• This record comes from PubMed

Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics

. 2018 Nov 12 ; 20 (11) : . [epub] 20181112

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
VFN64165 Ministry of Health Czech republic

This paper analyses the performance of SampEn and one of its derivatives, Fuzzy Entropy (FuzzyEn), in the context of artifacted blood glucose time series classification. This is a difficult and practically unexplored framework, where the availability of more sensitive and reliable measures could be of great clinical impact. Although the advent of new blood glucose monitoring technologies may reduce the incidence of the problems stated above, incorrect device or sensor manipulation, patient adherence, sensor detachment, time constraints, adoption barriers or affordability can still result in relatively short and artifacted records, as the ones analyzed in this paper or in other similar works. This study is aimed at characterizing the changes induced by such artifacts, enabling the arrangement of countermeasures in advance when possible. Despite the presence of these disturbances, results demonstrate that SampEn and FuzzyEn are sufficiently robust to achieve a significant classification performance, using records obtained from patients with duodenal-jejunal exclusion. The classification results, in terms of area under the ROC of up to 0.9, with several tests yielding AUC values also greater than 0.8, and in terms of a leave-one-out average classification accuracy of 80%, confirm the potential of these measures in this context despite the presence of artifacts, with SampEn having slightly better performance than FuzzyEn.

See more in PubMed

Cobelli C., Man C.D., Sparacino G., Magni L., Nicolao G.D., Kovatchev B.P. Diabetes: Models, Signals, and Control. IEEE Rev. Biomed. Eng. 2009;2:54–96. doi: 10.1109/RBME.2009.2036073. PubMed DOI PMC

Kirk J.K., Stegner J. Self-Monitoring of Blood Glucose: Practical Aspects. J. Diabetes Sci. Technol. 2010;4:435–439. doi: 10.1177/193229681000400225. PubMed DOI PMC

Sherwani S.I., Khan H.A., Ekhzaimy A., Masood A., Sakharkar M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomarker Insights. 2016;11 doi: 10.4137/BMI.S38440. PubMed DOI PMC

Bonora E., Tuomilehto J. The Pros and Cons of Diagnosing Diabetes With A1C. Diabetes Care. 2011;34:S184–S190. doi: 10.2337/dc11-s216. PubMed DOI PMC

DeVries J.H. Glucose Variability: Where It Is Important and How to Measure It. Diabetes. 2013;62:1405–1408. doi: 10.2337/db12-1610. PubMed DOI PMC

Fonseca V.A., Grunberger G., Anhalt H., Bailey T.S., Blevins T., Garg S.K., Handelsman Y., Hirsch I.B., Orzeck E.A., Roberts V.L., et al. Continuous glucose monitoring: A consensus conference of the american association of clinical endocrinologists and american college of endocrinology. Endocr. Pract. 2016;22:1008–1021. doi: 10.4158/EP161392.CS. PubMed DOI

Pincus S., Gladstone I., Ehrenkranz R. A regularity statistic for medical data analysis. J. Clin. Monit. Comput. 1991;7:335–345. doi: 10.1007/BF01619355. PubMed DOI

Richman J., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI

Chen W., Zhuang J., Yu W., Wang Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 2009;31:61–68. doi: 10.1016/j.medengphy.2008.04.005. PubMed DOI

Sparacino G., Facchinetti A., Cobelli C. “Smart” Continuous Glucose Monitoring Sensors: On-Line Signal Processing Issues. Sensors. 2010;10:6751–6772. doi: 10.3390/s100706751. PubMed DOI PMC

Fonda S.J., Lewis D.G., Vigersky R.A. Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. J. Diabetes Sci. Technol. 2013;7:88–92. doi: 10.1177/193229681300700110. PubMed DOI PMC

David R. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol. Ther. 2016;18:S2-3–S2-13. PubMed PMC

