Association Between Antiarrhythmic, Electrophysiological, and Antioxidative Effects of Melatonin in Ischemia/Reperfusion

. 2019 Dec 15 ; 20 (24) : . [epub] 20191215

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31847485

Grantová podpora
18-15-00309 Russian Science Foundation

Melatonin is assumed to confer cardioprotective action via antioxidative properties. We evaluated the association between ventricular tachycardia and/or ventricular fibrillation (VT/VF) incidence, oxidative stress, and myocardial electrophysiological parameters in experimental ischemia/reperfusion under melatonin treatment. Melatonin was given to 28 rats (10 mg/kg/day, orally, for 7 days) and 13 animals received placebo. In the anesthetized animals, coronary occlusion was induced for 5 min followed by reperfusion with recording of unipolar electrograms from ventricular epicardium with a 64-lead array. Effects of melatonin on transmembrane potentials were studied in ventricular preparations of 7 rats in normal and "ischemic" conditions. Melatonin treatment was associated with lower VT/VF incidence at reperfusion, shorter baseline activation times (ATs), and activation-repolarization intervals and more complete recovery of repolarization times (RTs) at reperfusion (less baseline-reperfusion difference, ΔRT) (p < 0.05). Superoxide dismutase (SOD) activity was higher in the treated animals and associated with ΔRT (p = 0.001), whereas VT/VF incidence was associated with baseline ATs (p = 0.020). In vitro, melatonin led to a more complete restoration of action potential durations and resting membrane potentials at reoxygenation (p < 0.05). Thus, the antioxidative properties of melatonin were associated with its influence on repolarization duration, whereas the melatonin-related antiarrhythmic effect was associated with its oxidative stress-independent action on ventricular activation.

Zobrazit více v PubMed

Brown D.A., Aon M.A., Frasier C.R., Sloan R.C., Maloney A.H., Anderson E.J., O’Rourke B. Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J. Mol. Cell Cardiol. 2010;48:673–679. doi: 10.1016/j.yjmcc.2009.11.011. PubMed DOI PMC

Akar F.G., O’Rourke B. Mitochondria are sources of metabolic sink and arrhythmias. Pharmacol. Ther. 2011;131:287–294. doi: 10.1016/j.pharmthera.2011.04.005. PubMed DOI PMC

Solhjoo S., O’Rourke B. Mitochondrial instability during regional ischemia-reperfusion underlies arrhythmias in monolayers of cardiomyocytes. J. Mol. Cell Cardiol. 2015;78:90–99. doi: 10.1016/j.yjmcc.2014.09.024. PubMed DOI PMC

Liu M., Liu H., Dudley S.C., Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ. Res. 2010;107:967–974. doi: 10.1161/CIRCRESAHA.110.220673. PubMed DOI PMC

Manchester L.C., Coto-Montes A., Boga J.A., Andersen L.P., Zhou Z., Galano A., Vriend J., Tan D.X., Reiter R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015;59:403–419. doi: 10.1111/jpi.12267. PubMed DOI

Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016;61:23–78. doi: 10.1111/jpi.12360. PubMed DOI

Reiter R.J., Tan D.X., Manchester L.C., Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem. Biophys. 2001;34:237–256. doi: 10.1385/CBB:34:2:237. PubMed DOI

Antolin I., Rodriguez C., Sainz R.M., Mayo J.C., Uria H., Kotler M.L., Rodriguez-Colunga M.J., Tolivia D., Menendez-Pelaez A. Neurohormone melatonin prevents cell damage: Effect on gene expression for antioxidant enzymes. FASEB J. 1996;10:882–890. doi: 10.1096/fasebj.10.8.8666165. PubMed DOI

Pablos M.I., Reiter R.J., Ortiz G.G., Guerrero J.M., Agapito M.T., Chuang J.I., Sewerynek E. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem. Int. 1998;32:69–75. doi: 10.1016/S0197-0186(97)00043-0. PubMed DOI

Rodriguez C., Mayo J.C., Sainz R.M., Antolin I., Herrera F., Martin V., Reiter R.J. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 2004;36:1–9. doi: 10.1046/j.1600-079X.2003.00092.x. PubMed DOI

