Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-13766J
Czech Science Foundation
PubMed
32575682
PubMed Central
PMC7352242
DOI
10.3390/ijms21124392
PII: ijms21124392
Knihovny.cz E-zdroje
- Klíčová slova
- V-ATPase, V-ATPase inhibitors, chemoresistance of cancer cells, lysosomal sequestration, lysosomotropic agents, metallothioneins,
- MeSH
- antitumorózní látky farmakologie MeSH
- chemorezistence * účinky léků MeSH
- exocytóza MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- lyzozomy účinky léků enzymologie MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie enzymologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- vakuolární protonové ATPasy antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- vakuolární protonové ATPasy MeSH
Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.
Zobrazit více v PubMed
Zheng H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8:59950–59964. doi: 10.18632/oncotarget.19048. PubMed DOI PMC
Merlos Rodrigo M.A., Jimenez Jimemez A.M., Haddad Y., Bodoor K., Adam P., Krizkova S., Heger Z., Adam V. Metallothionein Isoforms as Double Agents—Their Roles in Carcinogenesis, Cancer Progression and Chemoresistance. Drug Resist. Update. 2020 doi: 10.1016/j.drup.2020.100691. in press. PubMed DOI
Skarkova V., Kralova V., Vitovcova B., Rudolf E. Selected Aspects of Chemoresistance Mechanisms in Colorectal CarcinomaA Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells. 2019;8:234. doi: 10.3390/cells8030234. PubMed DOI PMC
Gong Y.T., Fan Z.Y., Luo G.P., Yang C., Huang Q.Y., Fan K., Cheng H., Jin K.Z., Ni Q.X., Yu X.J., et al. The role of necroptosis in cancer biology and therapy. Mol. Cancer. 2019;18 doi: 10.1186/s12943-019-1029-8. PubMed DOI PMC
Zhitomirsky B., Assaraf Y.G. Lysosomes as mediators of drug resistance in cancer. Drug Resist. Update. 2016;24:23–33. doi: 10.1016/j.drup.2015.11.004. PubMed DOI
Zhitomirsky B., Assaraf Y.G. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget. 2017;8:45117–45132. doi: 10.18632/oncotarget.15155. PubMed DOI PMC
Ndolo R.A., Jacobs D.T., Forrest M.L., Krise J.P. Intracellular Distribution-based Anticancer Drug Targeting: Exploiting a Lysosomal Acidification Defect Associated with Cancer Cells. Mol. Cell. Pharmacol. 2010;2:131–136. doi: 10.4255/mcpharmacol.10.18. PubMed DOI PMC
Ullio C., Brunk U.T., Urani C., Melchioretto P., Bonelli G., Baccino F.M., Autelli R. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells. Autophagy. 2015;11:2184–2198. doi: 10.1080/15548627.2015.1106662. PubMed DOI PMC
Appelqvist H., Waster P., Kagedal K., Ollinger K. The lysosome: From waste bag to potential therapeutic target. J. Mol. Cell Biol. 2013;5:214–226. doi: 10.1093/jmcb/mjt022. PubMed DOI
Saftig P., Schroder B., Blanz J. Lysosomal membrane proteins: Life between acid and neutral conditions. Biochem. Soc. Trans. 2010;38:1420–1423. doi: 10.1042/BST0381420. PubMed DOI
Saftig P., Haas A. Turn up the lysosome. Nat. Cell Biol. 2016;18:1025–1027. doi: 10.1038/ncb3409. PubMed DOI
Kissing S., Saftig P., Haas A. Vacuolar ATPase in phago(lyso)some biology. Int. J. Med. Microbiol. 2018;308:58–67. doi: 10.1016/j.ijmm.2017.08.007. PubMed DOI
Cotter K., Capecci J., Sennoune S., Huss M., Maier M., Martinez-Zaguilan R., Forgac M. Activity of Plasma Membrane V-ATPases Is Critical for the Invasion of MDA-MB231 Breast Cancer Cells. J. Biol. Chem. 2015;290:3680–3692. doi: 10.1074/jbc.M114.611210. PubMed DOI PMC
Halcrow P.W., Khan N., Datta G., Ohm J.E., Chen X., Geiger J.D. Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep. 2019;2:e1193. doi: 10.1002/cnr2.1193. PubMed DOI PMC
