagner D., Menne S., Mukametov S., Ulber R. Educational models in analytical chemistry lab: The story behind lateral flow immunoassays in the context of COVID-19. J. Chem. Educ. 2024;10:5251–5260. doi: 10.1021/acs.jchemed.4c00655. DOI
Zhang X.N., Cheyne C.P., Jones C., Humann M., Leeming G., Smith C., Hughes D.M., Burnside G., Dodd S., Penrice-Randal R., et al. Can self-testing be enhanced to hasten safe return of healthcare workers in pandemics? Random order, open label trial using two manufacturers’ SARS-CoV-2 lateral flow devices concurrently and nested viral culture study. BMC Infect. Dis. 2024;24:1276. doi: 10.1186/s12879-024-10155-z. PubMed DOI PMC
Li G., Li Q.M., Wang X., Liu X., Zhang Y.H., Li R., Guo J.Q., Zhang G.P. Lateral flow immunoassays for antigens, antibodies and haptens detection. Int. J. Biol. Macromol. 2023;242:125186. doi: 10.1016/j.ijbiomac.2023.125186. PubMed DOI PMC
Nan X.X., Yang L., Cui Y. Lateral flow immunoassay for proteins. Clin. Chim. Acta. 2023;544:117337. doi: 10.1016/j.cca.2023.117337. PubMed DOI
Boehringer H.R., O’Farrell B.J. Lateral flow assays in infectious disease diagnosis. Clin. Chem. 2022;68:52–58. doi: 10.1093/clinchem/hvab194. PubMed DOI PMC
Amini R., Zhang Z.J., Li J.X., Gu J., Brennan J.D., Li Y.F. Aptamers for SARS-CoV-2: Isolation, characterization, and diagnostic and therapeutic developments. Anal. Sens. 2022;2:18. doi: 10.1002/anse.202200012. PubMed DOI PMC
He H.H., Zheng J., Su J., Xia L., Tang Y., Wu Y.E. Ionic polymers as double-capture agents in an aptamer lateral flow assay strip for point-of-care detection of ethyl carbamate using peroxidase-like activity of bimetallic NiCo2O4 nanoparticles. Talanta. 2025;283:127139. doi: 10.1016/j.talanta.2024.127139. PubMed DOI
Yue X., Yang H.L., Li J.Z., Zhu Z.J., Ouyang H., Guo T., Fu Z.F. Fluorescent lateral flow assay strip for Mycobacterium tuberculosis and Mycobacterium smegmatis based on mycobacteriophage tail protein and aptamer. Talanta. 2025;282:7. doi: 10.1016/j.talanta.2024.127000. PubMed DOI
Bruno J.G. Preliminary development of DNA aptamer quantum dot-based competitive lateral flow assays for saxitoxin and tetrodotoxin. J. Fluoresc. 2024:7. doi: 10.1007/s10895-024-04049-1. PubMed DOI
Fan L.Z., Luo Y., Yan W.N., Han H.X., Zhang P.F. Fluorescent lateral flow immunoassay based on quantum dots nanobeads. J. Vis. Exp. 2024;11:e67000. doi: 10.3791/67000. PubMed DOI
Tang X.Y., Xia W.W., Han H.X., Wang Y.C., Wang B.L., Gao S.H., Zhang P.F. Dual-fluorescent quantum dot nanobead-based lateral flow immunoassay for simultaneous detection of C-reactive protein and procalcitonin. ACS Appl. Bio Mater. 2024;7:7659–7665. doi: 10.1021/acsabm.4c01230. PubMed DOI
Jing Y.Z., Chang S.J., Chen C.J., Liu J.T. Review-glucose monitoring sensors: History, principle, and challenges. J. Electrochem. Soc. 2022;169:057514. doi: 10.1149/1945-7111/ac6980. DOI
Clark L.C., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962;102:29–45. doi: 10.1111/j.1749-6632.1962.tb13623.x. PubMed DOI
Wang J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis. 2001;13:983–988. doi: 10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-#. DOI
Nemati S.S., Dehghan G., Rashtbari S., Tan T.N., Khataee A. Enzyme-based and enzyme-free metal-based glucose biosensors: Classification and recent advances. Microchem. J. 2023;193:109038. doi: 10.1016/j.microc.2023.109038. DOI
Dua A., Debnath A., Kumar K., Mazumder R., Mazumder A., Singh R.K., Mangal S., Sanchitra J., Khan F., Tripathi S., et al. Advancements of glucose monitoring biosensor: Current state, generations of technological progress, and innovation dynamics. Curr. Pharm. Biotechnol. 2024:18. doi: 10.2174/0113892010305386240625072535. PubMed DOI
