Transcriptomic Landscape of Cisplatin-Resistant Neuroblastoma Cells

. 2019 Mar 12 ; 8 (3) : . [epub] 20190312

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30871063

The efficiency of cisplatin (CDDP) is significantly hindered by the development of resistance during the treatment course. To gain a detailed understanding of the molecular mechanisms underlying the development of cisplatin resistance, we comparatively analyzed established a CDDP-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its susceptible parental cells (UKF-NB-4). We verified increased chemoresistance of UKF-NB-4CDDP cells by analyzing the viability, induction of apoptosis and clonal efficiency. To shed more light on this phenomenon, we employed custom cDNA microarray (containing 2234 probes) to perform parallel transcriptomic profiling of RNA and identified that 139 genes were significantly up-regulated due to CDDP chemoresistance. The analyses of molecular pathways indicated that the top up-regulation scoring functions were response to stress, abiotic stimulus, regulation of metabolic process, apoptotic processes, regulation of cell proliferation, DNA repair or regulation of catalytic activity, which was also evidenced by analysis of molecular functions revealing up-regulation of genes encoding several proteins with a wide-spectrum of enzymatic activities. Functional analysis using lysosomotropic agents chloroquine and bafilomycin A1 validated their potential to re-sensitize UKF-NB-4CDDP cells to CDDP. Taken together, the identification of alterations in specific genes and pathways that contribute to CDDP chemoresistance may potentially lead to a renewed interest in the development of novel rational therapeutics and prognostic biomarkers for the management of CDDP-resistant neuroblastoma.

Zobrazit více v PubMed

Li C.C., Yang C., Wei G.H. Vandetanib inhibits cisplatin-resistant neuroblastoma tumor growth and invasion. Oncol. Rep. 2018;39:1757–1764. doi: 10.3892/or.2018.6255. PubMed DOI

Yang C., Shan W. Yap promotes tumorigenesis and cisplatin resistance in neuroblastoma. Pediatr. Blood Cancer. 2017;64:S240–S241. doi: 10.18632/oncotarget.16209. PubMed DOI PMC

Swarbrick A., Woods S.L., Shaw A., Balakrishnan A., Phua Y., Nguyen A., Chanthery Y., Lim L., Ashton L.J., Judson R.L., et al. Mir-380-5p represses p53 to control cellular survival and is associated with poor outcome in mycn-amplified neuroblastoma. Nat. Med. 2010;16:1134–1140. doi: 10.1038/nm.2227. PubMed DOI PMC

Tavana O., Li D.W., Dai C., Lopez G., Banerjee D., Kon N., Chen C., Califano A., Yamashiro D.J., Sun H.B., et al. Hausp deubiquitinates and stabilizes n-myc in neuroblastoma. Nat. Med. 2016;22:1180–1186. doi: 10.1038/nm.4180. PubMed DOI PMC

Annovazzi L., Mellai M., Schiffer D. Chemotherapeutic drugs: DNA damage and repair in glioblastoma. Cancers. 2017;9:57. doi: 10.3390/cancers9060057. PubMed DOI PMC

Dilruba S., Kalayda G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol. 2016;77:1103–1124. doi: 10.1007/s00280-016-2976-z. PubMed DOI

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI

Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

De Sousa G.F., Wlodarczyk S.R., Monteiro G. Carboplatin: Molecular mechanisms of action associated with chemoresistance. Braz. J. Pharm. Sci. 2014;50:693–701. doi: 10.1590/S1984-82502014000400004. DOI

Galluzzi L., Vitale I., Michels J., Brenner C., Szabadkai G., Harel-Bellan A., Castedo M., Kroemer G. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis. 2014;5:e1257. doi: 10.1038/cddis.2013.428. PubMed DOI PMC

Stewart D.J. Mechanisms of resistance to cisplatin and carboplatin. Crit. Rev. Oncol. Hematol. 2007;63:12–31. doi: 10.1016/j.critrevonc.2007.02.001. PubMed DOI

