Metallothionein-3 is a multifunctional driver that modulates the development of sorafenib-resistant phenotype in hepatocellular carcinoma cells

. 2024 Apr 09 ; 12 (1) : 38. [epub] 20240409

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38594765

Grantová podpora
759585 European Research Council - International
759585 European Research Council - International
759585 European Research Council - International
759585 European Research Council - International
759585 European Research Council - International
759585 European Research Council - International

Odkazy

PubMed 38594765
PubMed Central PMC11003176
DOI 10.1186/s40364-024-00584-y
PII: 10.1186/s40364-024-00584-y
Knihovny.cz E-zdroje

BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.

Zobrazit více v PubMed

Llovet JM, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):1–6. doi: 10.1038/s41572-020-00240-3. PubMed DOI

Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma. Hepatology. 2023;77(5):1773–1796. doi: 10.1002/hep.32740. PubMed DOI PMC

Rich NE, Singal AG. Overdiagnosis of hepatocellular carcinoma: prevented by guidelines? Hepatol. 2022;75(3):740–753. doi: 10.1002/hep.32284. PubMed DOI PMC

Kim HN, et al. Risk of HCC with Hepatitis B Viremia among HIV/HBV-Coinfected persons in North America. Hepatol. 2021;74(3):1190–1202. doi: 10.1002/hep.31839. PubMed DOI PMC

Leggio L, Mellinger JL. Alcohol use disorder in community management of chronic liver diseases. Hepatol. 2022;77(3):1–15. PubMed PMC

Guo J, et al. Mechanisms of resistance to chemotherapy and radiotherapy in hepatocellular carcinoma. Transl Cancer Res. 2018;7(3):765–781. doi: 10.21037/tcr.2018.05.20. DOI

Kudo M, et al. Lenvatinib versus Sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–1173. doi: 10.1016/S0140-6736(18)30207-1. PubMed DOI

Tang W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5(1):1–15. PubMed PMC

Chiou JF, et al. Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther. 2009;8(20):1904–1913. doi: 10.4161/cbt.8.20.9436. PubMed DOI

Krizkova S, et al. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharm Ther. 2018;183:90–117. doi: 10.1016/j.pharmthera.2017.10.004. PubMed DOI

Rodrigo MAM, et al. Metallothionein isoforms as double agents - their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat. 2020;52:1–13. PubMed

Sun X, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatol. 2016;64(2):488–500. doi: 10.1002/hep.28574. PubMed DOI PMC

Cherian MG, Jayasurya A, Bay B-H. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res. 2003;533(1):201–209. doi: 10.1016/j.mrfmmm.2003.07.013. PubMed DOI

Waalkes MP, et al. Metallothionein-I/II double knockout mice are hypersensitive to lead-induced kidney carcinogenesis: role of inclusion body formation. Cancer Res. 2004;64(21):7766–7772. doi: 10.1158/0008-5472.CAN-04-2220. PubMed DOI

Majumder S, et al. Loss of metallothionein predisposes mice to diethylnitrosamine-induced hepatocarcinogenesis by activating NF-kappa B target genes. Cancer Res. 2010;70(24):10265–10276. doi: 10.1158/0008-5472.CAN-10-2839. PubMed DOI PMC

Shimoda R, et al. Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci. 2003;73(2):294–300. doi: 10.1093/toxsci/kfg095. PubMed DOI

Kamal HM, et al. Study of metallothionein-2A mRNA relative expression and oxidant status in females with breast cancer. Meta Gene. 2020;24:1–6. doi: 10.1016/j.mgene.2020.100678. DOI

Zheng Y, et al. Metallothionein 1H (MT1H) functions as a tumor suppressor in hepatocellular carcinoma through regulating Wnt/β-catenin signaling pathway. BMC Cancer. 2017;17(1):1–11. doi: 10.1186/s12885-017-3139-2. PubMed DOI PMC

Mao J, et al. Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis. 2012;33(12):2568–2577. doi: 10.1093/carcin/bgs287. PubMed DOI

Kanda M, et al. Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellular carcinoma using a novel method of double combination array analysis. Int J Oncol. 2009;35(3):477–483. PubMed

Ji XF, et al. MT1M and MT1G promoter methylation as biomarkers for hepatocellular carcinoma. World J Gastroenterol. 2014;20(16):4723–4729. doi: 10.3748/wjg.v20.i16.4723. PubMed DOI PMC

Houessinon A, et al. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer. 2016;15:1–10. doi: 10.1186/s12943-016-0526-2. PubMed DOI PMC