Vesali-Naseh M., Rastian Z., Moshakker H. Review-carbon nanotube-based electrochemical glucose biosensors. J. Electrochem. Soc. 2024;171:077508. doi: 10.1149/1945-7111/ad5d9c. DOI
Suriyanarayanan S., Mandal S., Ramanujam K., Nicholls I.A. Electrochemically synthesized molecularly imprinted polythiophene nanostructures as recognition elements for an aspirin-chemosensor. Sens. Actuator B-Chem. 2017;253:428–436. doi: 10.1016/j.snb.2017.05.076. DOI
Saadatidizaji Z., Sohrabi N., Mohammadi R. Development of a simple polymer-based sensor for detection of the Pirimicarb pesticide. Sci. Rep. 2024;14:10293. doi: 10.1038/s41598-024-60748-6. PubMed DOI PMC
Ali G.K., Omer K.M. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta. 2022;236:122878. doi: 10.1016/j.talanta.2021.122878. PubMed DOI
Akhtar N., Muzaffar N., Imran M., Afzal A.M., Iqbal M.W., Safdar S., Bahajjaj A.A.A., Mumtaz S., Iqbal M.Z., Azeem M. Design and optimization of WSe2@NiCo-MOF for dual-mode applications: Energy storage and chemosensing. Phys. Scr. 2024;99:125992. doi: 10.1088/1402-4896/ad92c1. DOI
Asha J.B., Suresh P. Covalently modified graphene oxide as highly fluorescent and sustainable carbonaceous chemosensor for selective detection of zirconium ion in complete aqueous medium. ACS Sustain. Chem. Eng. 2020;8:14301–14311. doi: 10.1021/acssuschemeng.0c03282. DOI
Yao J., He Y., Li L., Li P.F., Yang M. Magnified fluorescent aptasensors based on a gold nanoparticle-DNA hybrid and DNase I for the cycling detection of mercury(II) ions in aqueous solution. Ind. Eng. Chem. Res. 2019;58:21201–21207. doi: 10.1021/acs.iecr.9b03622. DOI
Xie Q., Tan Y.Y., Guo Q.P., Wang K.M., Yuan B.Y., Wan J., Zhao X.Y. A fluorescent aptasensor for sensitive detection of human hepatocellular carcinoma SMMC-7721 cells based on graphene oxide. Anal. Methods. 2014;6:6809–6814. doi: 10.1039/C4AY01213E. DOI
Chang K.L., Sun P., Dong X., Zhu C.N., Liu X.J., Zheng D.Y., Liu C. Aptamers as recognition elements for electrochemical detection of exosomes. Chem. Res. Chin. Univ. 2022;38:879–885. doi: 10.1007/s40242-022-2088-8. PubMed DOI PMC
Guillois-Bécel Y., Tron I., Le Strat Y., Gagnière B., Verrier A., Gourier-Fréry C., Briand A. Assessment of the reliability of a carbon monoxide detector for preventing poisoning. Environ. Risque Sante. 2011;10:477–484. doi: 10.1684/ers.2011.0494. DOI
Christensen G.M., Creswell P.D., Theobald J., Meiman J.G. Carbon monoxide detector effectiveness in reducing poisoning, Wisconsin 2014–2016. Clin. Toxicol. 2020;58:1335–1341. doi: 10.1080/15563650.2020.1733592. PubMed DOI
Wu D., Sedgwick A.C., Gunnlaugsson T., Akkaya E.U., Yoon J., James T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017;46:7105–7123. doi: 10.1039/C7CS00240H. PubMed DOI
Neri G. First fifty years of chemoresistive gas sensors. Chemosensors. 2015;3:1–20. doi: 10.3390/chemosensors3010001. DOI
Zhao M.Q., Wang M., Zhang X.G., Zhu Y.G., Cao J., She Y.X., Cao Z., Li G.Y., Wang J., Abd El-Aty A.M. Recognition elements based on the molecular biological techniques for detecting pesticides in food: A review. Crit. Rev. Food Sci. Nutr. 2023;63:4942–4965. doi: 10.1080/10408398.2021.2009762. PubMed DOI
Yang F., Zuo X.L., Fan C.H., Zhang X.E. Biomacromolecular nanostructures-based interfacial engineering: From precise assembly to precision biosensing. Natl. Sci. Rev. 2018;5:740–755. doi: 10.1093/nsr/nwx134. DOI
Morales M.A., Halpern J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem. 2018;29:3231–3239. doi: 10.1021/acs.bioconjchem.8b00592. PubMed DOI PMC
Luong J.H.T., Male K.B., Glennon J.D. Biosensor technology: Technology push versus market pull. Biotechnol. Adv. 2008;26:492–500. doi: 10.1016/j.biotechadv.2008.05.007. PubMed DOI