Palmieri M., Impey S., Kang H.J., di Ronza A., Pelz C., Sardiello M., Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011;20:3852–3866. doi: 10.1093/hmg/ddr306. PubMed DOI
Pena-Llopis S., Vega-Rubin-de-Celis S., Schwartz J.C., Wolff N.C., Tran T.A.T., Zou L.H., Xie X.J., Corey D.R., Brugarolas J. Regulation of TFEB and V-ATPases by mTORC1. Embo J. 2011;30:3242–3258. doi: 10.1038/emboj.2011.257. PubMed DOI PMC
Puertollano R. mTOR and lysosome regulation. F1000Prime Rep. 2014;6:52. doi: 10.12703/P6-52. PubMed DOI PMC
Fennelly C., Amaravadi R.K. Lysosomal Biology in Cancer. Methods Mol. Biol. 2017;1594:293–308. doi: 10.1007/978-1-4939-6934-0_19. PubMed DOI PMC
Allison A.C. Lysosomes in cancer cells. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 1974;7:43–50. doi: 10.1136/jcp.27.Suppl_7.43. PubMed DOI PMC
Kallunki T., Olsen O.D., Jaattela M. Cancer-associated lysosomal changes: Friends or foes? Oncogene. 2013;32:1995–2004. doi: 10.1038/onc.2012.292. PubMed DOI
Zhong B.F., Liu M., Bai C.S., Ruan Y.X., Wang Y.Y., Qiu L., Hong Y., Wang X., Li L.F., Li B.H. Caspase-8 Induces Lysosome-Associated Cell Death in Cancer Cells. Mol. Ther. 2020;28:1078–1091. doi: 10.1016/j.ymthe.2020.01.022. PubMed DOI PMC
Fais S. Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism. J. Intern. Med. 2010;267:515–525. doi: 10.1111/j.1365-2796.2010.02225.x. PubMed DOI
Daniel C., Bell C., Burton C., Harguindey S., Reshkin S.J., Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim. Biophys. Acta-Mol. Basis Dis. 2013;1832:606–617. doi: 10.1016/j.bbadis.2013.01.020. PubMed DOI
Cavalcante G.C., Schaan A.P., Cabral G.F., Santana-da-Silva M.N., Pinto P., Vidal A.F., Ribeiro-dos-Santos A. A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int. J. Mol. Sci. 2019;20:4133. doi: 10.3390/ijms20174133. PubMed DOI PMC
Linder B., Kogel D. Autophagy in Cancer Cell Death. Biology. 2019;8:82. doi: 10.3390/biology8040082. PubMed DOI PMC
Amaravadi R.K. Autophagy-induced tumor dormancy in ovarian cancer. J. Clin. Investig. 2008;118:3837–3840. doi: 10.1172/JCI37667. PubMed DOI PMC
Harguindey S., Orive G., Pedraz J.L., Paradiso A., Reshkin S.J. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin-one single nature. Biochim. Biophys. Acta-Rev. Cancer. 2005;1756:1–24. doi: 10.1016/j.bbcan.2005.06.004. PubMed DOI
Murakami T., Shibuya I., Ise T., Chen Z.S., Akiyama S., Nakagawa M., Izumi H., Nakamura T., Matsuo K., Yamada Y., et al. Elevated expression of vacuolar proton pump genes and cellular pH in cisplatin resistance. Int. J. Cancer. 2001;93:869–874. doi: 10.1002/ijc.1418. PubMed DOI
Capecci J., Forgac M. The Function of Vacuolar ATPase (V-ATPase) a Subunit Isoforms in Invasiveness of MCF10a and MCF10CA1a Human Breast Cancer Cells. J. Biol. Chem. 2013;288:32731–32741. doi: 10.1074/jbc.M113.503771. PubMed DOI PMC
Forgac M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 2007;8:917–929. doi: 10.1038/nrm2272. PubMed DOI
Hinton A., Sennoune S.R., Bond S., Fang M., Reuveni M., Sahagian G.G., Jay D., Martinez-Zaguilan R., Forgac M. Function of a Subunit Isoforms of the V-ATPase in pH Homeostasis and in Vitro Invasion of MDA-MB231 Human Breast Cancer Cells. J. Biol. Chem. 2009;284:16400–16408. doi: 10.1074/jbc.M901201200. PubMed DOI PMC
Perez-Sayans M., Somoza-Martin J.M., Barros-Angueira F., Rey J.M.G., Garcia-Garcia A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat. Rev. 2009;35:707–713. doi: 10.1016/j.ctrv.2009.08.003. PubMed DOI