Datta J, et al. Metallothionein expression is suppressed in primary human hepatocellular carcinomas and is mediated through inactivation of CCAAT/enhancer binding protein alpha by phosphatidylinositol 3-kinase signaling cascade. Cancer Res. 2007;67(6):2736–2746. doi: 10.1158/0008-5472.CAN-06-4433. PubMed DOI PMC

Koh JY, Lee SJ. Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Mol Brain. 2020;13(1):1–12. doi: 10.1186/s13041-020-00654-w. PubMed DOI PMC

Rodrigo MAM, et al. Transcriptomic landscape of cisplatin-resistant neuroblastoma cells. Cells. 2019;8(3):1–19. doi: 10.3390/cells8030235. PubMed DOI PMC

Gomulkiewicz A, et al. Expression of metallothionein 3 in ductal breast cancer. Int J Oncol. 2016;49(6):2487–2497. doi: 10.3892/ijo.2016.3759. PubMed DOI

Voels B, et al. The unique C- and N-terminal sequences of metallothionein isoform 3 mediate growth inhibition and vectorial active transport in MCF-7 cells. BMC Cancer. 2017;17:1–13. doi: 10.1186/s12885-017-3355-9. PubMed DOI PMC

Coto-Llerena M, et al. Permissiveness of human hepatocellular carcinoma cell lines for hepatitis C virus entry and replication. Virus Res. 2017;240:35–46. doi: 10.1016/j.virusres.2017.07.018. PubMed DOI

Barbier-Torres L, et al. The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. Nat Commun. 2017;8:1–11. doi: 10.1038/s41467-017-01970-x. PubMed DOI PMC

Biju TS, Priya VV, Francis AP. Role of three-dimensional cell culture in therapeutics and diagnostics: an updated review. Drug Deliv Transl Res. 2023;13(9):2239–2253. doi: 10.1007/s13346-023-01327-6. PubMed DOI PMC

Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp. 2011;51:1–4. PubMed PMC

Rodrigo MAM, et al. Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep. 2021;11(1):1–14. doi: 10.1038/s41598-021-84185-x. PubMed DOI PMC

Haddad Y, et al. Norepinephrine transporter-derived homing peptides enable rapid endocytosis of drug delivery nanovehicles into neuroblastoma cells. J Nanobiotechnol. 2020;18(1):1–20. doi: 10.1186/s12951-020-00654-x. PubMed DOI PMC

Bartha A, Gyorffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021;22(5):1–12. doi: 10.3390/ijms22052622. PubMed DOI PMC

Chandrashekar DS, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. doi: 10.1016/j.neo.2022.01.001. PubMed DOI PMC

Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–404. doi: 10.1158/2159-8290.CD-12-0095. PubMed DOI PMC

Gyorffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–4109. doi: 10.1016/j.csbj.2021.07.014. PubMed DOI PMC

Merlos Rodrigo MA, et al. Extending the applicability of in Ovo and Ex Ovo Chicken Chorioallantoic membrane assays to study cytostatic activity in Neuroblastoma cells. Front Oncol. 2021;11:1–10. doi: 10.3389/fonc.2021.707366. PubMed DOI PMC

Crespo P, Casar B. The chick embryo chorioallantoic membrane as an in vivo model to study metastasis. Bio-protoc. 2016;6(20):1–10. doi: 10.21769/BioProtoc.1962. PubMed DOI

Vanickova L, et al. Mass spectrometric imaging of cysteine rich proteins in human skin. Int J Biol Macromol. 2019;125:270–277. doi: 10.1016/j.ijbiomac.2018.11.272. PubMed DOI

Käll L, et al. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007;4(11):923–925. doi: 10.1038/nmeth1113. PubMed DOI

Serrano-Maciá M, et al. Neddylation inhibition ameliorates steatosis in NAFLD by boosting hepatic fatty acid oxidation via the DEPTOR-mTOR axis. Mol Metab. 2021;53:101275. doi: 10.1016/j.molmet.2021.101275. PubMed DOI PMC

Ramos DF, et al. Targeting of MiR-518D reduces chemoresistance in hepatocellular carcinoma cell lines. J Hepatol. 2016;64:S561–561. doi: 10.1016/S0168-8278(16)01014-X. DOI

Fernández-Tussy P, et al. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis. 2021;12(6):1–16. doi: 10.1038/s41419-021-03827-0. PubMed DOI PMC

Cassim S, et al. Metabolite profiling identifies a signature of tumorigenicity in hepatocellular carcinoma. Oncotarget. 2018;9(42):26868–26883. doi: 10.18632/oncotarget.25525. PubMed DOI PMC

