Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VFN64165
Ministry of Health Czech republic
PubMed
33266595
PubMed Central
PMC7512430
DOI
10.3390/e20110871
PII: e20110871
Knihovny.cz E-resources
- Keywords
- blood glucose, fuzzy entropy, sample entropy, signal classification,
- Publication type
- Journal Article MeSH
This paper analyses the performance of SampEn and one of its derivatives, Fuzzy Entropy (FuzzyEn), in the context of artifacted blood glucose time series classification. This is a difficult and practically unexplored framework, where the availability of more sensitive and reliable measures could be of great clinical impact. Although the advent of new blood glucose monitoring technologies may reduce the incidence of the problems stated above, incorrect device or sensor manipulation, patient adherence, sensor detachment, time constraints, adoption barriers or affordability can still result in relatively short and artifacted records, as the ones analyzed in this paper or in other similar works. This study is aimed at characterizing the changes induced by such artifacts, enabling the arrangement of countermeasures in advance when possible. Despite the presence of these disturbances, results demonstrate that SampEn and FuzzyEn are sufficiently robust to achieve a significant classification performance, using records obtained from patients with duodenal-jejunal exclusion. The classification results, in terms of area under the ROC of up to 0.9, with several tests yielding AUC values also greater than 0.8, and in terms of a leave-one-out average classification accuracy of 80%, confirm the potential of these measures in this context despite the presence of artifacts, with SampEn having slightly better performance than FuzzyEn.
Department of Cybernetics Czech Technical University Prague 16000 Prague Czech Republic
Internal Medicine Department Teaching Hospital of Móstoles 28935 Madrid Spain
Obesitology Department Institute of Endocrinology 11694 Prague Czech Republic
See more in PubMed
Cobelli C., Man C.D., Sparacino G., Magni L., Nicolao G.D., Kovatchev B.P. Diabetes: Models, Signals, and Control. IEEE Rev. Biomed. Eng. 2009;2:54–96. doi: 10.1109/RBME.2009.2036073. PubMed DOI PMC
Kirk J.K., Stegner J. Self-Monitoring of Blood Glucose: Practical Aspects. J. Diabetes Sci. Technol. 2010;4:435–439. doi: 10.1177/193229681000400225. PubMed DOI PMC
Sherwani S.I., Khan H.A., Ekhzaimy A., Masood A., Sakharkar M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomarker Insights. 2016;11 doi: 10.4137/BMI.S38440. PubMed DOI PMC
Bonora E., Tuomilehto J. The Pros and Cons of Diagnosing Diabetes With A1C. Diabetes Care. 2011;34:S184–S190. doi: 10.2337/dc11-s216. PubMed DOI PMC
DeVries J.H. Glucose Variability: Where It Is Important and How to Measure It. Diabetes. 2013;62:1405–1408. doi: 10.2337/db12-1610. PubMed DOI PMC
Fonseca V.A., Grunberger G., Anhalt H., Bailey T.S., Blevins T., Garg S.K., Handelsman Y., Hirsch I.B., Orzeck E.A., Roberts V.L., et al. Continuous glucose monitoring: A consensus conference of the american association of clinical endocrinologists and american college of endocrinology. Endocr. Pract. 2016;22:1008–1021. doi: 10.4158/EP161392.CS. PubMed DOI
Pincus S., Gladstone I., Ehrenkranz R. A regularity statistic for medical data analysis. J. Clin. Monit. Comput. 1991;7:335–345. doi: 10.1007/BF01619355. PubMed DOI
Richman J., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI
Chen W., Zhuang J., Yu W., Wang Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 2009;31:61–68. doi: 10.1016/j.medengphy.2008.04.005. PubMed DOI
Sparacino G., Facchinetti A., Cobelli C. “Smart” Continuous Glucose Monitoring Sensors: On-Line Signal Processing Issues. Sensors. 2010;10:6751–6772. doi: 10.3390/s100706751. PubMed DOI PMC