Lebreton S., Jaunbergs J., Roth M.G., Ferguson D.A., De Brabander J.K. Evaluating the potential of Vacuolar ATPase inhibitors as anticancer agents and multigram synthesis of the potent salicylihalamide analog saliphenylhalamide. Bioorg. Med. Chem. Lett. 2008;18:5879–5883. doi: 10.1016/j.bmcl.2008.07.003. PubMed DOI PMC
Supino R., Petrangolini G., Pratesi G., Tortoreto M., Favini E., Dal Bo L., Casalini P., Radaelli E., Croce A.C., Bottiroli G., et al. Antimetastatic effect of a small-molecule vacuolar H+-ATPase inhibitor in in vitro and in vivo preclinical studies. J. Pharmacol. Exp. Ther. 2008;324:15–22. doi: 10.1124/jpet.107.128587. PubMed DOI
Han J., Sridevi P., Ramirez M., Ludwig K.J., Wang J.Y.J. β-Catenin-dependent lysosomal targeting of internalized tumor necrosis factor-α suppresses caspase-8 activation in apoptosis-resistant colon cancer cells. Mol. Biol. Cell. 2013;24:465–473. doi: 10.1091/mbc.e12-09-0662. PubMed DOI PMC
Hendrix A., Sormunen R., Westbroek W., Lambein K., Denys H., Sys G., Braems G., Van den Broecke R., Cocquyt V., Gespach C., et al. Vacuolar H plus ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. Int. J. Cancer. 2013;133:843–854. doi: 10.1002/ijc.28079. PubMed DOI
Li Z.H., Fang R., Fang J., He S.S., Liu T. Functional implications of Rab27 GTPases in Cancer. Cell Commun. Signal. 2018;16:44. doi: 10.1186/s12964-018-0255-9. PubMed DOI PMC
Schempp C.M., von Schwarzenberg K., Schreiner L., Kubisch R., Muller R., Wagner E., Vollmar A.M. V-ATPase Inhibition Regulates Anoikis Resistance and Metastasis of Cancer Cells. Mol. Cancer Ther. 2014;13:926–937. doi: 10.1158/1535-7163.MCT-13-0484. PubMed DOI
Kobia F., Duchi S., Deflorian G., Vaccari T. Pharmacologic inhibition of vacuolar H plus ATPase reduces physiologic and oncogenic Notch signaling. Mol. Oncol. 2014;8:207–220. doi: 10.1016/j.molonc.2013.11.002. PubMed DOI PMC
Huang L.J., Lu Q., Han Y., Li Z., Zhang Z.P., Li X.F. ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagn. Pathol. 2012;7:180. doi: 10.1186/1746-1596-7-180. PubMed DOI PMC
Lu Q., Lu S., Huang L.J., Wang T., Wan Y., Zhou C.X., Zhang C.H., Zhang Z.P., Li X.F. The expression of V-ATPase is associated with drug resistance and pathology of non-small-cell lung cancer. Diagn. Pathol. 2013;8:145. doi: 10.1186/1746-1596-8-145. PubMed DOI PMC
Liu P.F., Chen H.J., Han L.X., Zou X.P., Shen W.D. Expression and role of V1A subunit of V-ATPases in gastric cancer cells. Int. J. Clin. Oncol. 2015;20:725–735. doi: 10.1007/s10147-015-0782-y. PubMed DOI
Chapuy B., Koch R., Radunski U., Corsham S., Cheong N., Inagaki N., Ban N., Wenzel D., Reinhardt D., Zapf A., et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia. 2008;22:1576–1586. doi: 10.1038/leu.2008.103. PubMed DOI
Xu J.Y., Xie R., Liu X.M., Wen G.R., Jin H., Yu Z.H., Jiang Y.X., Zhao Z.L., Yang Y., Ji B., et al. Expression and functional role of vacuolar H+-ATPase in human hepatocellular carcinoma. Carcinogenesis. 2012;33:2432–2440. doi: 10.1093/carcin/bgs277. PubMed DOI
Asakura T., Imai A., Ohkubo-Uraoka N., Kuroda M., Iidaka Y., Uchida K., Shibasaki T., Ohkawa K. Relationship between expression of drug-resistance factors and drug sensitivity in normal human renal proximal tubular epithelial cells in comparison with renal cell carcinoma. Oncol. Rep. 2005;14:601–607. doi: 10.3892/or.14.3.601. PubMed DOI
Bertolini I., Terrasi A., Martelli C., Gaudioso G., Di Cristofori A., Storaci A.M., Formica M., Braidotti P., Todoerti K., Ferrero S., et al. A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBioMedicine. 2019;41:225–235. doi: 10.1016/j.ebiom.2019.01.051. PubMed DOI PMC
