Classification of Actigraphy Records from Bipolar Disorder Patients Using Slope Entropy: A Feasibility Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33287011
PubMed Central
PMC7711446
DOI
10.3390/e22111243
PII: e22111243
Knihovny.cz E-resources
- Keywords
- actigraphy, bipolar disorder, permutation entropy, sample entropy, slope entropy, time series classification,
- Publication type
- Journal Article MeSH
Bipolar Disorder (BD) is an illness with high prevalence and a huge social and economic impact. It is recurrent, with a long-term evolution in most cases. Early treatment and continuous monitoring have proven to be very effective in mitigating the causes and consequences of BD. However, no tools are currently available for a massive and semi-automatic BD patient monitoring and control. Taking advantage of recent technological developments in the field of wearables, this paper studies the feasibility of a BD episodes classification analysis while using entropy measures, an approach successfully applied in a myriad of other physiological frameworks. This is a very difficult task, since actigraphy records are highly non-stationary and corrupted with artifacts (no activity). The method devised uses a preprocessing stage to extract epochs of activity, and then applies a quantification measure, Slope Entropy, recently proposed, which outperforms the most common entropy measures used in biomedical time series. The results confirm the feasibility of the approach proposed, since the three states that are involved in BD, depression, mania, and remission, can be significantly distinguished.
Department of Cybernetics Czech Technical University Prague 166 36 Prague Czech Republic
MINDPAX Vinohrady 128 00 Prague Czech Republic
National Institute of Mental Health 250 67 Klecany Czech Republic
See more in PubMed
Merikangas K., Jin R., He J.P., Kessler R., Lee S., Sampson N., Viana M., Andrade L.H., Hu C., Karam E., et al. Prevalence and Correlates of Bipolar Spectrum Disorder in the World Mental Health Survey Initiative. Arch. Gen. Psychiatry. 2011;68:241–251. doi: 10.1001/archgenpsychiatry.2011.12. PubMed DOI PMC
Geddes J.R., Miklowitz D.J. Treatment of bipolar disorder. Lancet. 2013;381:1672–1682. doi: 10.1016/S0140-6736(13)60857-0. PubMed DOI PMC
Crescenzo F.D., Economou A., Sharpley A.L., Gormez A., Quested D.J. Actigraphic features of bipolar disorder: A systematic review and meta-analysis. Sleep Med. Rev. 2017;33:58–69. doi: 10.1016/j.smrv.2016.05.003. PubMed DOI
American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders: DSM–5. 5th ed. American Psychiatric Association; Arlington, VA, USA: 2013.
Murray G., Harvey A. Circadian rhythms and sleep in bipolar disorder. Bipolar Disord. 2010;12:459–472. doi: 10.1111/j.1399-5618.2010.00843.x. PubMed DOI
Alloy L.B., Ng T.H., Titone M.K., Boland E.M. Circadian Rhythm Dysregulation in Bipolar Spectrum Disorders. Curr. Psychiatry Rep. 2017;19:21. doi: 10.1007/s11920-017-0772-z. PubMed DOI PMC
Young R.C., Biggs J.T., Ziegler V.E., Meyer D.A. A Rating Scale for Mania: Reliability, Validity and Sensitivity. Br. J. Psychiatry. 1978;133:429–435. doi: 10.1192/bjp.133.5.429. PubMed DOI
Montgomery S.A., Åsberg M. A New Depression Scale Designed to be Sensitive to Change. Br. J. Psychiatry. 1979;134:382–389. doi: 10.1192/bjp.134.4.382. PubMed DOI
