Improving cytocompatibility of CdTe quantum dots by Schiff-base-coordinated lanthanides surface doping
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 17-12816S
Grantová Agentura České Republiky
LQ1601
CEITEC 2020
PubMed
29673366
PubMed Central
PMC5907456
DOI
10.1186/s12951-018-0369-7
PII: 10.1186/s12951-018-0369-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cellular labeling, Cytotoxicity, Inorganic fluorophore, Nanocrystal, Surface dopant,
- MeSH
- analýza jednotlivých buněk metody MeSH
- fluorescenční barviva toxicita MeSH
- kvantové tečky toxicita MeSH
- lanthanoidy chemie MeSH
- lidé MeSH
- mikrovlny MeSH
- nádorové buněčné linie MeSH
- optické zobrazování metody MeSH
- povrchové vlastnosti MeSH
- Schiffovy báze chemie MeSH
- sloučeniny kadmia toxicita MeSH
- telur toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cadmium telluride MeSH Prohlížeč
- fluorescenční barviva MeSH
- lanthanoidy MeSH
- Schiffovy báze MeSH
- sloučeniny kadmia MeSH
- telur MeSH
BACKGROUND: Suitable fluorophores are the core of fluorescence imaging. Among the most exciting, yet controversial, labels are quantum dots (QDs) with their unique optical and chemical properties, but also considerable toxicity. This hinders QDs applicability in living systems. Surface chemistry has a profound impact on biological behavior of QDs. This study describes a two-step synthesis of QDs formed by CdTe core doped with Schiff base ligand for lanthanides [Ln (Yb3+, Tb3+ and Gd3+)] as novel cytocompatible fluorophores. RESULTS: Microwave-assisted synthesis resulted in water-soluble nanocrystals with high colloidal and fluorescence stability with quantum yields of 40.9-58.0%. Despite induction of endocytosis and cytoplasm accumulation of Yb- and TbQDs, surface doping resulted in significant enhancement in cytocompatibility when compared to the un-doped CdTe QDs. Furthermore, only negligible antimigratory properties without triggering formation of reactive oxygen species were found, particularly for TbQDs. Ln-doped QDs did not cause observable hemolysis, adsorbed only a low degree of plasma proteins onto their surface and did not possess significant genotoxicity. To validate the applicability of Ln-doped QDs for in vitro visualization of receptor status of living cells, we performed a site-directed conjugation of antibodies towards immuno-labeling of clinically relevant target-human norepinephrine transporter (hNET), over-expressed in neuroendocrine tumors like neuroblastoma. Immuno-performance of modified TbQDs was successfully tested in distinct types of cells varying in hNET expression and also in neuroblastoma cells with hNET expression up-regulated by vorinostat. CONCLUSION: For the first time we show that Ln-doping of CdTe QDs can significantly alleviate their cytotoxic effects. The obtained results imply great potential of Ln-doped QDs as cytocompatible and stable fluorophores for various bio-labeling applications.
Zobrazit více v PubMed
Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165–172. doi: 10.1289/ehp.8284. PubMed DOI PMC
Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21:452. doi: 10.1038/nbt0403-452b. PubMed DOI
Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16:63–72. doi: 10.1016/j.copbio.2004.11.003. PubMed DOI
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. doi: 10.1126/science.1104274. PubMed DOI PMC
Zrazhevskiy P, Sena M, Gao XH. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010;39:4326–4354. doi: 10.1039/b915139g. PubMed DOI PMC
Kovalenko MV, Bodnarchuk MI, Zaumseil J, Lee JS, Talapin DV. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J Am Chem Soc. 2010;132:10085–10092. doi: 10.1021/ja1024832. PubMed DOI
Lovrić J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med. 2005;83:377–385. doi: 10.1007/s00109-004-0629-x. PubMed DOI