Couto-Vieira J., Nicolau-Neto P., Costa E.P., Figueira F.F., Simao T.D., Okorokova-Facanha A.L., Pinto L.F.R., Facanha A.R. Multi-cancer V-ATPase molecular signatures: A distinctive balance of subunit C isoforms in esophageal carcinoma. EBioMedicine. 2020;51:102581. doi: 10.1016/j.ebiom.2019.11.042. PubMed DOI PMC
Hurwitz S.J., Terashima M., Mizunuma N., Slapak C.A. Vesicular anthracycline accumulation in Doxorubicin-selected U-937 cells: Participation of lysosomes. Blood. 1997;89:3745–3754. doi: 10.1182/blood.V89.10.3745. PubMed DOI
Gong Y.P., Duvvuri M., Krise J.P. Separate roles for the Golgi apparatus and lysosomes in the sequestration of drugs in the multidrug-resistant human leukemic cell line HL-60. J. Biol. Chem. 2003;278:50234–50239. doi: 10.1074/jbc.M306606200. PubMed DOI
Medina D.L., Di Paola S., Peluso I., Armani A., De Stefani D., Venditti R., Montefusco S., Scotto-Rosato A., Prezioso C., Forrester A., et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 2015;17:288–299. doi: 10.1038/ncb3114. PubMed DOI PMC
Yamagishi T., Sahni S., Sharp D.M., Arvind A., Jansson P.J., Richardson D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 2013;288:31761–31771. doi: 10.1074/jbc.M113.514091. PubMed DOI PMC
You H.Y., Jin J., Shu H.Q., Yu B., De Milito A., Lozupone F., Deng Y., Tang N., Yao G.F., Fais S., et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett. 2009;280:110–119. doi: 10.1016/j.canlet.2009.02.023. PubMed DOI
Rodrigo M.A.M., Buchtelova H., de los Rios V., Casal J.I., Eckschlager T., Hrabeta J., Belhajova M., Heger Z., Adam V. Proteomic Signature of Neuroblastoma Cells UKF-NB-4 Reveals Key Role of Lysosomal Sequestration and the Proteasome Complex in Acquiring Chemoresistance to Cisplatin. J. Proteome Res. 2019;18:1255–1263. doi: 10.1021/acs.jproteome.8b00867. PubMed DOI
Piskareva O., Harvey H., Nolan J., Conlon R., Alcock L., Buckley P., Dowling P., O’Sullivan F., Bray I., Stallings R.L. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;364:142–155. doi: 10.1016/j.canlet.2015.05.004. PubMed DOI
Nilsson C., Roberg K., Grafstrom R.C., Ollinger K. Intrinsic differences in cisplatin sensitivity of head and neck cancer cell lines: Correlation to lysosomal pH. Head Neck-J. Sci. Spec. Head Neck. 2010;32:1185–1194. doi: 10.1002/hed.21317. PubMed DOI
Kulshrestha A., Katara G.K., Ibrahim S.A., Riehl V., Sahoo M., Dolan J., Meinke K.W., Pins M.R., Beaman K.D. Targeting V-ATPase Isoform Restores Cisplatin Activity in Resistant Ovarian Cancer: Inhibition of Autophagy, Endosome Function, and ERK/MEK Pathway. J. Oncol. 2019:2343876. doi: 10.1155/2019/2343876. PubMed DOI PMC
Hrabeta J., Groh T., Khalil M.A., Poljakova J., Adam V., Kizek R., Uhlik J., Doktorova H., Cerna T., Frei E., et al. Vacuolar-ATPase-mediated intracellular sequestration of ellipticine contributes to drug resistance in neuroblastoma cells. Int. J. Oncol. 2015;47:971–980. doi: 10.3892/ijo.2015.3066. PubMed DOI
Wu S., Huang L.M., Shen R., Bernard-Cacciarella M., Zhou P., Hu C.Q., Di Benedetto M., Janin A., Bousquet G., Li H., et al. Drug resistance-related sunitinib sequestration in autophagolysosomes of endothelial cells. Int. J. Oncol. 2020;56:113–122. doi: 10.3892/ijo.2019.4924. PubMed DOI PMC
Sasazawa Y., Futamura Y., Tashiro E., Imoto M. Vacuolar H+-ATPase inhibitors overcome Bcl-xL-mediated chemoresistance through restoration of a caspase-independent apoptotic pathway. Cancer Sci. 2009;100:1460–1467. doi: 10.1111/j.1349-7006.2009.01194.x. PubMed DOI PMC