Krane-Gartiser K., Henriksen T.E.G., Morken G., Vaaler A., Fasmer O.B. Actigraphic Assessment of Motor Activity in Acutely Admitted Inpatients with Bipolar Disorder. PLoS ONE. 2014;9:e89574. doi: 10.1371/journal.pone.0089574. PubMed DOI PMC
Li P., Lim A., Gao L., Hu C., Yu L., Bennett D., Buchman A., Hu K. More random motor activity fluctuations predict incident frailty, disability, and mortality. Sci. Transl. Med. 2019;11:eaax1977. doi: 10.1126/scitranslmed.aax1977. PubMed DOI PMC
Kosmadopoulos A., Sargent C., Darwent D., Zhou X., Roach G.D. Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system. Behav. Res. Methods. 2014;46:1032–1041. doi: 10.3758/s13428-013-0438-7. PubMed DOI
Bradley A.J., Webb-Mitchell R., Hazu A., Slater N., Middleton B., Gallagher P., McAllister-Williams H., Anderson K.N. Sleep and circadian rhythm disturbance in bipolar disorder. Psychol. Med. 2017;47:1678–1689. doi: 10.1017/S0033291717000186. PubMed DOI
Knapen S.E., Li P., Riemersma-van der Lek R.F., Verkooijen S., Boks M.P.M., Schoevers R.A., Scheer F.A.J.L., Hu K. Fractal biomarker of activity in patients with bipolar disorder. Psychol. Med. 2020;94:1–8. doi: 10.1017/S0033291720000331. PubMed DOI PMC
Iyengar N., Peng C.K., Morin R., Goldberger A.L., Lipsitz L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1996;271:R1078–R1084. doi: 10.1152/ajpregu.1996.271.4.R1078. PubMed DOI
Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI
Bandt C., Pompe B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002;88:174102. doi: 10.1103/PhysRevLett.88.174102. PubMed DOI
Cuesta–Frau D. Permutation entropy: Influence of amplitude information on time series classification performance. Math. Biosci. Eng. 2019;16:6842. doi: 10.3934/mbe.2019342. PubMed DOI
Fadlallah B., Chen B., Keil A., Príncipe J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E. 2013;87:022911. doi: 10.1103/PhysRevE.87.022911. PubMed DOI
Manis G., Aktaruzzaman M., Sassi R. Bubble Entropy: An Entropy Almost Free of Parameters. IEEE Trans. Biomed. Eng. 2017;64:2711–2718. doi: 10.1109/TBME.2017.2664105. PubMed DOI
Cuesta-Frau D. Slope Entropy: A New Time Series Complexity Estimator Based on Both Symbolic Patterns and Amplitude Information. Entropy. 2019;21:1167. doi: 10.3390/e21121167. DOI
Cuesta-Frau D., Dakappa P.H., Mahabala C., Gupta A.R. Fever Time Series Analysis Using Slope Entropy. Application to Early Unobtrusive Differential Diagnosis. Entropy. 2020;22:1034. doi: 10.3390/e22091034. PubMed DOI PMC
Assireu A., Rosa R., Vijaykumar N., Lorenzzetti J., Rempel E., Ramos F., Abreu Sá L., Bolzan M., Zanandrea A. Gradient pattern analysis of short nonstationary time series: An application to Lagrangian data from satellite tracked drifters. Phys. Nonlinear Phenom. 2002;168–169:397–403. doi: 10.1016/S0167-2789(02)00527-4. DOI
Jordán-Núnez J., Miró-Martínez P., Vargas B., Varela-Entrecanales M., Cuesta-Frau D. Statistical models for fever forecasting based on advanced body temperature monitoring. J. Crit. Care. 2017;37:136–140. doi: 10.1016/j.jcrc.2016.09.013. PubMed DOI
Aßfalg J., Kriegel H.P., Kröger P., Kunath P., Pryakhin A., Renz M. In: Similarity Search on Time Series Based on Threshold Queries. Advances in Database Technology—EDBT 2006. Ioannidis Y., Scholl M.H., Schmidt J.W., Matthes F., Hatzopoulos M., Boehm K., Kemper A., Grust T., Boehm C., editors. Springer; Berlin/Heidelberg, Germany: 2006. pp. 276–294.