Sun K., Zhou H., Yang Y.K., Wu C.F. Research advances in blood glucose monitoring system. Chin. J. Lasers. 2018;45:17. doi: 10.3788/cjl201845.0207003. DOI
Peterson K.L., Shukla R.P., Daniele M.A. Percutaneous wearable biosensors: A brief history and systems perspective. Adv. Sens. Res. 2024;16:2400068. doi: 10.1002/adsr.202400068. DOI
Bhuiyan M.S.A., Das Gupta S., Silip J.J., Talukder S., Haque M.H., Forwood J.K., Sarker S. Current trends and future potential in the detection of avian coronaviruses: An emphasis on sensors-based technologies. Virology. 2025;604:110399. doi: 10.1016/j.virol.2025.110399. PubMed DOI
Agar M., Laabei M., Leese H.S., Estrela P. Multi-template molecularly imprinted polymeric electrochemical biosensors. Chemosensors. 2025;13:11. doi: 10.3390/chemosensors13010011. DOI
Dabrowski M., Reculusa S., Thuau D., Ayela C., Kuhn A. Macroporous polymer cantilever resonators for chemical sensing applications. Adv. Mater. Technol. 2023;11:2300771. doi: 10.1002/admt.202300771. DOI
Cave J.W., Wickiser J.K., Mitropoulos A.N. Progress in the development of olfactory-based bioelectronic chemosensors. Biosens. Bioelectron. 2019;123:211–222. doi: 10.1016/j.bios.2018.08.063. PubMed DOI
He J.H., He C.H., Qian M.Y., Alsolami A.A. Piezoelectric biosensor based on ultrasensitive MEMS system. Sens. Actuator A-Phys. 2024;376:115664. doi: 10.1016/j.sna.2024.115664. DOI
Juste-Dolz A., Teixeira W., Pallás-Tamarit Y., Carballido-Fernández M., Carrascosa J., Morán-Porcar A., Redón-Badenas M.A., Pla-Roses M.G., Tirado-Balaguer M.D., Remolar-Quintana M.J., et al. Real-world evaluation of a QCM-based biosensor for exhaled air. Anal. Bioanal. Chem. 2024;416:7369–7383. doi: 10.1007/s00216-024-05407-5. PubMed DOI PMC
Chen Y., Shi H.S. Rapid and label-free analysis of antigen-antibody dynamic binding of tumor markers using piezoelectric quartz crystal biosensor. Biosensors. 2023;13:917. doi: 10.3390/bios13100917. PubMed DOI PMC
Leng J.L., Zhang Y.W., Zhang Y.F., Tan Z.B., Zhao Y.C., Yao H., Chong H., Wang C.Y. Construction of AuNPs/UiO-66-NH2 decorated microcantilever immunosensor for efficient detection of procalcitonin. ChemistrySelect. 2023;8:e202304023. doi: 10.1002/slct.202304023. DOI
Bizina E.V., Polosina A.A., Farafonova O.V., Eremin S.A., Ermolaeva T.N. Detection of aristolochic acid using a piezoelectric immunosensor based on magnetic carbon nanocomposites. Inorg. Mater. 2024;8:63–70. doi: 10.1134/S0020168524700092. DOI
Yen V.H., Zyablov A.N. Application of MIP sensors to the determination of preservatives in nonalcoholic drinks. Inorg. Mater. 2023;59:1437–1442. doi: 10.1134/S0020168523140078. DOI
Zyablov A.N., Yen V.H. Determination of sodium benzoate in liquids using a piezoelectric sensor modified by a molecularly imprinted polymer. J. Anal. Chem. 2022;77:1607–1611. doi: 10.1134/S1061934822120176. DOI
Akgonullu S., Ozgur E., Denizli A. Quartz crystal microbalance-based aptasensors for medical diagnosis. Micromachines. 2022;13:1441. doi: 10.3390/mi13091441. PubMed DOI PMC
Tian Y.L., Zhu P., Chen Y.T., Bai X.Y., Du L.P., Chen W., Wu C.S., Wang P. Piezoelectric aptasensor with gold nanoparticle amplification for the label-free detection of okadaic acid. Sens. Actuator B-Chem. 2021;346:7. doi: 10.1016/j.snb.2021.130446. DOI
Zhang X.Q., Feng Y., Duan S.Y., Su L.L., Zhang J.L., He F.J. Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs-DNA. ACS Sens. 2019;4:849–855. doi: 10.1021/acssensors.8b01230. PubMed DOI
Duah J.A., Lee K.S., Kim B.G. A self-powered wireless temperature sensor platform for foot ulceration monitoring. Sensors. 2024;24:6567. doi: 10.3390/s24206567. PubMed DOI PMC