Fonda S.J., Lewis D.G., Vigersky R.A. Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. J. Diabetes Sci. Technol. 2013;7:88–92. doi: 10.1177/193229681300700110. PubMed DOI PMC
David R. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol. Ther. 2016;18:S2-3–S2-13. PubMed PMC
Gómez A.M., Henao Carrillo D.C., Muñoz Velandia O.M. Devices for continuous monitoring of glucose: update in technology. Med. Devices. 2017;10:215–224. doi: 10.2147/MDER.S110121. PubMed DOI PMC
Vaddiraju S., Burgess D.J., Tomazos I., Jain F.C., Papadimitrakopoulos F. Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises. J. Diabetes Sci. Technol. 2010;4:1540–1562. doi: 10.1177/193229681000400632. PubMed DOI PMC
Fokkert M.J., van Dijk P.R., Edens M.A., Abbes S., de Jong D., Slingerland R.J., Bilo H.J.G. Performance of the FreeStyle Libre Flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Res. Care. 2017;5 doi: 10.1136/bmjdrc-2016-000320. PubMed DOI PMC
Petrie J.R., Peters A.L., Bergenstal R.M., Holl R.W., Fleming G.A., Heinemann L. Improving the Clinical Value and Utility of CGM Systems: Issues and Recommendations. Diabetes Care. 2017;40:1614–1621. doi: 10.2337/dci17-0043. PubMed DOI
Forouhi N.G., Wareham N.J. Epidemiology of diabetes. Medicine. 2014;42:698–702. doi: 10.1016/j.mpmed.2014.09.007. PubMed DOI PMC
DeFronzo R. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 2004;88:787–835. doi: 10.1016/j.mcna.2004.04.013. PubMed DOI
Weber C., Schnell O. The Assessment of Glycemic Variability and Its Impact on Diabetes-Related Complications: An Overview. Diabetes Technol. Ther. 2009;10:623–633. doi: 10.1089/dia.2009.0043. PubMed DOI
Siegelaar S.E., Holleman F., Hoekstra J.B.L., DeVries J.H. Glucose Variability; Does It Matter? Endocr. Rev. 2010;31:171–182. doi: 10.1210/er.2009-0021. PubMed DOI
Rodbard D. Interpretation of Continuous Glucose Monitoring Data: Glycemic Variability and Quality of Glycemic Control. Diabetes Technol. Ther. 2009;11:S55–S67. doi: 10.1089/dia.2008.0132. PubMed DOI
Juan C., Luís V., Esther L., Julián R.G., Manuel V. The route to diabetes: Loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2008;1:3–11. PubMed PMC
Peng C.K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E. 1994;49:1685–1689. doi: 10.1103/PhysRevE.49.1685. PubMed DOI
Ogata H., Tokuyama K., Nagasaka S., Ando A., Kusaka I., Sato N., Goto A., Ishibashi S., Kiyono K., Struzik R., et al. Long-range correlated glucose fluctuations in diabetes. Methods Inf. Med. 2007;46:222–226. doi: 10.1055/s-0038-1625411. PubMed DOI
Rodriguez de Castro C., Vigil L., Vargas B., Garcia Delgado E., Garcia-Carretero R., Ruiz-Galiana J., Varela M. Glucose time series complexity as a predictor of type 2 Diabetes. Diabetes Metab. Res. Rev. 2016;30:e2831. doi: 10.1002/dmrr.2831. PubMed DOI PMC
Vigil L., Condés E., Varela M., Rodriguez C., Colas A., Vargas B., Lopez M., Cirugeda E. Glucose series complexity in hypertensive patients. J. Am. Soc. Hypertension. 2014;8:630–636. doi: 10.1016/j.jash.2014.05.008. PubMed DOI
Brunner R., Adelsmayr G., Herkner H., Madl C., Holzinger U. Glycemic variability and glucose complexity in critically ill patients: A retrospective analysis of continuous glucose monitoring data. Crit. Care. 2012;16:R175. doi: 10.1186/cc11657. PubMed DOI PMC
Crenier L., Lytrivi M., Van Dalem A., Keymeulen B., Corvilain B. Glucose Complexity Estimates Insulin Resistance in Either Nondiabetic Individuals or in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2016;101:1490–1497. doi: 10.1210/jc.2015-4035. PubMed DOI
Kohnert K., Salzsieder E. Useful Measures to Assess Glucose Dynamics from Continuous Glucose Monitoring Data. Curr. Res. Diabetes Obes. J. 2017;1:1–4.