Bradburne CE, Delehanty JB, Gemmill KB, Mei BC, Mattoussi H, Susumu K, Blanco-Canosa JB, Dawson PE, Medintz IL. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. Bioconjug Chem. 2013;24:1570–1583. doi: 10.1021/bc4001917. PubMed DOI
Yong KT, Law WC, Roy I, Ling Z, Huang HJ, Swihart MT, Prasad PN. Aqueous phase synthesis of CdTe quantum dots for biophotonics. J Biophotonics. 2011;4:9–20. doi: 10.1002/jbio.201000080. PubMed DOI
Taniguchi S, Green M. The synthesis of CdTe/ZnS core/shell quantum dots using molecular single-source precursors. J Mater Chem C. 2015;3:8425–8433. doi: 10.1039/C5TC01808K. DOI
Lovric J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol. 2005;12:1227–1234. doi: 10.1016/j.chembiol.2005.09.008. PubMed DOI
Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir. 2007;23:1974–1980. doi: 10.1021/la060093j. PubMed DOI
Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem-Int Edit. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI
Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol. 2011;85:707–720. doi: 10.1007/s00204-011-0695-0. PubMed DOI
Reisfeld R, Gaft M, Saridarov T, Panczer G, Zelner M. Nanoparticles of cadmium sulfide with europium and terbium in zirconia films having intensified luminescence. Mater Lett. 2000;45:154–156. doi: 10.1016/S0167-577X(00)00096-3. DOI
Tiseanu C, Mehra RK, Kho R, Kumke M. Optical properties of terbium-doped thiosalicylic-capped CdS nanocrystals. Chem Phys Lett. 2003;377:131–136. doi: 10.1016/S0009-2614(03)01119-9. DOI
Wang YB, Liang XH, Liu EZ, Hu XY, Fan J. Incorporation of lanthanide (Eu3+) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study. Nanotechnology. 2015;26:8. PubMed
Cheng L, Yang K, Shao MW, Lu XH, Liu Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine. 2011;6:1327–1340. doi: 10.2217/nnm.11.56. PubMed DOI
Misiak M, Skowicki M, Lipinski T, Kowalczyk A, Prorok K, Arabasz S, Bednarkiewicz A. Biofunctionalized upconverting CaF2:Yb, Tm nanoparticles for Candida albicans detection and imaging. Nano Res. 2017;10:3333–3345. doi: 10.1007/s12274-017-1546-y. DOI
Portioli C, Pedroni M, Benati D, Donini M, Bonafede R, Mariotti R, Perbellini L, Cerpelloni M, Dusi S, Speghini A, Bentivoglio M. Citrate-stabilized lanthanide-doped nanoparticles: brain penetration and interaction with immune cells and neurons. Nanomedicine. 2016;11:13. doi: 10.2217/nnm-2016-0297. PubMed DOI
Zhang H, Huang R, Cheung NKV, Guo H, Zanzonico PB, Thaler HT, Lewis JS, Blasberg RG. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20:2182–2191. doi: 10.1158/1078-0432.CCR-13-1153. PubMed DOI PMC
Xiao Y, Forry SP, Gao X, Holbrook RD, Telford WG, Tona A. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake. J Nanobiotechnol. 2010;8:13. doi: 10.1186/1477-3155-8-13. PubMed DOI PMC
Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;110:138–155. doi: 10.1093/toxsci/kfp087. PubMed DOI
van Nes J, Chan A, van Groningen T, van Sluis P, Koster J, Versteeg R. A NOTCH3 transcriptional module induces cell motility in neuroblastoma. Clin Cancer Res. 2013;19:3485–3494. doi: 10.1158/1078-0432.CCR-12-3021. PubMed DOI
Rzigalinski BA, Strobl JS. Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol. 2009;238:280–288. doi: 10.1016/j.taap.2009.04.010. PubMed DOI PMC
Yan M, Zhang Y, Qin HY, Liu KZ, Guo M, Ge YK, Xu MG, Sun YH, Zheng XX. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress. Int J Nanomed. 2016;11:529–542. PubMed PMC
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol. 2016;11:479–486. doi: 10.1038/nnano.2015.338. PubMed DOI
Qiu JC, Zhang RB, Li JH, Sang YH, Tang W, Gil PR, Liu H. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. Int J Nanomed. 2015;10:6709–6724. PubMed PMC
Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18. doi: 10.1021/nl0347334. PubMed DOI PMC
Zhang ZY, Berg A, Levanon H, Fessenden RW, Meisel D. On the interactions of free radicals with gold nanoparticles. J Am Chem Soc. 2003;125:7959–7963. doi: 10.1021/ja034830z. PubMed DOI
Lai L, Lin C, Xu ZQ, Han XL, Tian FF, Mei P, Li DW, Ge YS, Jiang FL, Zhang YZ, Liu Y. Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin. Spectroc Acta Pt A-Molec Biomol Spectr. 2012;97:366–376. doi: 10.1016/j.saa.2012.06.025. PubMed DOI
Xia Q, Feng XD, Huang HF, Du LY, Yang XD, Wang K. Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J Neurochem. 2011;117:38–47. doi: 10.1111/j.1471-4159.2010.07162.x. PubMed DOI
Borm PJA, Muller-Schulte D. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine. 2006;1:235–249. doi: 10.2217/17435889.1.2.235. PubMed DOI
Jan KM, Chien S. Role of surface electric charge in red blood–cell intractions. J Gen Physiol. 1973;61:638–654. doi: 10.1085/jgp.61.5.638. PubMed DOI PMC
Fernandez EL, Gustafson AL, Andersson M, Hellman B, Dencker L. Cadmium-induced changes in apoptotic gene expression levels and DNA damage in mouse embryos are blocked by zinc. Toxicol Sci. 2003;76:162–170. doi: 10.1093/toxsci/kfg208. PubMed DOI
Tang S, Cai QS, Chibli H, Allagadda V, Nadeau JL, Mayer GD. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells. Toxicol Appl Pharmacol. 2013;272:443–452. doi: 10.1016/j.taap.2013.06.004. PubMed DOI
Ritz S, Schottler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailander V. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules. 2015;16:1311–1321. doi: 10.1021/acs.biomac.5b00108. PubMed DOI
Li SC, Wang Y, Wang HT, Bai YF, Liang GF, Wang YY, Huang NP, Xiao ZD. MicroRNAs as participants in cytotoxicity of CdTe quantum dots in NIH/3T3 cells. Biomaterials. 2011;32:3807–3814. doi: 10.1016/j.biomaterials.2011.01.074. PubMed DOI
Tian X, Xiao BB, Wu AQ, Yu L, Zhou JD, Wang Y, Wang N, Guan H, Shang ZF. Hydroxylated-graphene quantum dots induce cells senescence in both p53-dependent and -independent manner. Toxicol Res. 2016;5:1639–1648. doi: 10.1039/C6TX00209A. PubMed DOI PMC
Choi AO, Brown SE, Szyf M, Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med. 2008;86:291–302. doi: 10.1007/s00109-007-0274-2. PubMed DOI
Dostalova S, Cerna T, Hynek D, Koudelkova Z, Vaculovic T, Kopel P, Hrabeta J, Heger Z, Vaculovicova M, Eckschlager T, et al. Site-directed conjugation of antibodies to apoferritin nanocarrier for targeted drug delivery to prostate cancer cells. ACS Appl Mater Interfaces. 2016;8:14430–14441. doi: 10.1021/acsami.6b04286. PubMed DOI
Heger Z, Cernei N, Krizkova S, Masarik M, Kopel P, Hodek P, Zitka O, Adam V, Kizek R. Paramagnetic nanoparticles as a platform for FRET-based sarcosine picomolar detection. Sci Rep. 2015;5:1–8. doi: 10.1038/srep08868. PubMed DOI PMC
Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of I-131-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11. doi: 10.1002/pbc.25200. PubMed DOI PMC
Ettinger A, Wittmann T. Fluorescence live cell imaging. In: Waters JC, Wittmann T, editors. Quantitative imaging in cell biology. San Diego: Elsevier Academic Press Inc; 2014. pp. 77–94.
Kopel P, Dolezal K, Langer V, Jun D, Adam V, Kuca K, Kizek R. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity. Molecules. 2014;19:4338–4354. doi: 10.3390/molecules19044338. PubMed DOI PMC
Moulick A, Blazkova I, Milosavljevic V, Fohlerova Z, Hubalek J, Kopel P, Vaculovicova M, Adam V, Kizek R. Application of CdTe/ZnSe quantum dots in in vitro imaging of chicken tissue and embryo. Photochem Photobiol. 2015;91:417–423. doi: 10.1111/php.12398. PubMed DOI
Pradhan N, Peng XG. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc. 2007;129:3339–3347. doi: 10.1021/ja068360v. PubMed DOI
Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;73:1–5. PubMed PMC