Salerno M., Avnet S., Bonuccelli G., Hosogi S., Granchi D., Baldini N. Impairment of Lysosomal Activity as a Therapeutic Modality Targeting Cancer Stem Cells of Embryonal Rhabdomyosarcoma Cell Line RD. PLoS ONE. 2014;9:e110340. doi: 10.1371/journal.pone.0110340. PubMed DOI PMC
Ridinger J., Koeneke E., Kolbinger F.R., Koerholz K., Mahboobi S., Hellweg L., Gunkel N., Miller A.K., Peterziel H., Schmezer P., et al. Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Sci. Rep. 2018;8:1–17. doi: 10.1038/s41598-018-28265-5. PubMed DOI PMC
Zhang S.W., Schneider L.S., Vick B., Grunert M., Jeremias I., Menche D., Muller R., Vollmar A.M., Liebl J. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget. 2015;6:43508–43528. doi: 10.18632/oncotarget.6180. PubMed DOI PMC
He J., Shi X.Y., Li Z.M., Pan X.H., Li Z.L., Chen Y., Yan S.J., Xiao L. Proton pump inhibitors can reverse the YAP mediated paclitaxel resistance in epithelial ovarian cancer. BMC Mol. Cell Biol. 2019;20:49. doi: 10.1186/s12860-019-0227-y. PubMed DOI PMC
Merk H., Messer P., Ardelt M.A., Lamb D.C., Zahler S., Muller R., Vollmar A.M., Pachmayr J. Inhibition of the V-ATPase by Archazolid A: A New Strategy to Inhibit EMT. Mol. Cancer Ther. 2017;16:2329–2339. doi: 10.1158/1535-7163.MCT-17-0129. PubMed DOI
Williams E.D., Gao D.C., Redfern N., Thompson E.W. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer. 2019;19:716–732. doi: 10.1038/s41568-019-0213-x. PubMed DOI PMC
Funk R.S., Krise J.P. Cationic Amphiphilic Drugs Cause a Marked Expansion of Apparent Lysosomal Volume: Implications for an Intracellular Distribution-Based Drug Interaction. Mol. Pharm. 2012;9:1384–1395. doi: 10.1021/mp200641e. PubMed DOI PMC
Logan R., Kong A., Krise J.P. Evaluating the Roles of Autophagy and Lysosomal Trafficking Defects in Intracellular Distribution-Based Drug-Drug Interactions Involving Lysosomes. J. Pharm. Sci. 2013;102:4173–4180. doi: 10.1002/jps.23706. PubMed DOI
Arnaout A., Robertson S.J., Pond G.R., Lee H., Jeong A., Ianni L., Kroeger L., Hilton J., Coupland S., Gottlieb C., et al. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res. Treat. 2019;178:327–335. doi: 10.1007/s10549-019-05381-y. PubMed DOI
Karasic T.B., O’Hara M.H., Loaiza-Bonilla A., Reiss K.A., Teitelbaum U.R., Borazanci E., De Jesus-Acosta A., Redlinger C., Burrell J.A., Laheru D.A., et al. Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019;5:993–998. doi: 10.1001/jamaoncol.2019.0684. PubMed DOI PMC
Samaras P., Tusup M., Nguyen-Kim T.D.L., Seifert B., Bachmann H., von Moos R., Knuth A., Pascolo S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol. 2017;80:1005–1012. doi: 10.1007/s00280-017-3446-y. PubMed DOI
Sotelo J., Briceno E., Lopez-Gonzalez M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme - A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 2006;144:337–343. doi: 10.7326/0003-4819-144-5-200603070-00008. PubMed DOI
Rosenfeld M.R., Ye X.B., Supko J.G., Desideri S., Grossman S.A., Brem S., Mikkelson T., Wang D., Chang Y.Y.C., Hu J., et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–1368. doi: 10.4161/auto.28984. PubMed DOI PMC
Rangwala R., Leone R., Chang Y.Y.C., Fecher L., Schuchter L.M., Kramer A., Tan K.S., Heitjan D.F., Rodgers G., Gallagher M., et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1369–1379. doi: 10.4161/auto.29118. PubMed DOI PMC
Duvvuri M., Konkar S., Funk R.S., Krise J.M., Krise J.P. A chemical strategy to manipulate the intracellular localization of drugs in resistant cancer cells. Biochemistry. 2005;44:15743–15749. doi: 10.1021/bi051759w. PubMed DOI
