Norepinephrine transporter-derived homing peptides enable rapid endocytosis of drug delivery nanovehicles into neuroblastoma cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR-17-12816S
Grantová Agentura České Republiky
AF-IGA2019-IP031
Mendelova Univerzita v Brně
LQ1601
CEITEC
LO1415
MEYS
PubMed
32660596
PubMed Central
PMC7359476
DOI
10.1186/s12951-020-00654-x
PII: 10.1186/s12951-020-00654-x
Knihovny.cz E-zdroje
- Klíčová slova
- Ferritin, Homing peptide, Neuroblastoma, Norepinephrine transporter, Targeted therapy,
- MeSH
- antitumorózní látky chemie farmakokinetika farmakologie MeSH
- endocytóza genetika MeSH
- ferritin chemie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanomedicína MeSH
- nanostruktury chemie MeSH
- neuroblastom metabolismus MeSH
- peptidy chemie genetika metabolismus MeSH
- proteiny přenášející noradrenalin přes plazmatickou membránu * chemie genetika metabolismus MeSH
- systémy cílené aplikace léků metody MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky MeSH
- ferritin MeSH
- peptidy MeSH
- proteiny přenášející noradrenalin přes plazmatickou membránu * MeSH
BACKGROUND: Currently, the diagnosis and treatment of neuroblastomas-the most frequent solid tumors in children-exploit the norepinephrine transporter (hNET) via radiolabeled norepinephrine analogs. We aim to develop a nanomedicine-based strategy towards precision therapy by targeting hNET cell-surface protein with hNET-derived homing peptides. RESULTS: The peptides (seq. GASNGINAYL and SLWERLAYGI) were shown to bind high-resolution homology models of hNET in silico. In particular, one unique binding site has marked the sequence and structural similarities of both peptides, while most of the contribution to the interaction was attributed to the electrostatic energy of Asn and Arg (< - 228 kJ/mol). The peptides were comprehensively characterized by computational and spectroscopic methods showing ~ 21% β-sheets/aggregation for GASNGINAYL and ~ 27% α-helix for SLWERLAYGI. After decorating 12-nm ferritin-based nanovehicles with cysteinated peptides, both peptides exhibited high potential for use in actively targeted neuroblastoma nanotherapy with exceptional in vitro biocompatibility and stability, showing minor yet distinct influences of the peptides on the global expression profiles. Upon binding to hNET with fast binding kinetics, GASNGINAYLC peptides enabled rapid endocytosis of ferritins into neuroblastoma cells, leading to apoptosis due to increased selective cytotoxicity of transported payload ellipticine. Peptide-coated nanovehicles significantly showed higher levels of early apoptosis after 6 h than non-coated nanovehicles (11% and 7.3%, respectively). Furthermore, targeting with the GASNGINAYLC peptide led to significantly higher degree of late apoptosis compared to the SLWERLAYGIC peptide (9.3% and 4.4%, respectively). These findings were supported by increased formation of reactive oxygen species, down-regulation of survivin and Bcl-2 and up-regulated p53. CONCLUSION: This novel homing nanovehicle employing GASNGINAYLC peptide was shown to induce rapid endocytosis of ellipticine-loaded ferritins into neuroblastoma cells in selective fashion and with successful payload. Future homing peptide development via lead optimization and functional analysis can pave the way towards efficient peptide-based active delivery of nanomedicines to neuroblastoma cells.