Gómez A.M., Henao Carrillo D.C., Muñoz Velandia O.M. Devices for continuous monitoring of glucose: update in technology. Med. Devices. 2017;10:215–224. doi: 10.2147/MDER.S110121. PubMed DOI PMC

Vaddiraju S., Burgess D.J., Tomazos I., Jain F.C., Papadimitrakopoulos F. Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises. J. Diabetes Sci. Technol. 2010;4:1540–1562. doi: 10.1177/193229681000400632. PubMed DOI PMC

Fokkert M.J., van Dijk P.R., Edens M.A., Abbes S., de Jong D., Slingerland R.J., Bilo H.J.G. Performance of the FreeStyle Libre Flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Res. Care. 2017;5 doi: 10.1136/bmjdrc-2016-000320. PubMed DOI PMC

Petrie J.R., Peters A.L., Bergenstal R.M., Holl R.W., Fleming G.A., Heinemann L. Improving the Clinical Value and Utility of CGM Systems: Issues and Recommendations. Diabetes Care. 2017;40:1614–1621. doi: 10.2337/dci17-0043. PubMed DOI

Forouhi N.G., Wareham N.J. Epidemiology of diabetes. Medicine. 2014;42:698–702. doi: 10.1016/j.mpmed.2014.09.007. PubMed DOI PMC

DeFronzo R. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 2004;88:787–835. doi: 10.1016/j.mcna.2004.04.013. PubMed DOI

Weber C., Schnell O. The Assessment of Glycemic Variability and Its Impact on Diabetes-Related Complications: An Overview. Diabetes Technol. Ther. 2009;10:623–633. doi: 10.1089/dia.2009.0043. PubMed DOI

Siegelaar S.E., Holleman F., Hoekstra J.B.L., DeVries J.H. Glucose Variability; Does It Matter? Endocr. Rev. 2010;31:171–182. doi: 10.1210/er.2009-0021. PubMed DOI

Rodbard D. Interpretation of Continuous Glucose Monitoring Data: Glycemic Variability and Quality of Glycemic Control. Diabetes Technol. Ther. 2009;11:S55–S67. doi: 10.1089/dia.2008.0132. PubMed DOI

Juan C., Luís V., Esther L., Julián R.G., Manuel V. The route to diabetes: Loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2008;1:3–11. PubMed PMC

Peng C.K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E. 1994;49:1685–1689. doi: 10.1103/PhysRevE.49.1685. PubMed DOI

Ogata H., Tokuyama K., Nagasaka S., Ando A., Kusaka I., Sato N., Goto A., Ishibashi S., Kiyono K., Struzik R., et al. Long-range correlated glucose fluctuations in diabetes. Methods Inf. Med. 2007;46:222–226. doi: 10.1055/s-0038-1625411. PubMed DOI

Rodriguez de Castro C., Vigil L., Vargas B., Garcia Delgado E., Garcia-Carretero R., Ruiz-Galiana J., Varela M. Glucose time series complexity as a predictor of type 2 Diabetes. Diabetes Metab. Res. Rev. 2016;30:e2831. doi: 10.1002/dmrr.2831. PubMed DOI PMC

Vigil L., Condés E., Varela M., Rodriguez C., Colas A., Vargas B., Lopez M., Cirugeda E. Glucose series complexity in hypertensive patients. J. Am. Soc. Hypertension. 2014;8:630–636. doi: 10.1016/j.jash.2014.05.008. PubMed DOI

Brunner R., Adelsmayr G., Herkner H., Madl C., Holzinger U. Glycemic variability and glucose complexity in critically ill patients: A retrospective analysis of continuous glucose monitoring data. Crit. Care. 2012;16:R175. doi: 10.1186/cc11657. PubMed DOI PMC

Crenier L., Lytrivi M., Van Dalem A., Keymeulen B., Corvilain B. Glucose Complexity Estimates Insulin Resistance in Either Nondiabetic Individuals or in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2016;101:1490–1497. doi: 10.1210/jc.2015-4035. PubMed DOI

Kohnert K., Salzsieder E. Useful Measures to Assess Glucose Dynamics from Continuous Glucose Monitoring Data. Curr. Res. Diabetes Obes. J. 2017;1:1–4.