Elorika P., Anwar S., Roy A., Anwar S. Flexible PVDF-Ba0.97Ca0.03TiO3 polymer-ceramic composite films for energy storage, biosensor, mechanosensor, and UV-visible light protection. Mater. Res. Bull. 2025;181:113116. doi: 10.1016/j.materresbull.2024.113116. DOI
Guliy O.I., Zaitsev B.D., Borodina I.A., Staroverov S.A., Vyrshchikov R.D., Fursova K.K., Brovko F.A., Dykman L.A. Phage display-based acoustic biosensor for early cancer diagnosis. Microchem. J. 2024;207:111661. doi: 10.1016/j.microc.2024.111661. DOI
Han S.B., Lee S.S. Isolation and characterization of cxosomes from cancer cells using antibody-functionalized paddle screw-type devices and detection of exosomal miRNA using piezoelectric biosensor. Sensors. 2024;24:5399. doi: 10.3390/s24165399. PubMed DOI PMC
Forinová M., Seidlová A., Pilipenco A., Lynn N.S., Jr., Oborilová R., Farka Z., Skládal P., Saláková A., Spasovová M., Houska M., et al. A comparative assessment of a piezoelectric biosensor based on a new antifouling nanolayer and cultivation methods: Enhancing S. aureus detection in fresh dairy products. Curr. Res. Biotechnol. 2023;6:100166. doi: 10.1016/j.crbiot.2023.100166. DOI
Mandal D., Indaleeb M.M., Younan A., Banerjee S. Piezoelectric point-of-care biosensor for the detection of SARS-CoV-2 (COVID-19) antibodies. Sens. Bio-Sens. Res. 2022;37:100510. doi: 10.1016/j.sbsr.2022.100510. PubMed DOI PMC
Liu Y., Liu S., Huang J., Zhou J., He F. Development of SPQC sensor based on the specific recognition of TAL-effectors for locus-specific detection of 6-methyladenine in DNA. Talanta. 2024;277:126279. doi: 10.1016/j.talanta.2024.126279. PubMed DOI
Kwak J., Lee S.S. Highly sensitive piezoelectric immunosensors employing signal amplification with gold nanoparticles. Nanotechnology. 2019;30:445502. doi: 10.1088/1361-6528/ab36c9. PubMed DOI
Armero L., Plou J., Valera P.S., Serna S., García I., Liz-Marzán L.M. Multiplex determination of glycan profiles on urinary prostate-specifics antigen by quartz-crystal microbalance combined with surface-enhanced Raman scattering. ACS Sens. 2024;9:4811–4821. doi: 10.1021/acssensors.4c01252. PubMed DOI PMC
Pohanka M. Quartz crystal microbalance biosensor for the detection of procalcitonin. Talanta. 2023;257:124325. doi: 10.1016/j.talanta.2023.124325. PubMed DOI
Lach P., Sharma P.S., Golebiewska K., Cieplak M., D’Souza F., Kutner W. Molecularly imprinted polymer chemosensor for selective determination of an N-nitroso-l-proline food toxin. Chemistry. 2017;23:1942–1949. doi: 10.1002/chem.201604799. PubMed DOI
Mandal S., Suriyanarayanan S., Nicholls I.A., Ramanujam K. Selective sensing of the biotinyl moiety using molecularly imprinted polyaniline nanowires. J. Electrochem. Soc. 2018;165:B669–B678. doi: 10.1149/2.0401814jes. DOI
Domsicova M., Kurekova S., Babelova A., Jakic K., Oravcova I., Nemethova V., Razga F., Breier A., Gal M., Poturnayova A. Advancements in chronic myeloid leukemia detection: Development and evaluation of a novel QCM aptasensor for use in clinical practice. Biochem. Biophys. Rep. 2024;39:101816. doi: 10.1016/j.bbrep.2024.101816. PubMed DOI PMC
Wu H.Z., Si S.H., Li Z., Su J.Y., Jia S.G., He H., Peng C.C., Cheng T.Q., Wu Q. Determination of lactoferrin using high-frequency piezoelectric quartz aptamer biosensor based on molecular bond rupture. Molecules. 2024;29:5699. doi: 10.3390/molecules29235699. PubMed DOI PMC
Takeda M., Yoshino H., Yamazaki H., Hirata T., Kuroiwa T., Nakajima C., Suzuki Y., Munakata F. Development of a piezo biosensor for pathogen-specific biopolymer detection using a self-assembly barium titanate/polyvinylidene fluoride composite material. Sens. Actuator A-Phys. 2023;360:114545. doi: 10.1016/j.sna.2023.114545. DOI