Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition

. 2020 Jun 20 ; 21 (12) : . [epub] 20200620

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32575682

Grantová podpora
19-13766J Czech Science Foundation

Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.

Zobrazit více v PubMed

Zheng H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8:59950–59964. doi: 10.18632/oncotarget.19048. PubMed DOI PMC

Merlos Rodrigo M.A., Jimenez Jimemez A.M., Haddad Y., Bodoor K., Adam P., Krizkova S., Heger Z., Adam V. Metallothionein Isoforms as Double Agents—Their Roles in Carcinogenesis, Cancer Progression and Chemoresistance. Drug Resist. Update. 2020 doi: 10.1016/j.drup.2020.100691. in press. PubMed DOI

Skarkova V., Kralova V., Vitovcova B., Rudolf E. Selected Aspects of Chemoresistance Mechanisms in Colorectal CarcinomaA Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells. 2019;8:234. doi: 10.3390/cells8030234. PubMed DOI PMC

Gong Y.T., Fan Z.Y., Luo G.P., Yang C., Huang Q.Y., Fan K., Cheng H., Jin K.Z., Ni Q.X., Yu X.J., et al. The role of necroptosis in cancer biology and therapy. Mol. Cancer. 2019;18 doi: 10.1186/s12943-019-1029-8. PubMed DOI PMC

Zhitomirsky B., Assaraf Y.G. Lysosomes as mediators of drug resistance in cancer. Drug Resist. Update. 2016;24:23–33. doi: 10.1016/j.drup.2015.11.004. PubMed DOI

Zhitomirsky B., Assaraf Y.G. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget. 2017;8:45117–45132. doi: 10.18632/oncotarget.15155. PubMed DOI PMC

Ndolo R.A., Jacobs D.T., Forrest M.L., Krise J.P. Intracellular Distribution-based Anticancer Drug Targeting: Exploiting a Lysosomal Acidification Defect Associated with Cancer Cells. Mol. Cell. Pharmacol. 2010;2:131–136. doi: 10.4255/mcpharmacol.10.18. PubMed DOI PMC

Ullio C., Brunk U.T., Urani C., Melchioretto P., Bonelli G., Baccino F.M., Autelli R. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells. Autophagy. 2015;11:2184–2198. doi: 10.1080/15548627.2015.1106662. PubMed DOI PMC

Appelqvist H., Waster P., Kagedal K., Ollinger K. The lysosome: From waste bag to potential therapeutic target. J. Mol. Cell Biol. 2013;5:214–226. doi: 10.1093/jmcb/mjt022. PubMed DOI

Saftig P., Schroder B., Blanz J. Lysosomal membrane proteins: Life between acid and neutral conditions. Biochem. Soc. Trans. 2010;38:1420–1423. doi: 10.1042/BST0381420. PubMed DOI

Saftig P., Haas A. Turn up the lysosome. Nat. Cell Biol. 2016;18:1025–1027. doi: 10.1038/ncb3409. PubMed DOI

Kissing S., Saftig P., Haas A. Vacuolar ATPase in phago(lyso)some biology. Int. J. Med. Microbiol. 2018;308:58–67. doi: 10.1016/j.ijmm.2017.08.007. PubMed DOI

Cotter K., Capecci J., Sennoune S., Huss M., Maier M., Martinez-Zaguilan R., Forgac M. Activity of Plasma Membrane V-ATPases Is Critical for the Invasion of MDA-MB231 Breast Cancer Cells. J. Biol. Chem. 2015;290:3680–3692. doi: 10.1074/jbc.M114.611210. PubMed DOI PMC

Halcrow P.W., Khan N., Datta G., Ohm J.E., Chen X., Geiger J.D. Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep. 2019;2:e1193. doi: 10.1002/cnr2.1193. PubMed DOI PMC

Palmieri M., Impey S., Kang H.J., di Ronza A., Pelz C., Sardiello M., Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011;20:3852–3866. doi: 10.1093/hmg/ddr306. PubMed DOI

Pena-Llopis S., Vega-Rubin-de-Celis S., Schwartz J.C., Wolff N.C., Tran T.A.T., Zou L.H., Xie X.J., Corey D.R., Brugarolas J. Regulation of TFEB and V-ATPases by mTORC1. Embo J. 2011;30:3242–3258. doi: 10.1038/emboj.2011.257. PubMed DOI PMC