Engoren M., Schwann T.A., Habib R.H. Hyperglycemia, hypoglycemia, and glycemic complexity are associated with worse outcomes after surgery. J. Crit. Care. 2014;29:611–617. doi: 10.1016/j.jcrc.2014.03.014. PubMed DOI

Chen J.L., Chen P.F., Wang H.M. Decreased complexity of glucose dynamics in diabetes: Evidence from multiscale entropy analysis of continuous glucose monitoring system data. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014;307:R179–R183. doi: 10.1152/ajpregu.00108.2014. PubMed DOI

Choi W.Y., Hoh J.K. Nonlinear analysis of fetal heart rate dynamics in fetuses compromised by asymptomatic partial placental abruption. Placenta. 2015;36:1474–1479. doi: 10.1016/j.placenta.2015.10.002. PubMed DOI

Zhao L., Wei S., Zhang C., Zhang Y., Jiang X., Liu F., Liu C. Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects. Entropy. 2015;17:6270–6288. doi: 10.3390/e17096270. DOI

Li H., Peng C., Ye D. A study of sleep staging based on a sample entropy analysis of electroencephalogram. Bio-Med. Mater. Eng. 2015;26:S1149–S1156. doi: 10.3233/BME-151411. PubMed DOI

Yu M., Chen F., Hu F. Classification of EEG Signal Based on HCSP and Fuzzy Entropy; Proceedings of the 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC); Chengdu, China. 21–23 July 2017; pp. 189–193. DOI

Zhang D., Ding H., Liu Y., Zhou C., Ding H., Ye D. Neurodevelopment in newborns: A sample entropy analysis of electroencephalogram. Physiol. Meas. 2009;30:491. doi: 10.1088/0967-3334/30/5/006. PubMed DOI

Jia Y., Gu H., Luo Q. Sample entropy reveals an age-related reduction in the complexity of dynamic brain. Sci. Rep. 2017;7:7990. doi: 10.1038/s41598-017-08565-y. PubMed DOI PMC

Acharya U.R., Fujita H., Adam M., Lih O.S., Hong T.J., Sudarshan V.K., Koh J.E. Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats; Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Budapest, Hungary. 9–12 October 2016; pp. 000533–000538. DOI

Mehta P., Gaikwad J.A., Kulkarni J.V. Application of multi-scale fuzzy entropy for roller bearing fault detection and fault classification based on VPMCD; Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT); Bangalore, India. 20–21 May 2016; pp. 256–261. DOI

Sugisaki K., Ohmori H. Realtime estimation of the degree of market efficiency using variable weighted Sample Entropy; Proceedings of the 2008 SICE Annual Conference; Tokyo, Japan. 20–22 August 2008; pp. 1415–1418. DOI

Cirugeda-Roldán E.M., Molina-Picó A., Novák D., Cuesta-Frau D., Kremen V. Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation. Comp. Math. Methods Med. 2018;2018:1874651. doi: 10.1155/2018/1874651. PubMed DOI PMC

Cuesta-Frau D., Miró-Martínez P., Núñez J.J., Oltra-Crespo S., Picó A.M. Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Comput. Biol. Med. 2017;87:141–151. doi: 10.1016/j.compbiomed.2017.05.028. PubMed DOI

Molina-Picó A., Cuesta-Frau D., Aboy M., Crespo C., Miró-Martínez P., Oltra-Crespo S. Comparative Study of Approximate Entropy and Sample Entropy Robustness to Spikes. Artif. Intell. Med. 2011;53:97–106. doi: 10.1016/j.artmed.2011.06.007. PubMed DOI

