Alterations of growth rate and gene expression levels of UPEC by antibiotics at sub-MIC
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29327292
DOI
10.1007/s12223-017-0582-z
PII: 10.1007/s12223-017-0582-z
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- bakteriální proteiny genetika MeSH
- bakteriální toxiny genetika MeSH
- ciprofloxacin metabolismus farmakokinetika MeSH
- kombinace léků trimethoprim a sulfamethoxazol metabolismus farmakologie MeSH
- lidé MeSH
- membránové transportní proteiny genetika MeSH
- mikrobiální testy citlivosti MeSH
- nitrofurantoin metabolismus farmakologie MeSH
- proteiny z Escherichia coli genetika MeSH
- regulace genové exprese u bakterií fyziologie MeSH
- uropatogenní Escherichia coli účinky léků genetika růst a vývoj MeSH
- virulence genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- bakteriální toxiny MeSH
- ciprofloxacin MeSH
- cytotoxic necrotizing factor type 1 MeSH Prohlížeč
- FocA protein, E coli MeSH Prohlížeč
- kombinace léků trimethoprim a sulfamethoxazol MeSH
- membránové transportní proteiny MeSH
- nitrofurantoin MeSH
- proteiny z Escherichia coli MeSH
- USP protein, E coli MeSH Prohlížeč
- ymcE protein, E coli MeSH Prohlížeč
The host is the main environment for bacteria, and they also expose to many antibiotics during the treatment of infectious diseases in host body. In this study, it was aimed to investigate possible changes in growth rate and expression levels of three virulence genes (foc/foc, cnf1, and usp) in a uropathogenic E. coli standard strain within the presence of ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole. The UPEC C7 strain was grown on tryptic soy broth-TSB (control), TSB + ciprofloxacin, TSB + nitrofurantoin, and TSB + trimethoprim-sulfamethoxazole for determination of both growth rate and gene expression level. Antibiotics were added according to their sub-minimal inhibition concentrations. E-test was used to determine MIC values of antibiotics. Growth changes were measured in absorbance 600 nm during 24-h period. Total RNA isolations were performed after incubation for 24 h at 37 °C. Gene expression levels were determined by quantitative PCR. Tukey's post hoc test was used for statistical analysis. According to absorbance values, it has been shown that only ciprofloxacin and trimethoprim-sulfamethoxazole have lead significant decrease on growth rate. We also detected statistically significant differences in each gene expression levels for all antibiotics via relative quantification analysis. Fold changes in gene expression was found 0.65, 1.42, 0.23 for foc/foc gene; 0.01, 0.01, 2.84 for cnf1 gene; and 0.1, 0.01, 0.01 for usp gene in the presence of ciprofloxacin, nitrofurantoin, and trimethoprim/sulfamethoxazole, respectively. This investigation has shown that antibiotics can play a role as an environmental factor which may determine the pathogenicity of bacteria in vivo.
Zobrazit více v PubMed
Nat Rev Microbiol. 2004 Feb;2(2):123-40 PubMed
Front Biosci. 2003 Jan 01;8:e235-44 PubMed
J Antimicrob Chemother. 2011 May;66(5):979-84 PubMed
J Antimicrob Chemother. 2013 Jul;68(7):1524-32 PubMed
BMC Microbiol. 2013 Sep 11;13:202 PubMed
J Chemother. 1996 Aug;8(4):254-60 PubMed
Indian J Med Microbiol. 2005 Apr;23(2):102-5 PubMed
Antimicrob Agents Chemother. 2001 Jun;45(6):1930-3 PubMed
Curr Opin Microbiol. 2006 Oct;9(5):445-53 PubMed
Open Biol. 2015 Oct;5(10):null PubMed
J Med Microbiol. 2003 Dec;52(Pt 12):1033-8 PubMed
Curr Opin Microbiol. 2008 Apr;11(2):161-7 PubMed
Foodborne Pathog Dis. 2013 Sep;10(9):805-12 PubMed
Folia Microbiol (Praha). 2007;52(4):429-36 PubMed
Methods. 2001 Dec;25(4):402-8 PubMed
Int J Antimicrob Agents. 2011 Jul;38(1):27-34 PubMed
Antimicrob Agents Chemother. 2006 Feb;50(2):649-53 PubMed
Front Microbiol. 2013 Feb 13;4:20 PubMed
Int J Antimicrob Agents. 2003 Apr;21(4):325-33 PubMed
Int J Antimicrob Agents. 2002 Jan;19(1):79-82 PubMed
J Antimicrob Chemother. 2003 Feb;51(2):401-4 PubMed
J Antibiot (Tokyo). 2011 Jan;64(1):73-8 PubMed
Pathogens. 2016 Apr 19;5(2):null PubMed
J Microbiol. 2008 Aug;46(4):441-7 PubMed
Indian J Med Res. 2013 May;137(5):963-71 PubMed
Antimicrob Agents Chemother. 2015 Dec 14;60(3):1370-6 PubMed
J Antimicrob Chemother. 2003 May;51(5):1175-9 PubMed
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17025-30 PubMed
J Infect. 2005 Aug;51(2):144-9 PubMed
J Appl Bacteriol. 1994 Feb;76(2):190-5 PubMed
Antibiotics (Basel). 2013 Mar 14;2(1):100-14 PubMed
Philos Trans R Soc Lond B Biol Sci. 2007 Jul 29;362(1483):1195-200 PubMed
Toxicol Appl Pharmacol. 2004 Jun 1;197(2):125-36 PubMed
Microbes Infect. 2008 Jul;10(8):901-7 PubMed
Nat Rev Microbiol. 2014 Jul;12(7):465-78 PubMed
J Infect Chemother. 2007 Dec;13(6):357-67 PubMed
Trans Am Clin Climatol Assoc. 2006;117:75-83; discussion 83-4 PubMed
Curr Microbiol. 2016 Jan;72 (1):19-28 PubMed
Rev Soc Bras Med Trop. 2015 Sep-Oct;48(5):617-21 PubMed
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19484-9 PubMed
J Appl Microbiol. 2017 Mar;122(3):640-650 PubMed
Int J Med Microbiol. 2006 Apr;296(2-3):163-70 PubMed
Clin Infect Dis. 2008 Nov 1;47(9):1150-8 PubMed
J Appl Microbiol. 2008 May;104(5):1294-301 PubMed
Front Microbiol. 2013 Mar 06;4:15 PubMed
BMC Infect Dis. 2010 Jun 02;10:148 PubMed
Int J Antimicrob Agents. 2009 Jun;33(6):579-82 PubMed