Puertollano R. mTOR and lysosome regulation. F1000Prime Rep. 2014;6:52. doi: 10.12703/P6-52. PubMed DOI PMC

Fennelly C., Amaravadi R.K. Lysosomal Biology in Cancer. Methods Mol. Biol. 2017;1594:293–308. doi: 10.1007/978-1-4939-6934-0_19. PubMed DOI PMC

Allison A.C. Lysosomes in cancer cells. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 1974;7:43–50. doi: 10.1136/jcp.27.Suppl_7.43. PubMed DOI PMC

Kallunki T., Olsen O.D., Jaattela M. Cancer-associated lysosomal changes: Friends or foes? Oncogene. 2013;32:1995–2004. doi: 10.1038/onc.2012.292. PubMed DOI

Zhong B.F., Liu M., Bai C.S., Ruan Y.X., Wang Y.Y., Qiu L., Hong Y., Wang X., Li L.F., Li B.H. Caspase-8 Induces Lysosome-Associated Cell Death in Cancer Cells. Mol. Ther. 2020;28:1078–1091. doi: 10.1016/j.ymthe.2020.01.022. PubMed DOI PMC

Fais S. Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism. J. Intern. Med. 2010;267:515–525. doi: 10.1111/j.1365-2796.2010.02225.x. PubMed DOI

Daniel C., Bell C., Burton C., Harguindey S., Reshkin S.J., Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim. Biophys. Acta-Mol. Basis Dis. 2013;1832:606–617. doi: 10.1016/j.bbadis.2013.01.020. PubMed DOI

Cavalcante G.C., Schaan A.P., Cabral G.F., Santana-da-Silva M.N., Pinto P., Vidal A.F., Ribeiro-dos-Santos A. A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int. J. Mol. Sci. 2019;20:4133. doi: 10.3390/ijms20174133. PubMed DOI PMC

Linder B., Kogel D. Autophagy in Cancer Cell Death. Biology. 2019;8:82. doi: 10.3390/biology8040082. PubMed DOI PMC

Amaravadi R.K. Autophagy-induced tumor dormancy in ovarian cancer. J. Clin. Investig. 2008;118:3837–3840. doi: 10.1172/JCI37667. PubMed DOI PMC

Harguindey S., Orive G., Pedraz J.L., Paradiso A., Reshkin S.J. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin-one single nature. Biochim. Biophys. Acta-Rev. Cancer. 2005;1756:1–24. doi: 10.1016/j.bbcan.2005.06.004. PubMed DOI

Murakami T., Shibuya I., Ise T., Chen Z.S., Akiyama S., Nakagawa M., Izumi H., Nakamura T., Matsuo K., Yamada Y., et al. Elevated expression of vacuolar proton pump genes and cellular pH in cisplatin resistance. Int. J. Cancer. 2001;93:869–874. doi: 10.1002/ijc.1418. PubMed DOI

Capecci J., Forgac M. The Function of Vacuolar ATPase (V-ATPase) a Subunit Isoforms in Invasiveness of MCF10a and MCF10CA1a Human Breast Cancer Cells. J. Biol. Chem. 2013;288:32731–32741. doi: 10.1074/jbc.M113.503771. PubMed DOI PMC

Forgac M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 2007;8:917–929. doi: 10.1038/nrm2272. PubMed DOI

Hinton A., Sennoune S.R., Bond S., Fang M., Reuveni M., Sahagian G.G., Jay D., Martinez-Zaguilan R., Forgac M. Function of a Subunit Isoforms of the V-ATPase in pH Homeostasis and in Vitro Invasion of MDA-MB231 Human Breast Cancer Cells. J. Biol. Chem. 2009;284:16400–16408. doi: 10.1074/jbc.M901201200. PubMed DOI PMC

Perez-Sayans M., Somoza-Martin J.M., Barros-Angueira F., Rey J.M.G., Garcia-Garcia A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat. Rev. 2009;35:707–713. doi: 10.1016/j.ctrv.2009.08.003. PubMed DOI

Lebreton S., Jaunbergs J., Roth M.G., Ferguson D.A., De Brabander J.K. Evaluating the potential of Vacuolar ATPase inhibitors as anticancer agents and multigram synthesis of the potent salicylihalamide analog saliphenylhalamide. Bioorg. Med. Chem. Lett. 2008;18:5879–5883. doi: 10.1016/j.bmcl.2008.07.003. PubMed DOI PMC