Department of Chemistry and Biochemistry Mendel University in Brno Zemedelska 1 613 00 Brno Czechia
Faculty of Chemistry University of Wrocław F Joliot Curie 14 50 383 Wrocław Poland
Global Change Research Institute of the Czech Academy of Sciences Belidla 986 4a 603 00 Brno Czechia
Zobrazit více v PubMed
Gatta G, Ferrari A, Stiller CA, Pastore G, Bisogno G, Trama A, Capocaccia R. Embryonal cancers in Europe. Eur J Cancer. 2012;48:1425–1433. PubMed
De Bernardi B, Gambini C, Haupt R, Granata C, Rizzo A, Conte M, Tonini GP, Bianchi M, Giuliano M, Luksch R. Retrospective study of childhood ganglioneuroma. J Clin Oncol. 2008;26:1710–1716. PubMed
Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK. The international neuroblastoma pathology classification (the Shimada system) Cancer. 1999;86:364–372. PubMed
Cecchetto G, Mosseri V, De Bernardi B, Helardot P, Monclair T, Costa E, Horcher E, Neuenschwander S, Toma P, Rizzo A, et al. Surgical risk factors in primary surgery for localized neuroblastoma: the LNESG1 study of the European International Society of Pediatric Oncology Neuroblastoma Group. J Clin Oncol. 2005;23:8483–8489. PubMed
Croce M, Corrias MV, Rigo V, Ferrini S. New immunotherapeutic strategies for the treatment of neuroblastoma. Immunotherapy. 2015;7:285–300. PubMed
Wei YH, Gu XL, Sun YP, Meng FH, Storm G, Zhong ZY. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J Control Release. 2020;319:407–415. PubMed
Revia RA, Stephen ZR, Zhang MQ. Theranostic nanoparticles for RNA-based cancer treatment. Accounts Chem Res. 2019;52:1496–1506. PubMed PMC
Piccardo A, Foppiani L, Righi S, Garaventa A, Sorrentino S, Lopci E. Nuclear medicine therapy. Berlin: Springer; 2019. 131 I-MIBG therapy of malignant neuroblastoma and pheochromocytoma; pp. 65–83.
Pandit-Taskar N, Modak S. Norepinephrine transporter as a target for imaging and therapy. J Nucl Med. 2017;58:39–53. PubMed PMC
Hopfner M, Sutter AP, Beck NI, Barthel B, Maaser K, Jockers-Scherubl MC, Zeitz M, Scherubl H. Meta-iodobenzylguanidine induces growth inhibition and apoptosis of neuroendocrine gastrointestinal tumor cells. Int J Cancer. 2002;101:210–216. PubMed
Matthay KK, George RE, Alice LY. Promising therapeutic targets in neuroblastoma. Clin Cancer Res. 2012;18:2740–2753. PubMed PMC
Kocabas AM, Rudnick G, Kilic F. Functional consequences of homo-but not hetero-oligomerization between transporters for the biogenic amine neurotransmitters. J Neurochem. 2003;85:1513–1520. PubMed PMC
Wang KH, Penmatsa A, Gouaux E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature. 2015;521:322–327. PubMed PMC
Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–339. PubMed PMC
Dan VM, Varghese TS, Viswanathan G, Baby S. Ellipticine, its derivatives: re-evaluation of clinical suitability with the aid of drug delivery systems. Curr Cancer Drug Targets. 2019;20:33–46. PubMed
Fiser A, Sali A. MODELLER: Generation and refinement of homology-based protein structure models. In: Carter CW, Sweet RM, editors. Macromolecular crystallography. Methods in enzymology. San Diego: Elsevier Academic Press Inc; 2003. pp. 461–491. PubMed
Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31:3381–3385. PubMed PMC
Haddad Y, Heger Z, Adam V. Guidelines for homology modeling of dopamine, norepinephrine, and serotonin transporters. ACS Chem Neurosci. 2016;7:1607–1613. PubMed
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D-Biol Crystallogr. 2010;66:12–21. PubMed PMC
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;12:255–278. PubMed PMC
De Vries SJ, van Dijk M, Bonvin A. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 2010;5:883–897. PubMed
Buchtelova H, Strmiska V, Skubalova Z, Dostalova S, Michalek P, Krizkova S, Hynek D, Kalina L, Richtera L, Moulick A. Improving cytocompatibility of CdTe quantum dots by Schiff-base-coordinated lanthanides surface doping. J Nanobiotechnol. 2018;16:1–14. PubMed PMC
Villaverde G, Baeza A, Melen GJ, Alfranca A, Ramirez M, Vallet-Regí M. A new targeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma. J Mat Chem B. 2015;3:4831–4842. PubMed
Andersen J, Ringsted KB, Bang-Andersen B, Strømgaard K, Kristensen AS. Binding site residues control inhibitor selectivity in the human norepinephrine transporter but not in the human dopamine transporter. Sci Rep. 2015;5:1–12. PubMed PMC
Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci. 2003;4:13. PubMed
