Association Between Antiarrhythmic, Electrophysiological, and Antioxidative Effects of Melatonin in Ischemia/Reperfusion
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-15-00309
Russian Science Foundation
PubMed
31847485
PubMed Central
PMC6941092
DOI
10.3390/ijms20246331
PII: ijms20246331
Knihovny.cz E-zdroje
- Klíčová slova
- arrhythmia, depolarization, ischemia, melatonin, oxidative stress, reperfusion, repolarization,
- MeSH
- antiarytmika farmakologie MeSH
- antioxidancia farmakologie MeSH
- elektrofyziologické jevy účinky léků MeSH
- elektrokardiografie účinky léků MeSH
- fibrilace komor farmakoterapie MeSH
- krysa rodu Rattus MeSH
- melatonin farmakologie MeSH
- potkani Wistar MeSH
- reperfuzní poškození myokardu farmakoterapie MeSH
- reperfuzní poškození farmakoterapie MeSH
- srdeční arytmie farmakoterapie MeSH
- srdeční elektrofyziologie metody MeSH
- srdeční komory účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiarytmika MeSH
- antioxidancia MeSH
- melatonin MeSH
Melatonin is assumed to confer cardioprotective action via antioxidative properties. We evaluated the association between ventricular tachycardia and/or ventricular fibrillation (VT/VF) incidence, oxidative stress, and myocardial electrophysiological parameters in experimental ischemia/reperfusion under melatonin treatment. Melatonin was given to 28 rats (10 mg/kg/day, orally, for 7 days) and 13 animals received placebo. In the anesthetized animals, coronary occlusion was induced for 5 min followed by reperfusion with recording of unipolar electrograms from ventricular epicardium with a 64-lead array. Effects of melatonin on transmembrane potentials were studied in ventricular preparations of 7 rats in normal and "ischemic" conditions. Melatonin treatment was associated with lower VT/VF incidence at reperfusion, shorter baseline activation times (ATs), and activation-repolarization intervals and more complete recovery of repolarization times (RTs) at reperfusion (less baseline-reperfusion difference, ΔRT) (p < 0.05). Superoxide dismutase (SOD) activity was higher in the treated animals and associated with ΔRT (p = 0.001), whereas VT/VF incidence was associated with baseline ATs (p = 0.020). In vitro, melatonin led to a more complete restoration of action potential durations and resting membrane potentials at reoxygenation (p < 0.05). Thus, the antioxidative properties of melatonin were associated with its influence on repolarization duration, whereas the melatonin-related antiarrhythmic effect was associated with its oxidative stress-independent action on ventricular activation.
Zobrazit více v PubMed
Brown D.A., Aon M.A., Frasier C.R., Sloan R.C., Maloney A.H., Anderson E.J., O’Rourke B. Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J. Mol. Cell Cardiol. 2010;48:673–679. doi: 10.1016/j.yjmcc.2009.11.011. PubMed DOI PMC
Akar F.G., O’Rourke B. Mitochondria are sources of metabolic sink and arrhythmias. Pharmacol. Ther. 2011;131:287–294. doi: 10.1016/j.pharmthera.2011.04.005. PubMed DOI PMC
Solhjoo S., O’Rourke B. Mitochondrial instability during regional ischemia-reperfusion underlies arrhythmias in monolayers of cardiomyocytes. J. Mol. Cell Cardiol. 2015;78:90–99. doi: 10.1016/j.yjmcc.2014.09.024. PubMed DOI PMC
Liu M., Liu H., Dudley S.C., Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ. Res. 2010;107:967–974. doi: 10.1161/CIRCRESAHA.110.220673. PubMed DOI PMC
Manchester L.C., Coto-Montes A., Boga J.A., Andersen L.P., Zhou Z., Galano A., Vriend J., Tan D.X., Reiter R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015;59:403–419. doi: 10.1111/jpi.12267. PubMed DOI
Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:23–78. doi: 10.1111/jpi.12360. PubMed DOI
Reiter R.J., Tan D.X., Manchester L.C., Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem. Biophys. 2001;34:237–256. doi: 10.1385/CBB:34:2:237. PubMed DOI
Antolin I., Rodriguez C., Sainz R.M., Mayo J.C., Uria H., Kotler M.L., Rodriguez-Colunga M.J., Tolivia D., Menendez-Pelaez A. Neurohormone melatonin prevents cell damage: Effect on gene expression for antioxidant enzymes. FASEB J. 1996;10:882–890. doi: 10.1096/fasebj.10.8.8666165. PubMed DOI