D’Aguanno S., D’Alessandro A., Pleroni L., Roveri A., Zaccarin M., Marzano V., De Canio M., Bernardini S., Federici G., Urbani A. New insights into neuroblastoma cisplatin resistance: A comparative proteomic and meta-mining investigation. J. Prot. Res. 2011;10:416–428. doi: 10.1021/pr100457n. PubMed DOI

Iwasaki I., Sugiyama H., Kanazawa S., Hemmi H. Establishment of cisplatin-resistant variants of human neuroblastoma cell lines, tgw and goto, and their drug cross-resistance profiles (vol 49, pg 438, 2002) Cancer Chemother. Pharmacol. 2002;50:341. doi: 10.1007/s00280-002-0513-8. PubMed DOI

Polacchini A., Albani C., Baj G., Colliva A., Carpinelli P., Tongiorgi E. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce bdnf. Biol. Open. 2016;5:899–907. doi: 10.1242/bio.016725. PubMed DOI PMC

Shen D.W., Pouliot L.M., Hall M.D., Gottesman M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev. 2012;64:706–721. doi: 10.1124/pr.111.005637. PubMed DOI PMC

Wright P.K. Targeting vesicle trafficking: An important approach to cancer chemotherapy. Recent Pat. Anticancer Drug Discov. 2008;3:137–147. doi: 10.2174/157489208784638730. PubMed DOI

Wright P.K. Targeting vesicle trafficking in cancer therapeutics. In: Atta-Ur-Rahman, Choudhary M.I., editors. Frontiers in Anti-Cancer Drug Discovery. Volume 1. Bentham Science Publisher; Sharjah, United Arab Emirates: 2010. pp. 758–776.

Krizkova S., Kepinska M., Emri G., Eckschlager T., Stiborova M., Pokorna P., Heger Z., Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol. Ther. 2018;183:90–117. doi: 10.1016/j.pharmthera.2017.10.004. PubMed DOI

Hrabeta J., Adam V., Eckschlager T., Frei E., Stiborova M., Kizek R. Metal containing cytostatics and their interaction with cellular thiol compounds causing chemoresistance. Anti-Cancer Agents Med. Chem. 2016;16:686–698. doi: 10.2174/1871520616666151120122611. PubMed DOI

Krizkova S., Ryvolova M., Hrabeta J., Adam V., Stiborova M., Eckschlager T., Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab. Rev. 2012;44:287–301. doi: 10.3109/03602532.2012.725414. PubMed DOI

Piskareva O., Harvey H., Nolan J., Conlon R., Alcock L., Buckley P., Dowling P., Henry M., O’Sullivan F., Bray I., et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;369:428. doi: 10.1016/j.canlet.2015.09.010. PubMed DOI

Rodrigo M.A.M., Dostalova S., Buchtelova H., Strmiska V., Michalek P., Krizkova S., Vicha A., Jencova P., Eckschlager T., Stiborova M., et al. Comparative gene expression profiling of human metallothionein-3 up-regulation in neuroblastoma cells and its impact on susceptibility to cisplatin. Oncotarget. 2018;9:4427–4439. doi: 10.18632/oncotarget.23333. PubMed DOI PMC

Giraldo A.M.V., Appelqvist H., Ederth T., Ollinger K. Lysosomotropic agents: Impact on lysosomal membrane permeabilization and cell death. Biochem. Soc. Trans. 2014;42:1460–1464. doi: 10.1042/BST20140145. PubMed DOI

Solitro A.R., MacKeigan J.P. Leaving the lysosome behind: Novel developments in autophagy inhibition. Future Med. Chem. 2016;8:73–86. doi: 10.4155/fmc.15.166. PubMed DOI PMC

Yan Y.W., Zou Z., Sun Y., Li X., Xu K.F., Wei Y.Q., Jin N.Y., Jiang C.Y. Anti-malaria drug chloroquine is highly effective in treating avian influenza a h5n1 virus infection in an animal model. Cell Res. 2013;23:300–302. doi: 10.1038/cr.2012.165. PubMed DOI PMC

Ashfaq U.A., Javed T., Rehman S., Nawaz Z., Riazuddin S. Lysosomotropic agents as HCV entry inhibitors. Virol. J. 2011;8:163. doi: 10.1186/1743-422X-8-163. PubMed DOI PMC