von Schwarzenberg K., Lajtos T., Simon L., Muller R., Vereb G., Vollmar A.M. V-ATPase inhibition overcomes trastuzumab resistance in breast cancer. Mol. Oncol. 2014;8:9–19. doi: 10.1016/j.molonc.2013.08.011. PubMed DOI PMC
Chen Z., Zheng Y.Q., Shi Y.C., Cui Z.R. Overcoming tumor cell chemoresistance using nanoparticles: Lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int. J. Nanomed. 2018;13:319–336. doi: 10.2147/IJN.S149196. PubMed DOI PMC
Kim E.-K., Jang M., Song M.-J., Kim D., Kim Y., Jang H.H. Redox-Mediated Mechanism of Chemoresistance in Cancer Cells. Antioxidants. 2019;8:471. doi: 10.3390/antiox8100471. PubMed DOI PMC
Janssen A.M.L., van Duijn W., Kubben F.J.G.M., Griffioen G., Lamers C.B.H.W., van Krieken J.H.J.M., van de Velde C.J.H., Verspaget H.W. Prognostic Significance of Metallothionein in Human Gastrointestinal Cancer. Clinical Cancer Res. 2002;8:1889. PubMed
Krizkova S., Ryvolova M., Hrabeta J., Adam V., Stiborova M., Eckschlager T., Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab. Rev. 2012;44:287–301. doi: 10.3109/03602532.2012.725414. PubMed DOI
Hasumi M., Suzuki K., Matsui H., Koike H., Ito K., Yamanaka H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett. 2003;200:187–195. doi: 10.1016/S0304-3835(03)00441-5. PubMed DOI
Kukic I., Kelleher S.L., Kiselyov K. Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J. Cell Sci. 2014;127:3094–3103. doi: 10.1242/jcs.145318. PubMed DOI PMC
Baird S.K., Kurz T., Brunk U.T. Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem. J. 2006;394:275–283. doi: 10.1042/BJ20051143. PubMed DOI PMC
West A.K., Hidalgo J., Eddins D., Levin E.D., Aschner M. Metallothionein in the central nervous system: Roles in protection, regeneration and cognition. NeuroToxicology. 2008;29:489–503. doi: 10.1016/j.neuro.2007.12.006. PubMed DOI PMC
Pedersen M.O., Larsen A., Stoltenberg M., Penkowa M. Cell death in the injured brain: Roles of metallothioneins. Prog. Histochem. Cyto. 2009;44:1–27. doi: 10.1016/j.proghi.2008.10.002. PubMed DOI
Lee S.-J., Seo B.-R., Koh J.-Y. Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization. Mol. Brain. 2015;8:84. doi: 10.1186/s13041-015-0173-3. PubMed DOI PMC
Rodrigo M.l.A.M., Buchtelova H., Jimenez A.M.J., Adam P., Babula P., Heger Z., Adam V. Transcriptomic Landscape of Cisplatin-Resistant Neuroblastoma Cells. Cells. 2019;8:235. doi: 10.3390/cells8030235. PubMed DOI PMC
Lee S.-J., Koh J.Y. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol. Brain. 2010;3:30. doi: 10.1186/1756-6606-3-30. PubMed DOI PMC
Cho Y.H., Lee S.-H., Lee S.-J., Kim H.N., Koh J.-Y. A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Sci. Rep. 2020;10:2015. doi: 10.1038/s41598-020-58237-7. PubMed DOI PMC
Petruzzelli R., Polishchuk R.S. Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs. Cells. 2019;8:1080. doi: 10.3390/cells8091080. PubMed DOI PMC
Safaei R., Larson B.J., Cheng T.C., Gibson M.A., Otani S., Naerdemann W., Howell S.B. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther. 2005;4:1595–1604. doi: 10.1158/1535-7163.MCT-05-0102. PubMed DOI
Choudhuri S., McKim J.M., Klaassen C.D. Role of hepatic lysosomes in the degradation of metallothionein. Toxcol. Appl. Pharmacol. 1992;115:64–71. doi: 10.1016/0041-008X(92)90368-3. PubMed DOI
Min K.-S., Nakatsubo T., Fujita Y., Onosaka S., Tanaka K. Degradation of cadmium metallothionein in vitro by lysosomal proteases. Toxcol. Appl. Pharmacol. 1992;113:299–305. doi: 10.1016/0041-008X(92)90128-F. PubMed DOI