Aggarwal S, Mortensen OV. Overview of monoamine transporters. Curr Protoc Pharmacol. 2017;79:1–12. PubMed PMC
Ziegman R, Brust A, Jha P, Cardoso FC, Lewis RJ, Alewood PF. ‘Messy’ Processing of χ-conotoxin MrIA generates homologues with reduced hNET potency. Mar Drugs. 2019;17:1–8. PubMed PMC
Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15:40–56. PubMed
Korobova F, Svitkina T. Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell. 2008;19:1561–1574. PubMed PMC
Hansen TVO, Rehfeld JF, Nielsen FC. Cyclic AMP-induced neuronal differentiation via activation of p38 mitogen-activated protein kinase. J Neurochem. 2000;75:1870–1877. PubMed
Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13:663–673. PubMed
Charong N, Patmasiriwat P, Zenklusen JC. Localization and characterization of ST7 in cancer. J Cancer Res Clin Oncol. 2011;137:89–97. PubMed
Dostalova S, Cerna T, Hynek D, Koudelkova Z, Vaculovic T, Kopel P, Hrabeta J, Heger Z, Vaculovicova M, Eckschlager T, et al. Site-directed conjugation of antibodies to apoferritin nanocarrier for targeted drug delivery to prostate cancer cells. ACS Appl Mater Interfaces. 2016;8:14430–14441. PubMed
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38. PubMed PMC
Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8:137–143. PubMed
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96. PubMed
Dostalova S, Vasickova K, Hynek D, Krizkova S, Richtera L, Vaculovicova M, Eckschlager T, Stiborova M, Heger Z, Adam V. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int J Nanomed. 2017;12:2265–2278. PubMed PMC
Furusawa K, Takasugi T, Chiu YW, Hori Y, Tomita T, Fukuda M, Hisanaga S. CD2-associated protein (CD2AP) overexpression accelerates amyloid precursor protein (APP) transfer from early endosomes to the lysosomal degradation pathway. J Biol Chem. 2019;294:10886–10899. PubMed PMC
Indra R, Cerna T, Heger Z, Hrabeta J, Wilhelm M, Dostalova S, Lengalova A, Martinkova M, Adam V, Eckschlager T, et al. Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-facilitated toxicity in neuroblastoma cells. Toxicology. 2019;419:40–54. PubMed
Calabro S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of suicidal erythrocyte death by ellipticine. Basic Clin Pharmacol Toxicol. 2015;116:485–492. PubMed
Qin JL, Shen WY, Chen ZF, Zhao LF, Qin QP, Yu YC, Liang H. Oxoaporphine metal complexes (Co(II), Ni(II), Zn(II)) with high antitumor activity by inducing mitochondria-mediated apoptosis and S-phase arrest in HepG2. Sci Rep. 2017;7:1–18. PubMed PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. PubMed
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D-Biol Crystallogr. 2010;66:486–501. PubMed PMC
Maupetit J, Derreumaux P, Tuffery P. PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res. 2009;37:498–503. PubMed PMC
Tovchigrechko A, Vakser IA. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 2006;34:310–314. PubMed PMC
Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A. H++: a server for estimating p K as and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005;33:368–371. PubMed PMC
Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–1688. PubMed PMC
Nguyen H, Roe DR, Simmerling C. Improved generalized born solvent model parameters for protein simulations. J Chem Theory Comput. 2013;9:2020–2034. PubMed PMC
Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006;22:2695–2696. PubMed
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. PubMed
Raussens V, Ruysschaert J-M, Goormaghtigh E. Protein concentration is not an absolute prerequisite for the determination of secondary structure from circular dichroism spectra: a new scaling method. Anal Biochem. 2003;319:114–121. PubMed
Tesarova B, Charousova M, Dostalova S, Bienko A, Kopel P, Kruszynski R, Hynek D, Michalek P, Eckschlager T, Stiborova M, et al. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(II) coordination compounds. Int J Biol Macromol. 2019;126:1099–1111. PubMed
Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33:366–369. PubMed PMC
Rodrigo MAM, Strmiska V, Horackova E, Buchtelova H, Michalek P, Stiborova M, Eckschlager T, Adam V, Heger Z. Sarcosine influences apoptosis and growth of prostate cells via cell-type specific regulation of distinct sets of genes. Prostate. 2018;78:104–112. PubMed
Tesarova B, Dostalova S, Smidova V, Goliasova Z, Skubalova Z, Michalkova H, Hynek D, Michalek P, Polanska H, Vaculovicova M, et al. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Appl Mater Today. 2020;18:100501.