Boya P., Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27:6434–6451. doi: 10.1038/onc.2008.310. PubMed DOI

Drbohlavova J., Chomoucka J., Adam V., Ryvolova M., Eckschlager T., Hubalek J., Kizek R. Nanocarriers for anticancer drugs—New trends in nanomedicine. Curr. Drug Metab. 2013;14:547–564. doi: 10.2174/1389200211314050005. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(t)(-delta delta c) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Valentijn L.J., Koster J., Haneveld F., Aissa R.A., van Sluis P., Broekmans M.E.C., Molenaar J.J., van Nes J., Versteeg R. Functional mycn signature predicts outcome of neuroblastoma irrespective of mycn amplification. Proc. Natl. Acad. Sci. USA. 2012;109:19190–19195. doi: 10.1073/pnas.1208215109. PubMed DOI PMC

Prochazka P., Hrabeta J., Vicha A., Cipro S., Stejskalova E., Musil Z., Vodicka P., Eckschlager T. Changes in mycn expression in human neuroblastoma cell lines following cisplatin treatment may not be related to mycn copy numbers. Oncol. Rep. 2013;29:2415–2421. doi: 10.3892/or.2013.2383. PubMed DOI

Curtin C., Nolan J.C., Conlon R., Deneweth L., Gallagher C., Tan Y.J., Cavanagh B.L., Asraf A.Z., Harvey H., Miller-Delaney S., et al. A physiologically relevant 3d collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater. 2018;70:84–97. doi: 10.1016/j.actbio.2018.02.004. PubMed DOI

Roth S.A., Knutsen E., Fiskaa T., Utnes P., Bhavsar S., Hald O.H., Lokke C., Mestdagh P., Johansen S.D., Flaegstad T., et al. Next generation sequencing of micrornas from isogenic neuroblastoma cell lines isolated before and after treatment. Cancer Lett. 2016;372:128–136. doi: 10.1016/j.canlet.2015.11.026. PubMed DOI

Castel V., Berlanga P. Ototoxicity: A worrying problem for survivors of high-risk neuroblastoma. Transl. Cancer Res. 2014;3:521–524.

Landier W., Knight K.R., Wong F.L., Lee J.K., Thomas O., Kim H., Kreissman S.G., Schmidt M.L., Chen L., London W.B., et al. Ototoxicity in children with high-risk neuroblastoma: Prevalence, risk factors, and concordance of grading scales-a report from the children’s oncology group (cog) J. Clin. Oncol. 2011;32:527–534. doi: 10.1200/JCO.2013.51.2038. PubMed DOI PMC

Tran H.C., Marachelian A., Venkatramani R., Jubran R.F., Mascarenhas L. Oxaliplatin and doxorubicin for relapsed or refractory high-risk neuroblastoma. Pediatr. Hematol. Oncol. 2015;32:26–31. doi: 10.3109/08880018.2014.983624. PubMed DOI

Kushner B.H., Budnick A., Kramer K., Modak S., Cheung N.K.V. Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer. 2006;107:417–422. doi: 10.1002/cncr.22004. PubMed DOI

Shimoji M., Hara H., Kamiya T., Okuda K., Adachi T. Hydrogen sulfide ameliorates zinc-induced cell death in neuroblastoma sh-sy5y cells. Free Radic. Res. 2017;51:978–985. doi: 10.1080/10715762.2017.1400666. PubMed DOI

Desoize B., Madoulet C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol. Hematol. 2002;42:317–325. doi: 10.1016/S1040-8428(01)00219-0. PubMed DOI

Deconti R.C., Toftness B.R., Lange R.C., Creasey W.A. Clinical and pharmacological studies with cis-diamminedichloroplatinum(ii) Cancer Res. 1973;33:1310–1315. PubMed

Tariba B., Zivkovic T., Krasnici N., Marijic V.F., Erk M., Gamulin M., Grgic M., Pizent A. Serum metallothionein in patients with testicular cancer. Cancer Chemother. Pharmacol. 2015;75:813–820. doi: 10.1007/s00280-015-2702-2. PubMed DOI