Lempel A., Ziv J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory. 1976;22:75–81. doi: 10.1109/TIT.1976.1055501. DOI
Sarlabous L., Torres A., Fiz J.A., Gea J., Galdiz J.B., Jane R. Multistate Lempel-Ziv (MLZ) index interpretation as a measure of amplitude and complexity changes; Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Minneapolis, MN, USA. 3–6 September 2009; pp. 4375–4378. PubMed
Pincus S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA. 1991;88:2297–2301. doi: 10.1073/pnas.88.6.2297. PubMed DOI PMC
Cuesta-Frau D., Miró-Martínez P., Oltra-Crespo S., Molina-Picó A., Dakappa P.H., Mahabala C., Vargas B., González P. Classification of fever patterns using a single extracted entropy feature: A feasibility study based on Sample Entropy. Math. Biosci. Eng. 2020;17:235. doi: 10.3934/mbe.2020013. PubMed DOI
Lake D.E., Moorman J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol. 2011;300:H319–H325. doi: 10.1152/ajpheart.00561.2010. PubMed DOI
Cuesta-Frau D., Novák D., Burda V., Molina-Picó A., Vargas B., Mraz M., Kavalkova P., Benes M., Haluzik M. Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy. 2018;20:871. doi: 10.3390/e20110871. PubMed DOI PMC
Sokunbi M.O. Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets. Front. Neuroinform. 2014;8:69. doi: 10.3389/fninf.2014.00069. PubMed DOI PMC
Zanin M., Gómez-Andrés D., Pulido-Valdeolivas I., Martín-Gonzalo J.A., López-López J., Pascual-Pascual S.I., Rausell E. Characterizing Normal and Pathological Gait through Permutation Entropy. Entropy. 2018;20:77. doi: 10.3390/e20010077. PubMed DOI PMC
Yang Y., Zhou M., Niu Y., Li C., Cao R., Wang B., Yan P., Ma Y., Xiang J. Epileptic Seizure Prediction Based on Permutation Entropy. Front. Comput. Neurosci. 2018;12:55. doi: 10.3389/fncom.2018.00055. PubMed DOI PMC
Xia Y., Yang L., Zunino L., Shi H., Zhuang Y., Liu C. Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series. Entropy. 2018;20:148. doi: 10.3390/e20030148. PubMed DOI PMC
Bian C., Qin C., Ma Q.D.Y., Shen Q. Modified Permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E. 2012;85:021906. doi: 10.1103/PhysRevE.85.021906. PubMed DOI
Azami H., Escudero J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput. Methods Programs Biomed. 2016;128:40–51. doi: 10.1016/j.cmpb.2016.02.008. PubMed DOI
Cuesta-Frau D., Vargas B. Permutation Entropy and Bubble Entropy: Possible interactions and synergies between order and sorting relations. Math. Biosci. Eng. 2020;17:1637. doi: 10.3934/mbe.2020086. PubMed DOI
Chicco D., Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020;21:6. doi: 10.1186/s12864-019-6413-7. PubMed DOI PMC
Patro S.G.K., Sahu K.K. Normalization: A Preprocessing Stage. arXiv. 20151503.06462
Khabou M.A., Parlato M.V. Classification and feature analysis of actigraphy signals; Proceedings of the 2013 IEEE Southeastcon; Jacksonville, FL, USA. 4–7 April 2013; pp. 1–5.
Cuesta-Frau D., Miró-Martínez P., Oltra-Crespo S., Jordán-Núñez J., Vargas B., González P., Varela-Entrecanales M. Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy. 2018;20:853. doi: 10.3390/e20110853. PubMed DOI PMC
Cuesta-Frau D., Murillo-Escobar J.P., Orrego D.A., Delgado-Trejos E. Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy. 2019;21:385. doi: 10.3390/e21040385. PubMed DOI PMC
Cuesta-Frau D., Molina-Picó A., Vargas B., González P. Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy. 2019;21:1013. doi: 10.3390/e21101013. DOI