Marreiro DD, et al. Zinc and oxidative stress: current mechanisms. Antioxidants. 2017;6(2):1–9. doi: 10.3390/antiox6020024. PubMed DOI PMC

Ullio C, et al. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells. Autophagy. 2015;11(12):2184–2198. doi: 10.1080/15548627.2015.1106662. PubMed DOI PMC

Wei L, et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun. 2019;10:1–13. doi: 10.1038/s41467-019-12606-7. PubMed DOI PMC

Feng Y, et al. miR-124 regulates liver cancer stem cells expansion and sorafenib resistance. Exp Cell Res. 2020;394(2):1–10. doi: 10.1016/j.yexcr.2020.112162. PubMed DOI

Gramantieri L, et al. MiR-30e-3p influences tumor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in hepatocellular carcinoma. Cancer Res. 2020;80(8):1720–1734. doi: 10.1158/0008-5472.CAN-19-0472. PubMed DOI

Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309. doi: 10.1038/s41586-019-1730-1. PubMed DOI PMC

Di Giacomo S, et al. Chemosensitization of hepatocellular carcinoma cells to sorafenib by beta-caryophyllene oxide-induced inhibition of ABC export pumps. Arch Toxicol. 2019;93(3):623–634. doi: 10.1007/s00204-019-02395-9. PubMed DOI

Park JE, Ryoo G, Lee W. Alternative splicing: expanding diversity in major ABC and SLC drug transporters. AAPS J. 2017;19(6):1643–1655. doi: 10.1208/s12248-017-0150-0. PubMed DOI

Gartmann L, et al. Expression of zinc transporters ZIP4, ZIP14 and ZnT9 in hepatic carcinogenesis—an immunohistochemical study. J Trace Elem Med Biol. 2018;49:35–42. doi: 10.1016/j.jtemb.2018.04.034. PubMed DOI

Uchino K, et al. Hepatocellular carcinoma with extrahepatic metastasis clinical features and prognostic factors. Cancer. 2011;117(19):4475–4483. doi: 10.1002/cncr.25960. PubMed DOI

Wang S, et al. Brain metastases from hepatocellular carcinoma: recent advances and future avenues. Oncotarget. 2017;8(15):25814–25829. doi: 10.18632/oncotarget.15730. PubMed DOI PMC

Hishikawa Y, et al. Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus. Br J Cancer. 1999;81(4):712–720. doi: 10.1038/sj.bjc.6690753. PubMed DOI PMC

Hishikawa Y, et al. Expression of metallothionein in colorectal cancers and synchronous liver metastases. Oncology. 2001;61(2):162–167. doi: 10.1159/000055368. PubMed DOI

Alves AP, et al. Glycolysis inhibition as a strategy for hepatocellular carcinoma treatment? Curr Cancer Drug Targets. 2019;19(1):26–40. doi: 10.2174/1568009618666180430144441. PubMed DOI

Feng J, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39(1):1–19. doi: 10.1186/s13046-020-01629-4. PubMed DOI PMC

Assaraf YG, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 2019;46:1–30. doi: 10.1016/j.drup.2019.100645. PubMed DOI

Hu B, et al. High CHMP4B expression is associated with accelerated cell proliferation and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol. 2015;36(4):2569–2581. doi: 10.1007/s13277-014-2873-1. PubMed DOI

Yu Y-S, et al. Inhibition of Csn3 expression induces growth arrest and apoptosis of hepatocellular carcinoma cells. Cancer Chemother Pharm. 2012;69(5):1173–1180. doi: 10.1007/s00280-011-1810-x. PubMed DOI

Wang H, et al. CSN5 silencing reverses sorafenib resistance of human hepatocellular carcinoma HepG2 cells. Mol Med Rep. 2015;12(3):3902–3908. doi: 10.3892/mmr.2015.3871. PubMed DOI

Chen L, et al. Prognostic roles of the transcriptional expression of exportins in hepatocellular carcinoma. Biosci Rep. 2019;39(8):1–14. doi: 10.1042/BSR20190827. PubMed DOI PMC

Machado E, et al. Regulated lysosomal exocytosis mediates cancer progression. Sci Adv. 2015;1(11):1–16. doi: 10.1126/sciadv.1500603. PubMed DOI PMC

Lin J, et al. Exportin-T promotes tumor proliferation and invasion in hepatocellular carcinoma. Mol Carcinog. 2019;58(2):293–304. doi: 10.1002/mc.22928. PubMed DOI PMC

