Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma-A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis

. 2019 Mar 12 ; 8 (3) : . [epub] 20190312

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30871055

Chemoresistance has been found in all malignant tumors including colorectal carcinoma (CRC). Nowadays chemoresistance is understood as a major reason for therapy failure, with consequent tumor growth and spreading leading ultimately to the patient's premature death. The chemotherapy-related resistance of malignant colonocytes may be manifested in diverse mechanisms that may exist both prior to the onset of the therapy or after it. The ultimate function of this chemoresistance is to ensure the survival of malignant cells through continuing adaptation within an organism, therefore, the nature and spectrum of cell-survival strategies in CRC represent a highly significant target of scientific inquiry. Among these survival strategies employed by CRC cells, three unique but significantly linked phenomena stand out-epithelial-to-mesenchymal transition (EMT), autophagy, and cell death. In this mini-review, current knowledge concerning all three mechanisms including their emergence, timeline, regulation, and mutual relationships will be presented and discussed.

Zobrazit více v PubMed

Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–691. doi: 10.1136/gutjnl-2015-310912. PubMed DOI

Haggar F.A., Boushey R.P. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 2009;22:191–197. doi: 10.1055/s-0029-1242458. PubMed DOI PMC

Marmol I., Sanchez-de-Diego C., Pradilla Dieste A., Cerrada E., Rodriguez Yoldi M.J. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 2017;18:197. doi: 10.3390/ijms18010197. PubMed DOI PMC

Chen E., Xu X., Liu T. Hereditary nonpolyposis colorectal cancer and cancer syndromes: Recent basic and clinical discoveries. J. Oncol. 2018;2018:3979135. doi: 10.1155/2018/3979135. PubMed DOI PMC

Rustgi A.K. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–2538. doi: 10.1101/gad.1593107. PubMed DOI

Radtke F., Clevers H., Riccio O. From gut homeostasis to cancer. Curr. Mol. Med. 2006;6:275–289. doi: 10.2174/156652406776894527. PubMed DOI

Takayama T., Katsuki S., Takahashi Y., Ohi M., Nojiri S., Sakamaki S., Kato J., Kogawa K., Miyake H., Niitsu Y. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N. Engl. J. Med. 1998;339:1277–1284. doi: 10.1056/NEJM199810293391803. PubMed DOI

Cummings O.W. Pathology of the adenoma-carcinoma sequence: From aberrant crypt focus to invasive carcinoma. Semin. Gastrointest. Dis. 2000;11:229–237. PubMed

Suehiro Y., Hinoda Y. Genetic and epigenetic changes in aberrant crypt foci and serrated polyps. Cancer Sci. 2008;99:1071–1076. doi: 10.1111/j.1349-7006.2008.00784.x. PubMed DOI PMC

Mundade R., Imperiale T.F., Prabhu L., Loehrer P.J., Lu T. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience. 2014;1:400–406. doi: 10.18632/oncoscience.59. PubMed DOI PMC

Armaghany T., Wilson J.D., Chu Q., Mills G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 2012;5:19–27. PubMed PMC

Fearon E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 2011;6:479–507. doi: 10.1146/annurev-pathol-011110-130235. PubMed DOI

Terzic J., Grivennikov S., Karin E., Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–2114.e5. doi: 10.1053/j.gastro.2010.01.058. PubMed DOI

Chen J., Pitmon E., Wang K. Microbiome, inflammation and colorectal cancer. Semin. Immunol. 2017;32:43–53. doi: 10.1016/j.smim.2017.09.006. PubMed DOI

Bellam N., Pasche B. Tgf-β signaling alterations and colon cancer. Cancer Treat. Res. 2010;155:85–103. PubMed

Dziaman T., Gackowski D., Guz J., Linowiecka K., Bodnar M., Starczak M., Zarakowska E., Modrzejewska M., Szpila A., Szpotan J., et al. Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions-benign adenomas and inflammatory bowel disease. Clin. Epigenet. 2018;10:72. doi: 10.1186/s13148-018-0505-0. PubMed DOI PMC

Bahnassy A.A., Zekri A.R., Salem S.E., Abou-Bakr A.A., Sakr M.A., Abdel-Samiaa A.G., Al-Bradei M. Differential expression of p53 family proteins in colorectal adenomas and carcinomas: Prognostic and predictive values. Histol. Histopathol. 2014;29:207–216. PubMed

Amaro A., Chiara S., Pfeffer U. Molecular evolution of colorectal cancer: From multistep carcinogenesis to the big bang. Cancer Metastasis Rev. 2016;35:63–74. doi: 10.1007/s10555-016-9606-4. PubMed DOI

Testa U., Pelosi E., Castelli G. Colorectal cancer: Genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med. Sci. 2018;6:31. doi: 10.3390/medsci6020031. PubMed DOI PMC

Borras E., San Lucas F.A., Chang K., Zhou R., Masand G., Fowler J., Mork M.E., You Y.N., Taggart M.W., McAllister F., et al. Genomic landscape of colorectal mucosa and adenomas. Cancer Prev. Res. 2016;9:417–427. doi: 10.1158/1940-6207.CAPR-16-0081. PubMed DOI PMC

Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi: 10.1038/nature11252. PubMed DOI PMC

Vaque J.P., Martinez N., Varela I., Fernandez F., Mayorga M., Derdak S., Beltran S., Moreno T., Almaraz C., De Las Heras G., et al. Colorectal adenomas contain multiple somatic mutations that do not coincide with synchronous adenocarcinoma specimens. PLoS ONE. 2015;10:e0119946. PubMed PMC

Blank A., Roberts D.E., 2nd, Dawson H., Zlobec I., Lugli A. Tumor heterogeneity in primary colorectal cancer and corresponding metastases. Does the apple fall far from the tree? Front. Med. 2018;5:234. doi: 10.3389/fmed.2018.00234. PubMed DOI PMC

Twelves C., Scheithauer W., McKendrick J., Seitz J.F., Van Hazel G., Wong A., Diaz-Rubio E., Gilberg F., Cassidy J. Capecitabine versus 5-fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer: Final results from the x-act trial with analysis by age and preliminary evidence of a pharmacodynamic marker of efficacy. Ann. Oncol. 2012;23:1190–1197. doi: 10.1093/annonc/mdr366. PubMed DOI

De Mattia E., Cecchin E., Toffoli G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy. Drug Resist. Updat. 2015;20:39–70. doi: 10.1016/j.drup.2015.05.003. PubMed DOI

Gill S., Loprinzi C.L., Sargent D.J., Thome S.D., Alberts S.R., Haller D.G., Benedetti J., Francini G., Shepherd L.E., Francois Seitz J., et al. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: Who benefits and by how much? J. Clin. Oncol. 2004;22:1797–1806. doi: 10.1200/JCO.2004.09.059. PubMed DOI

Haller D.G., Tabernero J., Maroun J., de Braud F., Price T., Van Cutsem E., Hill M., Gilberg F., Rittweger K., Schmoll H.J. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage iii colon cancer. J. Clin. Oncol. 2011;29:1465–1471. doi: 10.1200/JCO.2010.33.6297. PubMed DOI

Alberts S.R., Sargent D.J., Nair S., Mahoney M.R., Mooney M., Thibodeau S.N., Smyrk T.C., Sinicrope F.A., Chan E., Gill S., et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage iii colon cancer: A randomized trial. JAMA. 2012;307:1383–1393. PubMed PMC

Vogel A., Hofheinz R.D., Kubicka S., Arnold D. Treatment decisions in metastatic colorectal cancer-beyond first and second line combination therapies. Cancer Treat. Rev. 2017;59:54–60. doi: 10.1016/j.ctrv.2017.04.007. PubMed DOI

Schmoll H.J., Stein A. Colorectal cancer in 2013: Towards improved drugs, combinations and patient selection. Nat. Rev. Clin. Oncol. 2014;11:79–80. doi: 10.1038/nrclinonc.2013.254. PubMed DOI

O’Neil B.H., Wallmark J.M., Lorente D., Elez E., Raimbourg J., Gomez-Roca C., Ejadi S., Piha-Paul S.A., Stein M.N., Abdul Razak A.R., et al. Safety and antitumor activity of the anti-pd-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS ONE. 2017;12:e0189848. doi: 10.1371/journal.pone.0189848. PubMed DOI PMC

Benson A.B., 3rd, Venook A.P., Cederquist L., Chan E., Chen Y.J., Cooper H.S., Deming D., Engstrom P.F., Enzinger P.C., Fichera A., et al. Colon cancer, version 1.2017, nccn clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2017;15:370–398. doi: 10.6004/jnccn.2017.0036. PubMed DOI

Fakih M.G. Metastatic colorectal cancer: Current state and future directions. J. Clin. Oncol. 2015;33:1809–1824. doi: 10.1200/JCO.2014.59.7633. PubMed DOI

Zheng H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8:59950–59964. doi: 10.18632/oncotarget.19048. PubMed DOI PMC

Wilson T.R., Longley D.B., Johnston P.G. Chemoresistance in solid tumours. Ann. Oncol. 2006;17(Suppl. 10):x315–x324. doi: 10.1093/annonc/mdl280. PubMed DOI

Mathonnet M., Perraud A., Christou N., Akil H., Melin C., Battu S., Jauberteau M.O., Denizot Y. Hallmarks in colorectal cancer: Angiogenesis and cancer stem-like cells. World J. Gastroenterol. 2014;20:4189–4196. doi: 10.3748/wjg.v20.i15.4189. PubMed DOI PMC

Junttila M.R., de Sauvage F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346–354. doi: 10.1038/nature12626. PubMed DOI

Mumenthaler S.M., Foo J., Choi N.C., Heise N., Leder K., Agus D.B., Pao W., Michor F., Mallick P. The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Inform. 2015;14:19–31. doi: 10.4137/CIN.S19338. PubMed DOI PMC

Ren J., Ding L., Zhang D., Shi G., Xu Q., Shen S., Wang Y., Wang T., Hou Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA h19. Theranostics. 2018;8:3932–3948. doi: 10.7150/thno.25541. PubMed DOI PMC

Luqmani Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005;14(Suppl. 1):35–48. doi: 10.1159/000086183. PubMed DOI

Meads M.B., Gatenby R.A., Dalton W.S. Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat. Rev. Cancer. 2009;9:665–674. doi: 10.1038/nrc2714. PubMed DOI

Lippert T.H., Ruoff H.J., Volm M. Current status of methods to assess cancer drug resistance. Int. J. Med. Sci. 2011;8:245–253. doi: 10.7150/ijms.8.245. PubMed DOI PMC

Hammond W.A., Swaika A., Mody K. Pharmacologic resistance in colorectal cancer: A review. Ther. Adv. Med. Oncol. 2016;8:57–84. doi: 10.1177/1758834015614530. PubMed DOI PMC

Kosuri K.V., Wu X., Wang L., Villalona-Calero M.A., Otterson G.A. An epigenetic mechanism for capecitabine resistance in mesothelioma. Biochem. Biophys. Res. Commun. 2010;391:1465–1470. doi: 10.1016/j.bbrc.2009.12.095. PubMed DOI PMC

Lubner S.J., Uboha N.V., Deming D.A. Primary and acquired resistance to biologic therapies in gastrointestinal cancers. J. Gastrointest. Oncol. 2017;8:499–512. doi: 10.21037/jgo.2017.01.16. PubMed DOI PMC

Holohan C., Van Schaeybroeck S., Longley D.B., Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer. 2013;13:714–726. doi: 10.1038/nrc3599. PubMed DOI

Grossi V., Peserico A., Tezil T., Simone C. P38alpha mapk pathway: A key factor in colorectal cancer therapy and chemoresistance. World J. Gastroenterol. 2014;20:9744–9758. doi: 10.3748/wjg.v20.i29.9744. PubMed DOI PMC

Jensen N.F., Stenvang J., Beck M.K., Hanakova B., Belling K.C., Do K.N., Viuff B., Nygard S.B., Gupta R., Rasmussen M.H., et al. Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive signature of chemoresistance. Mol. Oncol. 2015;9:1169–1185. doi: 10.1016/j.molonc.2015.02.008. PubMed DOI PMC

Fanale D., Castiglia M., Bazan V., Russo A. Involvement of non-coding rnas in chemo- and radioresistance of colorectal cancer. Adv. Exp. Med. Biol. 2016;937:207–228. PubMed