Supino R., Petrangolini G., Pratesi G., Tortoreto M., Favini E., Dal Bo L., Casalini P., Radaelli E., Croce A.C., Bottiroli G., et al. Antimetastatic effect of a small-molecule vacuolar H+-ATPase inhibitor in in vitro and in vivo preclinical studies. J. Pharmacol. Exp. Ther. 2008;324:15–22. doi: 10.1124/jpet.107.128587. PubMed DOI

Han J., Sridevi P., Ramirez M., Ludwig K.J., Wang J.Y.J. β-Catenin-dependent lysosomal targeting of internalized tumor necrosis factor-α suppresses caspase-8 activation in apoptosis-resistant colon cancer cells. Mol. Biol. Cell. 2013;24:465–473. doi: 10.1091/mbc.e12-09-0662. PubMed DOI PMC

Hendrix A., Sormunen R., Westbroek W., Lambein K., Denys H., Sys G., Braems G., Van den Broecke R., Cocquyt V., Gespach C., et al. Vacuolar H plus ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. Int. J. Cancer. 2013;133:843–854. doi: 10.1002/ijc.28079. PubMed DOI

Li Z.H., Fang R., Fang J., He S.S., Liu T. Functional implications of Rab27 GTPases in Cancer. Cell Commun. Signal. 2018;16:44. doi: 10.1186/s12964-018-0255-9. PubMed DOI PMC

Schempp C.M., von Schwarzenberg K., Schreiner L., Kubisch R., Muller R., Wagner E., Vollmar A.M. V-ATPase Inhibition Regulates Anoikis Resistance and Metastasis of Cancer Cells. Mol. Cancer Ther. 2014;13:926–937. doi: 10.1158/1535-7163.MCT-13-0484. PubMed DOI

Kobia F., Duchi S., Deflorian G., Vaccari T. Pharmacologic inhibition of vacuolar H plus ATPase reduces physiologic and oncogenic Notch signaling. Mol. Oncol. 2014;8:207–220. doi: 10.1016/j.molonc.2013.11.002. PubMed DOI PMC

Huang L.J., Lu Q., Han Y., Li Z., Zhang Z.P., Li X.F. ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagn. Pathol. 2012;7:180. doi: 10.1186/1746-1596-7-180. PubMed DOI PMC

Lu Q., Lu S., Huang L.J., Wang T., Wan Y., Zhou C.X., Zhang C.H., Zhang Z.P., Li X.F. The expression of V-ATPase is associated with drug resistance and pathology of non-small-cell lung cancer. Diagn. Pathol. 2013;8:145. doi: 10.1186/1746-1596-8-145. PubMed DOI PMC

Liu P.F., Chen H.J., Han L.X., Zou X.P., Shen W.D. Expression and role of V1A subunit of V-ATPases in gastric cancer cells. Int. J. Clin. Oncol. 2015;20:725–735. doi: 10.1007/s10147-015-0782-y. PubMed DOI

Chapuy B., Koch R., Radunski U., Corsham S., Cheong N., Inagaki N., Ban N., Wenzel D., Reinhardt D., Zapf A., et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia. 2008;22:1576–1586. doi: 10.1038/leu.2008.103. PubMed DOI

Xu J.Y., Xie R., Liu X.M., Wen G.R., Jin H., Yu Z.H., Jiang Y.X., Zhao Z.L., Yang Y., Ji B., et al. Expression and functional role of vacuolar H+-ATPase in human hepatocellular carcinoma. Carcinogenesis. 2012;33:2432–2440. doi: 10.1093/carcin/bgs277. PubMed DOI

Asakura T., Imai A., Ohkubo-Uraoka N., Kuroda M., Iidaka Y., Uchida K., Shibasaki T., Ohkawa K. Relationship between expression of drug-resistance factors and drug sensitivity in normal human renal proximal tubular epithelial cells in comparison with renal cell carcinoma. Oncol. Rep. 2005;14:601–607. doi: 10.3892/or.14.3.601. PubMed DOI

Bertolini I., Terrasi A., Martelli C., Gaudioso G., Di Cristofori A., Storaci A.M., Formica M., Braidotti P., Todoerti K., Ferrero S., et al. A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBioMedicine. 2019;41:225–235. doi: 10.1016/j.ebiom.2019.01.051. PubMed DOI PMC