Chen X, Chen S, Yu D. Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance. Metabolites. 2020;10(7):1–15. doi: 10.3390/metabo10070289. PubMed DOI PMC

Rofe AM, Philcox JC, Coyle P. Activation of glycolysis by zinc is diminished in hepatocytes from metallothionein-null mice. Biol Trace Elem Res. 2000;75(1):87–97. doi: 10.1385/BTER:75:1-3:87. PubMed DOI

Mayer D, et al. Hexokinase expression in liver preneoplasia and neoplasia. Biochem Soc Trans. 1997;25(1):122–127. doi: 10.1042/bst0250122. PubMed DOI

Dai W, et al. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 2015;6(15):13703–13717. doi: 10.18632/oncotarget.3800. PubMed DOI PMC

Qiao G, et al. Glycogen synthase kinase-3β is associated with the prognosis of hepatocellular carcinoma and may mediate the influence of type 2 diabetes mellitus on hepatocellular carcinoma. PLoS ONE. 2014;9(8):1–9. doi: 10.1371/journal.pone.0105624. PubMed DOI PMC

Costello LC, Franklin RB. The status of zinc in the development of hepatocellular cancer: an important, but neglected, clinically established relationship. Cancer Biol Ther. 2014;15(4):353–360. doi: 10.4161/cbt.27633. PubMed DOI PMC

Cassandri M, et al. Zinc-finger proteins in health and disease. Cell Death Discov. 2017;3:3. doi: 10.1038/cddiscovery.2017.71. PubMed DOI PMC

Meplan C, Richard MJ, Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000;19(46):5227–5236. doi: 10.1038/sj.onc.1203907. PubMed DOI

Nagamine T, Nakajima K. Significance of metallothionein expression in liver disease. Curr Pharm Biotechnol. 2013;14(4):420–426. doi: 10.2174/1389201011314040006. PubMed DOI

Wang M, et al. Dysregulated fatty acid metabolism in hepatocellular carcinoma. Hepat Oncol. 2016;3(4):241–251. doi: 10.2217/hep-2016-0012. PubMed DOI PMC

Sato M, et al. Development of high-fat-diet-induced obesity in female metallothionein-null mice. FASEB J. 2010;24(7):2375–2384. doi: 10.1096/fj.09-145466. PubMed DOI

Nie J, et al. Role of ferroptosis in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2018;144(12):2329–2337. doi: 10.1007/s00432-018-2740-3. PubMed DOI

Shimada K, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. doi: 10.1038/nchembio.2079. PubMed DOI PMC

Fan J, et al. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res. 2010;49(3):218–234. doi: 10.1016/j.plipres.2009.12.003. PubMed DOI PMC

Assinder SJ, Stanton JA, Prasad PD. Transgelin: an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol. 2009;41(3):482–486. doi: 10.1016/j.biocel.2008.02.011. PubMed DOI

Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteom. 2014;11(2):149–165. doi: 10.1586/14789450.2014.860358. PubMed DOI

Kim TR, et al. SM22α inhibits cell proliferation and protects against anticancer drugs and γ-radiation in HepG2 cells: involvement of metallothioneins. FEBS Lett. 2009;583(20):3356–3362. doi: 10.1016/j.febslet.2009.09.040. PubMed DOI

Lin X, et al. Low MYH9 expression predicts a good prognosis for hepatocellular carcinoma. Int J Clin Exp Pathol. 2018;11(5):2784–2791. PubMed PMC

Ma XM, et al. Knockdown of myosin VI inhibits proliferation of hepatocellular carcinoma cells in vitro. Chem Biol Drug Des. 2015;86(4):723–730. doi: 10.1111/cbdd.12544. PubMed DOI

Huang S, et al. Arp2/3 complex subunits as prognostic biomarkers and their correlations with immune infiltration in hepatocellular carcinoma. Front Mol Biosci. 2021;8:1–17. doi: 10.3389/fmolb.2021.690151. PubMed DOI PMC

Summermatter S, et al. Blockade of metallothioneins 1 and 2 increases skeletal muscle mass and strength. Mol Cel Biol. 2017;37(5):1–11. doi: 10.1128/MCB.00305-16. PubMed DOI PMC

Song W, et al. Silencing PSME3 induces colorectal cancer radiosensitivity by downregulating the expression of cyclin B1 and CKD1. Exp Biol Med. 2019;244(16):1409–1418. doi: 10.1177/1535370219883408. PubMed DOI PMC

Kurokawa K, et al. Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells. Oncogene. 2014;33(11):1407–1417. doi: 10.1038/onc.2013.86. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace