• This record comes from PubMed

Classification of Actigraphy Records from Bipolar Disorder Patients Using Slope Entropy: A Feasibility Study

. 2020 Nov 01 ; 22 (11) : . [epub] 20201101

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Bipolar Disorder (BD) is an illness with high prevalence and a huge social and economic impact. It is recurrent, with a long-term evolution in most cases. Early treatment and continuous monitoring have proven to be very effective in mitigating the causes and consequences of BD. However, no tools are currently available for a massive and semi-automatic BD patient monitoring and control. Taking advantage of recent technological developments in the field of wearables, this paper studies the feasibility of a BD episodes classification analysis while using entropy measures, an approach successfully applied in a myriad of other physiological frameworks. This is a very difficult task, since actigraphy records are highly non-stationary and corrupted with artifacts (no activity). The method devised uses a preprocessing stage to extract epochs of activity, and then applies a quantification measure, Slope Entropy, recently proposed, which outperforms the most common entropy measures used in biomedical time series. The results confirm the feasibility of the approach proposed, since the three states that are involved in BD, depression, mania, and remission, can be significantly distinguished.

See more in PubMed

Merikangas K., Jin R., He J.P., Kessler R., Lee S., Sampson N., Viana M., Andrade L.H., Hu C., Karam E., et al. Prevalence and Correlates of Bipolar Spectrum Disorder in the World Mental Health Survey Initiative. Arch. Gen. Psychiatry. 2011;68:241–251. doi: 10.1001/archgenpsychiatry.2011.12. PubMed DOI PMC

Geddes J.R., Miklowitz D.J. Treatment of bipolar disorder. Lancet. 2013;381:1672–1682. doi: 10.1016/S0140-6736(13)60857-0. PubMed DOI PMC

Crescenzo F.D., Economou A., Sharpley A.L., Gormez A., Quested D.J. Actigraphic features of bipolar disorder: A systematic review and meta-analysis. Sleep Med. Rev. 2017;33:58–69. doi: 10.1016/j.smrv.2016.05.003. PubMed DOI

American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders: DSM–5. 5th ed. American Psychiatric Association; Arlington, VA, USA: 2013.

Murray G., Harvey A. Circadian rhythms and sleep in bipolar disorder. Bipolar Disord. 2010;12:459–472. doi: 10.1111/j.1399-5618.2010.00843.x. PubMed DOI

Alloy L.B., Ng T.H., Titone M.K., Boland E.M. Circadian Rhythm Dysregulation in Bipolar Spectrum Disorders. Curr. Psychiatry Rep. 2017;19:21. doi: 10.1007/s11920-017-0772-z. PubMed DOI PMC

Young R.C., Biggs J.T., Ziegler V.E., Meyer D.A. A Rating Scale for Mania: Reliability, Validity and Sensitivity. Br. J. Psychiatry. 1978;133:429–435. doi: 10.1192/bjp.133.5.429. PubMed DOI

Montgomery S.A., Åsberg M. A New Depression Scale Designed to be Sensitive to Change. Br. J. Psychiatry. 1979;134:382–389. doi: 10.1192/bjp.134.4.382. PubMed DOI

Krane-Gartiser K., Henriksen T.E.G., Morken G., Vaaler A., Fasmer O.B. Actigraphic Assessment of Motor Activity in Acutely Admitted Inpatients with Bipolar Disorder. PLoS ONE. 2014;9:e89574. doi: 10.1371/journal.pone.0089574. PubMed DOI PMC

Li P., Lim A., Gao L., Hu C., Yu L., Bennett D., Buchman A., Hu K. More random motor activity fluctuations predict incident frailty, disability, and mortality. Sci. Transl. Med. 2019;11:eaax1977. doi: 10.1126/scitranslmed.aax1977. PubMed DOI PMC

Kosmadopoulos A., Sargent C., Darwent D., Zhou X., Roach G.D. Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system. Behav. Res. Methods. 2014;46:1032–1041. doi: 10.3758/s13428-013-0438-7. PubMed DOI

Bradley A.J., Webb-Mitchell R., Hazu A., Slater N., Middleton B., Gallagher P., McAllister-Williams H., Anderson K.N. Sleep and circadian rhythm disturbance in bipolar disorder. Psychol. Med. 2017;47:1678–1689. doi: 10.1017/S0033291717000186. PubMed DOI

Knapen S.E., Li P., Riemersma-van der Lek R.F., Verkooijen S., Boks M.P.M., Schoevers R.A., Scheer F.A.J.L., Hu K. Fractal biomarker of activity in patients with bipolar disorder. Psychol. Med. 2020;94:1–8. doi: 10.1017/S0033291720000331. PubMed DOI PMC

Iyengar N., Peng C.K., Morin R., Goldberger A.L., Lipsitz L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1996;271:R1078–R1084. doi: 10.1152/ajpregu.1996.271.4.R1078. PubMed DOI

Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI

Bandt C., Pompe B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002;88:174102. doi: 10.1103/PhysRevLett.88.174102. PubMed DOI

Cuesta–Frau D. Permutation entropy: Influence of amplitude information on time series classification performance. Math. Biosci. Eng. 2019;16:6842. doi: 10.3934/mbe.2019342. PubMed DOI

Fadlallah B., Chen B., Keil A., Príncipe J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E. 2013;87:022911. doi: 10.1103/PhysRevE.87.022911. PubMed DOI

Manis G., Aktaruzzaman M., Sassi R. Bubble Entropy: An Entropy Almost Free of Parameters. IEEE Trans. Biomed. Eng. 2017;64:2711–2718. doi: 10.1109/TBME.2017.2664105. PubMed DOI

Cuesta-Frau D. Slope Entropy: A New Time Series Complexity Estimator Based on Both Symbolic Patterns and Amplitude Information. Entropy. 2019;21:1167. doi: 10.3390/e21121167. DOI

Cuesta-Frau D., Dakappa P.H., Mahabala C., Gupta A.R. Fever Time Series Analysis Using Slope Entropy. Application to Early Unobtrusive Differential Diagnosis. Entropy. 2020;22:1034. doi: 10.3390/e22091034. PubMed DOI PMC

Assireu A., Rosa R., Vijaykumar N., Lorenzzetti J., Rempel E., Ramos F., Abreu Sá L., Bolzan M., Zanandrea A. Gradient pattern analysis of short nonstationary time series: An application to Lagrangian data from satellite tracked drifters. Phys. Nonlinear Phenom. 2002;168–169:397–403. doi: 10.1016/S0167-2789(02)00527-4. DOI

Jordán-Núnez J., Miró-Martínez P., Vargas B., Varela-Entrecanales M., Cuesta-Frau D. Statistical models for fever forecasting based on advanced body temperature monitoring. J. Crit. Care. 2017;37:136–140. doi: 10.1016/j.jcrc.2016.09.013. PubMed DOI

Aßfalg J., Kriegel H.P., Kröger P., Kunath P., Pryakhin A., Renz M. In: Similarity Search on Time Series Based on Threshold Queries. Advances in Database Technology—EDBT 2006. Ioannidis Y., Scholl M.H., Schmidt J.W., Matthes F., Hatzopoulos M., Boehm K., Kemper A., Grust T., Boehm C., editors. Springer; Berlin/Heidelberg, Germany: 2006. pp. 276–294.

Lempel A., Ziv J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory. 1976;22:75–81. doi: 10.1109/TIT.1976.1055501. DOI

Sarlabous L., Torres A., Fiz J.A., Gea J., Galdiz J.B., Jane R. Multistate Lempel-Ziv (MLZ) index interpretation as a measure of amplitude and complexity changes; Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Minneapolis, MN, USA. 3–6 September 2009; pp. 4375–4378. PubMed

Pincus S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA. 1991;88:2297–2301. doi: 10.1073/pnas.88.6.2297. PubMed DOI PMC

Cuesta-Frau D., Miró-Martínez P., Oltra-Crespo S., Molina-Picó A., Dakappa P.H., Mahabala C., Vargas B., González P. Classification of fever patterns using a single extracted entropy feature: A feasibility study based on Sample Entropy. Math. Biosci. Eng. 2020;17:235. doi: 10.3934/mbe.2020013. PubMed DOI

Lake D.E., Moorman J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol. 2011;300:H319–H325. doi: 10.1152/ajpheart.00561.2010. PubMed DOI

Cuesta-Frau D., Novák D., Burda V., Molina-Picó A., Vargas B., Mraz M., Kavalkova P., Benes M., Haluzik M. Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy. 2018;20:871. doi: 10.3390/e20110871. PubMed DOI PMC

Sokunbi M.O. Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets. Front. Neuroinform. 2014;8:69. doi: 10.3389/fninf.2014.00069. PubMed DOI PMC

Zanin M., Gómez-Andrés D., Pulido-Valdeolivas I., Martín-Gonzalo J.A., López-López J., Pascual-Pascual S.I., Rausell E. Characterizing Normal and Pathological Gait through Permutation Entropy. Entropy. 2018;20:77. doi: 10.3390/e20010077. PubMed DOI PMC

Yang Y., Zhou M., Niu Y., Li C., Cao R., Wang B., Yan P., Ma Y., Xiang J. Epileptic Seizure Prediction Based on Permutation Entropy. Front. Comput. Neurosci. 2018;12:55. doi: 10.3389/fncom.2018.00055. PubMed DOI PMC

Xia Y., Yang L., Zunino L., Shi H., Zhuang Y., Liu C. Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series. Entropy. 2018;20:148. doi: 10.3390/e20030148. PubMed DOI PMC

Bian C., Qin C., Ma Q.D.Y., Shen Q. Modified Permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E. 2012;85:021906. doi: 10.1103/PhysRevE.85.021906. PubMed DOI

Azami H., Escudero J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput. Methods Programs Biomed. 2016;128:40–51. doi: 10.1016/j.cmpb.2016.02.008. PubMed DOI

Cuesta-Frau D., Vargas B. Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations. Math. Biosci. Eng. 2020;17:1637. doi: 10.3934/mbe.2020086. PubMed DOI

Chicco D., Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020;21:6. doi: 10.1186/s12864-019-6413-7. PubMed DOI PMC

Patro S.G.K., Sahu K.K. Normalization: A Preprocessing Stage. arXiv. 20151503.06462

Khabou M.A., Parlato M.V. Classification and feature analysis of actigraphy signals; Proceedings of the 2013 IEEE Southeastcon; Jacksonville, FL, USA. 4–7 April 2013; pp. 1–5.

Cuesta-Frau D., Miró-Martínez P., Oltra-Crespo S., Jordán-Núñez J., Vargas B., González P., Varela-Entrecanales M. Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy. 2018;20:853. doi: 10.3390/e20110853. PubMed DOI PMC

Cuesta-Frau D., Murillo-Escobar J.P., Orrego D.A., Delgado-Trejos E. Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy. 2019;21:385. doi: 10.3390/e21040385. PubMed DOI PMC

Cuesta-Frau D., Molina-Picó A., Vargas B., González P. Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy. 2019;21:1013. doi: 10.3390/e21101013. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...