Couto-Vieira J., Nicolau-Neto P., Costa E.P., Figueira F.F., Simao T.D., Okorokova-Facanha A.L., Pinto L.F.R., Facanha A.R. Multi-cancer V-ATPase molecular signatures: A distinctive balance of subunit C isoforms in esophageal carcinoma. EBioMedicine. 2020;51:102581. doi: 10.1016/j.ebiom.2019.11.042. PubMed DOI PMC

Hurwitz S.J., Terashima M., Mizunuma N., Slapak C.A. Vesicular anthracycline accumulation in Doxorubicin-selected U-937 cells: Participation of lysosomes. Blood. 1997;89:3745–3754. doi: 10.1182/blood.V89.10.3745. PubMed DOI

Gong Y.P., Duvvuri M., Krise J.P. Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J. Biol. Chem. 2003;278:50234–50239. doi: 10.1074/jbc.M306606200. PubMed DOI

Medina D.L., Di Paola S., Peluso I., Armani A., De Stefani D., Venditti R., Montefusco S., Scotto-Rosato A., Prezioso C., Forrester A., et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 2015;17:288–299. doi: 10.1038/ncb3114. PubMed DOI PMC

Yamagishi T., Sahni S., Sharp D.M., Arvind A., Jansson P.J., Richardson D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 2013;288:31761–31771. doi: 10.1074/jbc.M113.514091. PubMed DOI PMC

You H.Y., Jin J., Shu H.Q., Yu B., De Milito A., Lozupone F., Deng Y., Tang N., Yao G.F., Fais S., et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett. 2009;280:110–119. doi: 10.1016/j.canlet.2009.02.023. PubMed DOI

Rodrigo M.A.M., Buchtelova H., de los Rios V., Casal J.I., Eckschlager T., Hrabeta J., Belhajova M., Heger Z., Adam V. Proteomic Signature of Neuroblastoma Cells UKF-NB-4 Reveals Key Role of Lysosomal Sequestration and the Proteasome Complex in Acquiring Chemoresistance to Cisplatin. J. Proteome Res. 2019;18:1255–1263. doi: 10.1021/acs.jproteome.8b00867. PubMed DOI

Piskareva O., Harvey H., Nolan J., Conlon R., Alcock L., Buckley P., Dowling P., O’Sullivan F., Bray I., Stallings R.L. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;364:142–155. doi: 10.1016/j.canlet.2015.05.004. PubMed DOI

Nilsson C., Roberg K., Grafstrom R.C., Ollinger K. Intrinsic differences in cisplatin sensitivity of head and neck cancer cell lines: Correlation to lysosomal pH. Head Neck-J. Sci. Spec. Head Neck. 2010;32:1185–1194. doi: 10.1002/hed.21317. PubMed DOI

Kulshrestha A., Katara G.K., Ibrahim S.A., Riehl V., Sahoo M., Dolan J., Meinke K.W., Pins M.R., Beaman K.D. Targeting V-ATPase Isoform Restores Cisplatin Activity in Resistant Ovarian Cancer: Inhibition of Autophagy, Endosome Function, and ERK/MEK Pathway. J. Oncol. 2019:2343876. doi: 10.1155/2019/2343876. PubMed DOI PMC

Hrabeta J., Groh T., Khalil M.A., Poljakova J., Adam V., Kizek R., Uhlik J., Doktorova H., Cerna T., Frei E., et al. Vacuolar-ATPase-mediated intracellular sequestration of ellipticine contributes to drug resistance in neuroblastoma cells. Int. J. Oncol. 2015;47:971–980. doi: 10.3892/ijo.2015.3066. PubMed DOI

Wu S., Huang L.M., Shen R., Bernard-Cacciarella M., Zhou P., Hu C.Q., Di Benedetto M., Janin A., Bousquet G., Li H., et al. Drug resistance-related sunitinib sequestration in autophagolysosomes of endothelial cells. Int. J. Oncol. 2020;56:113–122. doi: 10.3892/ijo.2019.4924. PubMed DOI PMC

Sasazawa Y., Futamura Y., Tashiro E., Imoto M. Vacuolar H+-ATPase inhibitors overcome Bcl-xL-mediated chemoresistance through restoration of a caspase-independent apoptotic pathway. Cancer Sci. 2009;100:1460–1467. doi: 10.1111/j.1349-7006.2009.01194.x. PubMed DOI PMC

Salerno M., Avnet S., Bonuccelli G., Hosogi S., Granchi D., Baldini N. Impairment of Lysosomal Activity as a Therapeutic Modality Targeting Cancer Stem Cells of Embryonal Rhabdomyosarcoma Cell Line RD. PLoS ONE. 2014;9:e110340. doi: 10.1371/journal.pone.0110340. PubMed DOI PMC

Ridinger J., Koeneke E., Kolbinger F.R., Koerholz K., Mahboobi S., Hellweg L., Gunkel N., Miller A.K., Peterziel H., Schmezer P., et al. Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Sci. Rep. 2018;8:1–17. doi: 10.1038/s41598-018-28265-5. PubMed DOI PMC

Zhang S.W., Schneider L.S., Vick B., Grunert M., Jeremias I., Menche D., Muller R., Vollmar A.M., Liebl J. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget. 2015;6:43508–43528. doi: 10.18632/oncotarget.6180. PubMed DOI PMC

He J., Shi X.Y., Li Z.M., Pan X.H., Li Z.L., Chen Y., Yan S.J., Xiao L. Proton pump inhibitors can reverse the YAP mediated paclitaxel resistance in epithelial ovarian cancer. BMC Mol. Cell Biol. 2019;20:49. doi: 10.1186/s12860-019-0227-y. PubMed DOI PMC

Merk H., Messer P., Ardelt M.A., Lamb D.C., Zahler S., Muller R., Vollmar A.M., Pachmayr J. Inhibition of the V-ATPase by Archazolid A: A New Strategy to Inhibit EMT. Mol. Cancer Ther. 2017;16:2329–2339. doi: 10.1158/1535-7163.MCT-17-0129. PubMed DOI

Williams E.D., Gao D.C., Redfern N., Thompson E.W. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer. 2019;19:716–732. doi: 10.1038/s41568-019-0213-x. PubMed DOI PMC

Funk R.S., Krise J.P. Cationic Amphiphilic Drugs Cause a Marked Expansion of Apparent Lysosomal Volume: Implications for an Intracellular Distribution-Based Drug Interaction. Mol. Pharm. 2012;9:1384–1395. doi: 10.1021/mp200641e. PubMed DOI PMC

Logan R., Kong A., Krise J.P. Evaluating the Roles of Autophagy and Lysosomal Trafficking Defects in Intracellular Distribution-Based Drug-Drug Interactions Involving Lysosomes. J. Pharm. Sci. 2013;102:4173–4180. doi: 10.1002/jps.23706. PubMed DOI

Arnaout A., Robertson S.J., Pond G.R., Lee H., Jeong A., Ianni L., Kroeger L., Hilton J., Coupland S., Gottlieb C., et al. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res. Treat. 2019;178:327–335. doi: 10.1007/s10549-019-05381-y. PubMed DOI

Karasic T.B., O’Hara M.H., Loaiza-Bonilla A., Reiss K.A., Teitelbaum U.R., Borazanci E., De Jesus-Acosta A., Redlinger C., Burrell J.A., Laheru D.A., et al. Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019;5:993–998. doi: 10.1001/jamaoncol.2019.0684. PubMed DOI PMC

Samaras P., Tusup M., Nguyen-Kim T.D.L., Seifert B., Bachmann H., von Moos R., Knuth A., Pascolo S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol. 2017;80:1005–1012. doi: 10.1007/s00280-017-3446-y. PubMed DOI

Sotelo J., Briceno E., Lopez-Gonzalez M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme - A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 2006;144:337–343. doi: 10.7326/0003-4819-144-5-200603070-00008. PubMed DOI

Rosenfeld M.R., Ye X.B., Supko J.G., Desideri S., Grossman S.A., Brem S., Mikkelson T., Wang D., Chang Y.Y.C., Hu J., et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–1368. doi: 10.4161/auto.28984. PubMed DOI PMC

Rangwala R., Leone R., Chang Y.Y.C., Fecher L., Schuchter L.M., Kramer A., Tan K.S., Heitjan D.F., Rodgers G., Gallagher M., et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1369–1379. doi: 10.4161/auto.29118. PubMed DOI PMC