Kaneko S., Okumura K., Numaguchi Y., Matsui H., Murase K., Mokuno S., Morishima I., Hira K., Toki Y., Ito T., et al. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury. Life Sci. 2000;67:101–112. doi: 10.1016/S0024-3205(00)00607-X. PubMed DOI

Salie R., Harper I., Cillie C., Genade S., Huisamen B., Moolman J., Lochner A. Melatonin protects against ischaemic-reperfusion myocardial damage. J. Mol. Cell. Cardiol. 2001;33:343–357. doi: 10.1006/jmcc.2000.1306. PubMed DOI

Sahna E., Parlakpinar H., Turkoz Y., Acet A. Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol. Res. 2005;54:491–495. PubMed

Lochner A., Marais E., Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What’s new? A review. J. Pineal Res. 2018;65:e12490. doi: 10.1111/jpi.12490. PubMed DOI

Blatt C.M., Rabinowitz S.H., Lown B. Central serotonergic agents raise the repetitive extrasystole threshold of the vulnerable period of the canine ventricular myocardium. Circ. Res. 1979;44:723–730. doi: 10.1161/01.RES.44.5.723. PubMed DOI

Tan D.X., Manchester L.C., Reiter R.J., Qi W., Kim S.J., El-Sokkary G.H. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: Prevention by melatonin. J. Pineal Res. 1998;25:184–191. doi: 10.1111/j.1600-079X.1998.tb00558.x. PubMed DOI

Lagneux C., Joyeux M., Demenge P., Ribuot C., Godin-Ribuot D. Protective effects of melatonin against ischemia-reperfusion injury in the isolated rat heart. Life Sci. 2000;66:503–509. doi: 10.1016/S0024-3205(99)00620-7. PubMed DOI

Lee Y.M., Chen H.R., Hsiao G., Sheu J.R., Wang J.J., Yen M.H. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo. J. Pineal Res. 2002;33:72–80. doi: 10.1034/j.1600-079X.2002.01869.x. PubMed DOI

Vazan R., Pancza D., Beder I., Styk J. Ischemia-reperfusion injury--antiarrhythmic effect of melatonin associated with reduced recovering of contractility. Gen. Physiol. Biophys. 2005;24:355–359. PubMed

Diez E.R., Prados L.V., Carrion A., Ponce Z.A., Miatello R.M. A novel electrophysiologic effect of melatonin on ischemia/reperfusion-induced arrhythmias in isolated rat hearts. J. Pineal Res. 2009;46:155–160. doi: 10.1111/j.1600-079X.2008.00643.x. PubMed DOI

Diez E.R., Renna N.F., Prado N.J., Lembo C., Ponce Zumino A.Z., Vazquez-Prieto M., Miatello R.M. Melatonin, given at the time of reperfusion, prevents ventricular arrhythmias in isolated hearts from fructose-fed rats and spontaneously hypertensive rats. J. Pineal Res. 2013;55:166–173. doi: 10.1111/jpi.12059. PubMed DOI

Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI

Bernikova O.G., Sedova K.A., Kharin S.N., Azarov Y.E. Effect of water-soluble echinochrome analog on arrhythmia severity in experimental model of acute myocardial ischemia. Bull. Exp. Biol. Med. 2018;165:340–343. doi: 10.1007/s10517-018-4165-z. PubMed DOI

Sedova K., Bernikova O., Azarov J., Shmakov D., Vityazev V., Kharin S. Effects of echinochrome on ventricular repolarization in acute ischemia. J. Electrocardiol. 2015;48:181–186. doi: 10.1016/j.jelectrocard.2015.01.003. PubMed DOI

Hausenloy D.J., Madonna R., Ovize M., Perrino C., Prunier F., Schulz R., Sluijter J.P.G., Van Laake L.W., Vinten-Johansen J., Yellon D.M., et al. Novel targets and future strategies for acute cardioprotection: Position paper of the european society of cardiology working group on cellular biology of the heart. Cardiovasc. Res. 2017;113:564–585. doi: 10.1093/cvr/cvx049. PubMed DOI

Coronel R., de Bakker J.M.T., Wilms-Schopman F.J.G., Opthof T., Linnenbank A.C., Belterman C.N., Janse M.J. Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: Experimental evidence to resolve some controversies. Heart Rhythm. 2006;3:1043–1050. doi: 10.1016/j.hrthm.2006.05.027. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...