Kaválková P., Mráz M., Trachta P., Kloučková J., Cinkajzlová A., Lacinová Z., Haluzíková D., Beneš M., Vlasáková Z., Burda V., et al. Endocrine effects of duodenal–jejunal exclusion in obese patients with type 2 diabetes mellitus. J. Endocrinol. 2016;231:11–22. doi: 10.1530/JOE-16-0206. PubMed DOI

Van Rijn S., Betzel B., de Jonge C., van Dijk D.P.J., Janssen I.M., Berends F.J., Bouvy N.D., Greve J.W.M. The Effect of 6 and 12 months Duodenal-Jejunal Bypass Liner Treatment on Obesity and Type 2 Diabetes: A Crossover Cohort Study. Obes. Surg. 2018;28:1255–1262. doi: 10.1007/s11695-017-2997-7. PubMed DOI PMC

Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006;27:861–874. doi: 10.1016/j.patrec.2005.10.010. DOI

Hu J. Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel. Comput. Math. Methods Med. 2017;2017:5109530. doi: 10.1155/2017/5109530. PubMed DOI PMC

Orlhac F., Soussan M., Djelbani S., Tordjmann J., Buvat I. Entropy characterizes intratumoral hypometabolism in FDG PET. J. Nuclear Med. 2015;56:1779.

Norris P.R., Stein P.K., Morris J.A. Reduced heart rate multiscale entropy predicts death in critical illness: A study of physiologic complexity in 285 trauma patients. J. Crit. Care. 2008;23:399–405. doi: 10.1016/j.jcrc.2007.08.001. PubMed DOI

Fino P.C., Mojdehi A.R., Adjerid K., Habibi M., Lockhart T.E., Ross S.D. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-fallers. Ann. Biomed. Eng. 2016;44:1636–1645. doi: 10.1007/s10439-015-1479-0. PubMed DOI PMC

Delic J., Alhilali L.M., Hughes M.A., Gumus S., Fakhran S. White Matter Injuries in Mild Traumatic Brain Injury and Posttraumatic Migraines: Diffusion Entropy Analysis. Radiology. 2016;279:859–866. doi: 10.1148/radiol.2015151388. PubMed DOI

Sturmberg J.P., Bennett J.M., Picard M., Seely A.J.E. The trajectory of life. Decreasing physiological network complexity through changing fractal patterns. Front. Physiol. 2015;6:169. doi: 10.3389/fphys.2015.00169. PubMed DOI PMC

Obuchowski N. Fundamentals of clinical research for radiologists—ROC analysis. Am. J. Roentgenol. 2005;184:364–372. doi: 10.2214/ajr.184.2.01840364. PubMed DOI

Goksuluk D., Korkmaz S., Zararsiz G., Karağaoğlu A. easyROC: An Interactive Web-tool for ROC Curve Analysis Using R Language Environment. R J. 2016;2:213–230.

DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595. PubMed DOI

Frandes M., Timar B., Timar R., Lungeanu D. Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models. Nat. Sci. Rep. 2017 doi: 10.1038/s41598-017-06478-4. PubMed DOI PMC

Driscoll K.A., Johnson S.B., Tang Y., Yang F., Deeb L.C., Silverstein J.H. Does Blood Glucose Monitoring Increase Prior to Clinic Visits in Children With Type 1 Diabetes? Diabetes Care. 2011;34:2170–2173. doi: 10.2337/dc11-0388. PubMed DOI PMC

Pickering T.G., Gerin W., Schwartz A.R. What is the white-coat effect and how should it be measured? Blood Pressure Monit. 2002;7:293–300. doi: 10.1097/00126097-200212000-00001. PubMed DOI

Benmoussa J.A., Clarke M., Bloomfield D. White Coat Hyperglycemia: The Forgotten Syndrome. J. Clin. Med. Res. 2016;8:567–568. doi: 10.14740/jocmr2626e. PubMed DOI PMC

Ferri C., Hernández-Orallo J., Modroiu R. An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 2009;30:27–38. doi: 10.1016/j.patrec.2008.08.010. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...