Gumulec J., Masarik M., Krizkova S., Adam V., Hubalek J., Hrabeta J., Eckschlager T., Stiborova M., Kizek R. Insight to physiology and pathology of zinc(ii) ions and their actions in breast and prostate carcinoma. Curr. Med. Chem. 2011;18:5041–5051. doi: 10.2174/092986711797636126. PubMed DOI

Smith D.J., Jaggi M., Zhang W., Galich A., Du C., Sterrett S.P., Smith L.M., Balaji K.C. Metallothioneins and resistance to cisplatin and radiation in prostate cancer. Urology. 2006;67:1341–1347. doi: 10.1016/j.urology.2005.12.032. PubMed DOI

Lee S.J., Park M.H., Kim H.J., Koh J.Y. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia. 2010;58:1186–1196. doi: 10.1002/glia.20998. PubMed DOI

Pula B., Tazbierski T., Zamirska A., Werynska B., Bieniek A., Szepietowski J., Rys J., Dziegiel P., Podhorska-Okolow M. Metallothionein 3 expression in normal skin and malignant skin lesions. Pathol. Oncol. Res. 2015;21:187–193. doi: 10.1007/s12253-014-9805-7. PubMed DOI PMC

Ma L.W., Xu Y., Su J., Yu H.M., Kang J.S., Li H.Y., Li X.N., Xie Q., Yu C.Y., Sun L.K., et al. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through atp-mediated lysosomal function. Int. J. Oncol. 2015;47:1890–1900. doi: 10.3892/ijo.2015.3176. PubMed DOI

Mauthe M., Orhon I., Rocchi C., Zhou X.D., Luhr M., Hijlkema K.J., Coppes R.P., Engedal N., Mari M., Reggiori F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14:1435–1455. doi: 10.1080/15548627.2018.1474314. PubMed DOI PMC

Circu M., Cardelli J., Barr M., O’Byrne K., Mills G., El-Osta H. Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells. PLoS ONE. 2017;12:e0184922. doi: 10.1371/journal.pone.0184922. PubMed DOI PMC

Travelli C., Drago V., Maldi E., Kaludercic N., Galli U., Boldorini R., Di Lisa F., Tron G.C., Canonico P.L., Genazzani A.A. Reciprocal potentiation of the antitumoral activities of fk866, an inhibitor of nicotinamide phosphoribosyltransferase, and etoposide or cisplatin in neuroblastoma cells. J. Pharmacol. Exp. Ther. 2011;338:829–840. doi: 10.1124/jpet.111.184630. PubMed DOI

Qin L., Xu T.Y., Xia L.L., Wang X.J., Zhang X., Zhang X.H., Zhu Z.W., Zhong S., Wang C.D., Shen Z.J. Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment. Drug Des. Dev. Ther. 2016;10:1035–1045. PubMed PMC

Richardson A., Kaye S.B. Drug resistance in ovarian cancer: The emerging importance of gene transcription and spatio-temporal regulation of resistance. Drug Resist. Updat. 2005;8:311–321. doi: 10.1016/j.drup.2005.09.001. PubMed DOI

Mouw K.W. DNA repair pathway alterations in bladder cancer. Cancers. 2017;9:28. doi: 10.3390/cancers9040028. PubMed DOI PMC

Van Zyl B., Tang D., Bowden N.A. Biomarkers of platinum resistance in ovarian cancer: What can we use to improve treatment. Endocr. Relat. Cancer. 2018;25:303–318. doi: 10.1530/ERC-17-0336. PubMed DOI

Wieringa H.W., van der Zee A.G.J., de Vries E.G.E., van Vugt M. Breaking the DNA damage response to improve cervical cancer treatment. Cancer Treat. Rev. 2016;42:30–40. doi: 10.1016/j.ctrv.2015.11.008. PubMed DOI

Venkitaraman A.R. Functions of brca1 and brca2 in the biological response to DNA damage. J. Cell Sci. 2001;114:3591–3598. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...