Pablos M.I., Reiter R.J., Ortiz G.G., Guerrero J.M., Agapito M.T., Chuang J.I., Sewerynek E. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem. Int. 1998;32:69–75. doi: 10.1016/S0197-0186(97)00043-0. PubMed DOI
Rodriguez C., Mayo J.C., Sainz R.M., Antolin I., Herrera F., Martin V., Reiter R.J. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 2004;36:1–9. doi: 10.1046/j.1600-079X.2003.00092.x. PubMed DOI
Kaneko S., Okumura K., Numaguchi Y., Matsui H., Murase K., Mokuno S., Morishima I., Hira K., Toki Y., Ito T., et al. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury. Life Sci. 2000;67:101–112. doi: 10.1016/S0024-3205(00)00607-X. PubMed DOI
Salie R., Harper I., Cillie C., Genade S., Huisamen B., Moolman J., Lochner A. Melatonin protects against ischaemic-reperfusion myocardial damage. J. Mol. Cell. Cardiol. 2001;33:343–357. doi: 10.1006/jmcc.2000.1306. PubMed DOI
Sahna E., Parlakpinar H., Turkoz Y., Acet A. Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol. Res. 2005;54:491–495. PubMed
Lochner A., Marais E., Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What’s new? A review. J. Pineal Res. 2018;65:e12490. doi: 10.1111/jpi.12490. PubMed DOI
Blatt C.M., Rabinowitz S.H., Lown B. Central serotonergic agents raise the repetitive extrasystole threshold of the vulnerable period of the canine ventricular myocardium. Circ. Res. 1979;44:723–730. doi: 10.1161/01.RES.44.5.723. PubMed DOI
Tan D.X., Manchester L.C., Reiter R.J., Qi W., Kim S.J., El-Sokkary G.H. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: Prevention by melatonin. J. Pineal Res. 1998;25:184–191. doi: 10.1111/j.1600-079X.1998.tb00558.x. PubMed DOI
Lagneux C., Joyeux M., Demenge P., Ribuot C., Godin-Ribuot D. Protective effects of melatonin against ischemia-reperfusion injury in the isolated rat heart. Life Sci. 2000;66:503–509. doi: 10.1016/S0024-3205(99)00620-7. PubMed DOI
Lee Y.M., Chen H.R., Hsiao G., Sheu J.R., Wang J.J., Yen M.H. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo. J. Pineal Res. 2002;33:72–80. doi: 10.1034/j.1600-079X.2002.01869.x. PubMed DOI
Vazan R., Pancza D., Beder I., Styk J. Ischemia-reperfusion injury--antiarrhythmic effect of melatonin associated with reduced recovering of contractility. Gen. Physiol. Biophys. 2005;24:355–359. PubMed
Diez E.R., Prados L.V., Carrion A., Ponce Z.A., Miatello R.M. A novel electrophysiologic effect of melatonin on ischemia/reperfusion-induced arrhythmias in isolated rat hearts. J. Pineal Res. 2009;46:155–160. doi: 10.1111/j.1600-079X.2008.00643.x. PubMed DOI
Diez E.R., Renna N.F., Prado N.J., Lembo C., Ponce Zumino A.Z., Vazquez-Prieto M., Miatello R.M. Melatonin, given at the time of reperfusion, prevents ventricular arrhythmias in isolated hearts from fructose-fed rats and spontaneously hypertensive rats. J. Pineal Res. 2013;55:166–173. doi: 10.1111/jpi.12059. PubMed DOI
Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI
Bernikova O.G., Sedova K.A., Kharin S.N., Azarov Y.E. Effect of water-soluble echinochrome analog on arrhythmia severity in experimental model of acute myocardial ischemia. Bull. Exp. Biol. Med. 2018;165:340–343. doi: 10.1007/s10517-018-4165-z. PubMed DOI
Sedova K., Bernikova O., Azarov J., Shmakov D., Vityazev V., Kharin S. Effects of echinochrome on ventricular repolarization in acute ischemia. J. Electrocardiol. 2015;48:181–186. doi: 10.1016/j.jelectrocard.2015.01.003. PubMed DOI
Hausenloy D.J., Madonna R., Ovize M., Perrino C., Prunier F., Schulz R., Sluijter J.P.G., Van Laake L.W., Vinten-Johansen J., Yellon D.M., et al. Novel targets and future strategies for acute cardioprotection: Position paper of the european society of cardiology working group on cellular biology of the heart. Cardiovasc. Res. 2017;113:564–585. doi: 10.1093/cvr/cvx049. PubMed DOI
Coronel R., de Bakker J.M.T., Wilms-Schopman F.J.G., Opthof T., Linnenbank A.C., Belterman C.N., Janse M.J. Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: Experimental evidence to resolve some controversies. Heart Rhythm. 2006;3:1043–1050. doi: 10.1016/j.hrthm.2006.05.027. PubMed DOI