Duvvuri M., Konkar S., Funk R.S., Krise J.M., Krise J.P. A chemical strategy to manipulate the intracellular localization of drugs in resistant cancer cells. Biochemistry. 2005;44:15743–15749. doi: 10.1021/bi051759w. PubMed DOI

von Schwarzenberg K., Lajtos T., Simon L., Muller R., Vereb G., Vollmar A.M. V-ATPase inhibition overcomes trastuzumab resistance in breast cancer. Mol. Oncol. 2014;8:9–19. doi: 10.1016/j.molonc.2013.08.011. PubMed DOI PMC

Chen Z., Zheng Y.Q., Shi Y.C., Cui Z.R. Overcoming tumor cell chemoresistance using nanoparticles: Lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int. J. Nanomed. 2018;13:319–336. doi: 10.2147/IJN.S149196. PubMed DOI PMC

Kim E.-K., Jang M., Song M.-J., Kim D., Kim Y., Jang H.H. Redox-Mediated Mechanism of Chemoresistance in Cancer Cells. Antioxidants. 2019;8:471. doi: 10.3390/antiox8100471. PubMed DOI PMC

Janssen A.M.L., van Duijn W., Kubben F.J.G.M., Griffioen G., Lamers C.B.H.W., van Krieken J.H.J.M., van de Velde C.J.H., Verspaget H.W. Prognostic Significance of Metallothionein in Human Gastrointestinal Cancer. Clinical Cancer Res. 2002;8:1889. PubMed

Krizkova S., Ryvolova M., Hrabeta J., Adam V., Stiborova M., Eckschlager T., Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab. Rev. 2012;44:287–301. doi: 10.3109/03602532.2012.725414. PubMed DOI

Hasumi M., Suzuki K., Matsui H., Koike H., Ito K., Yamanaka H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett. 2003;200:187–195. doi: 10.1016/S0304-3835(03)00441-5. PubMed DOI

Kukic I., Kelleher S.L., Kiselyov K. Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J. Cell Sci. 2014;127:3094–3103. doi: 10.1242/jcs.145318. PubMed DOI PMC

Baird S.K., Kurz T., Brunk U.T. Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem. J. 2006;394:275–283. doi: 10.1042/BJ20051143. PubMed DOI PMC

West A.K., Hidalgo J., Eddins D., Levin E.D., Aschner M. Metallothionein in the central nervous system: Roles in protection, regeneration and cognition. NeuroToxicology. 2008;29:489–503. doi: 10.1016/j.neuro.2007.12.006. PubMed DOI PMC

Pedersen M.O., Larsen A., Stoltenberg M., Penkowa M. Cell death in the injured brain: Roles of metallothioneins. Prog. Histochem. Cyto. 2009;44:1–27. doi: 10.1016/j.proghi.2008.10.002. PubMed DOI

Lee S.-J., Seo B.-R., Koh J.-Y. Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization. Mol. Brain. 2015;8:84. doi: 10.1186/s13041-015-0173-3. PubMed DOI PMC

Rodrigo M.l.A.M., Buchtelova H., Jimenez A.M.J., Adam P., Babula P., Heger Z., Adam V. Transcriptomic Landscape of Cisplatin-Resistant Neuroblastoma Cells. Cells. 2019;8:235. doi: 10.3390/cells8030235. PubMed DOI PMC

Lee S.-J., Koh J.Y. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol. Brain. 2010;3:30. doi: 10.1186/1756-6606-3-30. PubMed DOI PMC

Cho Y.H., Lee S.-H., Lee S.-J., Kim H.N., Koh J.-Y. A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Sci. Rep. 2020;10:2015. doi: 10.1038/s41598-020-58237-7. PubMed DOI PMC

Petruzzelli R., Polishchuk R.S. Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs. Cells. 2019;8:1080. doi: 10.3390/cells8091080. PubMed DOI PMC

Safaei R., Larson B.J., Cheng T.C., Gibson M.A., Otani S., Naerdemann W., Howell S.B. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 2005;4:1595–1604. doi: 10.1158/1535-7163.MCT-05-0102. PubMed DOI

Choudhuri S., McKim J.M., Klaassen C.D. Role of hepatic lysosomes in the degradation of metallothionein. Toxcol. Appl. Pharmacol. 1992;115:64–71. doi: 10.1016/0041-008X(92)90368-3. PubMed DOI

Min K.-S., Nakatsubo T., Fujita Y., Onosaka S., Tanaka K. Degradation of cadmium metallothionein in vitro by lysosomal proteases. Toxcol. Appl. Pharmacol. 1992;113:299–305. doi: 10.1016/0041-008X(92)90128-F. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...