Engoren M., Schwann T.A., Habib R.H. Hyperglycemia, hypoglycemia, and glycemic complexity are associated with worse outcomes after surgery. J. Crit. Care. 2014;29:611–617. doi: 10.1016/j.jcrc.2014.03.014. PubMed DOI
Chen J.L., Chen P.F., Wang H.M. Decreased complexity of glucose dynamics in diabetes: Evidence from multiscale entropy analysis of continuous glucose monitoring system data. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014;307:R179–R183. doi: 10.1152/ajpregu.00108.2014. PubMed DOI
Choi W.Y., Hoh J.K. Nonlinear analysis of fetal heart rate dynamics in fetuses compromised by asymptomatic partial placental abruption. Placenta. 2015;36:1474–1479. doi: 10.1016/j.placenta.2015.10.002. PubMed DOI
Zhao L., Wei S., Zhang C., Zhang Y., Jiang X., Liu F., Liu C. Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects. Entropy. 2015;17:6270–6288. doi: 10.3390/e17096270. DOI
Li H., Peng C., Ye D. A study of sleep staging based on a sample entropy analysis of electroencephalogram. Bio-Med. Mater. Eng. 2015;26:S1149–S1156. doi: 10.3233/BME-151411. PubMed DOI
Yu M., Chen F., Hu F. Classification of EEG Signal Based on HCSP and Fuzzy Entropy; Proceedings of the 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC); Chengdu, China. 21–23 July 2017; pp. 189–193. DOI
Zhang D., Ding H., Liu Y., Zhou C., Ding H., Ye D. Neurodevelopment in newborns: A sample entropy analysis of electroencephalogram. Physiol. Meas. 2009;30:491. doi: 10.1088/0967-3334/30/5/006. PubMed DOI
Jia Y., Gu H., Luo Q. Sample entropy reveals an age-related reduction in the complexity of dynamic brain. Sci. Rep. 2017;7:7990. doi: 10.1038/s41598-017-08565-y. PubMed DOI PMC
Acharya U.R., Fujita H., Adam M., Lih O.S., Hong T.J., Sudarshan V.K., Koh J.E. Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats; Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Budapest, Hungary. 9–12 October 2016; pp. 000533–000538. DOI
Mehta P., Gaikwad J.A., Kulkarni J.V. Application of multi-scale fuzzy entropy for roller bearing fault detection and fault classification based on VPMCD; Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT); Bangalore, India. 20–21 May 2016; pp. 256–261. DOI
Sugisaki K., Ohmori H. Realtime estimation of the degree of market efficiency using variable weighted Sample Entropy; Proceedings of the 2008 SICE Annual Conference; Tokyo, Japan. 20–22 August 2008; pp. 1415–1418. DOI
Cirugeda-Roldán E.M., Molina-Picó A., Novák D., Cuesta-Frau D., Kremen V. Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation. Comp. Math. Methods Med. 2018;2018:1874651. doi: 10.1155/2018/1874651. PubMed DOI PMC
Cuesta-Frau D., Miró-Martínez P., Núñez J.J., Oltra-Crespo S., Picó A.M. Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Comput. Biol. Med. 2017;87:141–151. doi: 10.1016/j.compbiomed.2017.05.028. PubMed DOI
Molina-Picó A., Cuesta-Frau D., Aboy M., Crespo C., Miró-Martínez P., Oltra-Crespo S. Comparative Study of Approximate Entropy and Sample Entropy Robustness to Spikes. Artif. Intell. Med. 2011;53:97–106. doi: 10.1016/j.artmed.2011.06.007. PubMed DOI
Kaválková P., Mráz M., Trachta P., Kloučková J., Cinkajzlová A., Lacinová Z., Haluzíková D., Beneš M., Vlasáková Z., Burda V., et al. Endocrine effects of duodenal–jejunal exclusion in obese patients with type 2 diabetes mellitus. J. Endocrinol. 2016;231:11–22. doi: 10.1530/JOE-16-0206. PubMed DOI
Van Rijn S., Betzel B., de Jonge C., van Dijk D.P.J., Janssen I.M., Berends F.J., Bouvy N.D., Greve J.W.M. The Effect of 6 and 12 months Duodenal-Jejunal Bypass Liner Treatment on Obesity and Type 2 Diabetes: A Crossover Cohort Study. Obes. Surg. 2018;28:1255–1262. doi: 10.1007/s11695-017-2997-7. PubMed DOI PMC
Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006;27:861–874. doi: 10.1016/j.patrec.2005.10.010. DOI
Hu J. Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel. Comput. Math. Methods Med. 2017;2017:5109530. doi: 10.1155/2017/5109530. PubMed DOI PMC
Orlhac F., Soussan M., Djelbani S., Tordjmann J., Buvat I. Entropy characterizes intratumoral hypometabolism in FDG PET. J. Nuclear Med. 2015;56:1779.
Norris P.R., Stein P.K., Morris J.A. Reduced heart rate multiscale entropy predicts death in critical illness: A study of physiologic complexity in 285 trauma patients. J. Crit. Care. 2008;23:399–405. doi: 10.1016/j.jcrc.2007.08.001. PubMed DOI
Fino P.C., Mojdehi A.R., Adjerid K., Habibi M., Lockhart T.E., Ross S.D. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-fallers. Ann. Biomed. Eng. 2016;44:1636–1645. doi: 10.1007/s10439-015-1479-0. PubMed DOI PMC
Delic J., Alhilali L.M., Hughes M.A., Gumus S., Fakhran S. White Matter Injuries in Mild Traumatic Brain Injury and Posttraumatic Migraines: Diffusion Entropy Analysis. Radiology. 2016;279:859–866. doi: 10.1148/radiol.2015151388. PubMed DOI
Sturmberg J.P., Bennett J.M., Picard M., Seely A.J.E. The trajectory of life. Decreasing physiological network complexity through changing fractal patterns. Front. Physiol. 2015;6:169. doi: 10.3389/fphys.2015.00169. PubMed DOI PMC
Obuchowski N. Fundamentals of clinical research for radiologists—ROC analysis. Am. J. Roentgenol. 2005;184:364–372. doi: 10.2214/ajr.184.2.01840364. PubMed DOI
Goksuluk D., Korkmaz S., Zararsiz G., Karağaoğlu A. easyROC: An Interactive Web-tool for ROC Curve Analysis Using R Language Environment. R J. 2016;2:213–230.
DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595. PubMed DOI
Frandes M., Timar B., Timar R., Lungeanu D. Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models. Nat. Sci. Rep. 2017 doi: 10.1038/s41598-017-06478-4. PubMed DOI PMC
Driscoll K.A., Johnson S.B., Tang Y., Yang F., Deeb L.C., Silverstein J.H. Does Blood Glucose Monitoring Increase Prior to Clinic Visits in Children With Type 1 Diabetes? Diabetes Care. 2011;34:2170–2173. doi: 10.2337/dc11-0388. PubMed DOI PMC
Pickering T.G., Gerin W., Schwartz A.R. What is the white-coat effect and how should it be measured? Blood Pressure Monit. 2002;7:293–300. doi: 10.1097/00126097-200212000-00001. PubMed DOI
Benmoussa J.A., Clarke M., Bloomfield D. White Coat Hyperglycemia: The Forgotten Syndrome. J. Clin. Med. Res. 2016;8:567–568. doi: 10.14740/jocmr2626e. PubMed DOI PMC
Ferri C., Hernández-Orallo J., Modroiu R. An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 2009;30:27–38. doi: 10.1016/j.patrec.2008.08.010. DOI