Brachtendorf S., Wanger R.A., Birod K., Thomas D., Trautmann S., Wegner M.S., Fuhrmann D.C., Brune B., Geisslinger G., Grosch S. Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:1214–1227. doi: 10.1016/j.bbalip.2018.07.011. PubMed DOI

Crea F., Nobili S., Paolicchi E., Perrone G., Napoli C., Landini I., Danesi R., Mini E. Epigenetics and chemoresistance in colorectal cancer: An opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist. Updat. 2011;14:280–296. doi: 10.1016/j.drup.2011.08.001. PubMed DOI

Loe D.W., Deeley R.G., Cole S.P. Biology of the multidrug resistance-associated protein, mrp. Eur. J. Cancer. 1996;32A:945–957. doi: 10.1016/0959-8049(96)00046-9. PubMed DOI

Brule S.Y., Jonker D.J., Karapetis C.S., O’Callaghan C.J., Moore M.J., Wong R., Tebbutt N.C., Underhill C., Yip D., Zalcberg J.R., et al. Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in ncic co.17. Eur. J. Cancer. 2015;51:1405–1414. doi: 10.1016/j.ejca.2015.03.015. PubMed DOI

Sipos F., Galamb O. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J. Gastroenterol. 2012;18:601–608. doi: 10.3748/wjg.v18.i7.601. PubMed DOI PMC

Tiwari N., Gheldof A., Tatari M., Christofori G. Emt as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol. 2012;22:194–207. doi: 10.1016/j.semcancer.2012.02.013. PubMed DOI

Joyce T., Cantarella D., Isella C., Medico E., Pintzas A. A molecular signature for epithelial to mesenchymal transition in a human colon cancer cell system is revealed by large-scale microarray analysis. Clin. Exp. Metastasis. 2009;26:569–587. doi: 10.1007/s10585-009-9256-9. PubMed DOI

Olmeda D., Jorda M., Peinado H., Fabra A., Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene. 2007;26:1862–1874. doi: 10.1038/sj.onc.1209997. PubMed DOI

Peinado H., Olmeda D., Cano A. Snail, zeb and bhlh factors in tumour progression: An alliance against the epithelial phenotype? Nat. Rev. Cancer. 2007;7:415–428. doi: 10.1038/nrc2131. PubMed DOI

Suman S., Kurisetty V., Das T.P., Vadodkar A., Ramos G., Lakshmanaswamy R., Damodaran C. Activation of akt signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol. Carcinog. 2014;53(Suppl. 1):E151–E160. doi: 10.1002/mc.22076. PubMed DOI

Yang A.D., Fan F., Camp E.R., van Buren G., Liu W., Somcio R., Gray M.J., Cheng H., Hoff P.M., Ellis L.M. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin. Cancer Res. 2006;12:4147–4153. doi: 10.1158/1078-0432.CCR-06-0038. PubMed DOI

Li J., Liu H., Yu J., Yu H. Chemoresistance to doxorubicin induces epithelial-mesenchymal transition via upregulation of transforming growth factor β signaling in hct116 colon cancer cells. Mol. Med. Rep. 2015;12:192–198. doi: 10.3892/mmr.2015.3356. PubMed DOI PMC

Kim A.Y., Kwak J.H., Je N.K., Lee Y.H., Jung Y.S. Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in ht-29 colon cancer cells. Toxicol. Res. 2015;31:151–156. doi: 10.5487/TR.2015.31.2.151. PubMed DOI PMC

Bao Y., Lu Y., Wang X., Feng W., Sun X., Guo H., Tang C., Zhang X., Shi Q., Yu H. Eukaryotic translation initiation factor 5a2 (eif5a2) regulates chemoresistance in colorectal cancer through epithelial mesenchymal transition. Cancer Cell Int. 2015;15:109. doi: 10.1186/s12935-015-0250-9. PubMed DOI PMC

Tato-Costa J., Casimiro S., Pacheco T., Pires R., Fernandes A., Alho I., Pereira P., Costa P., Castelo H.B., Ferreira J., et al. Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. Clin. Colorectal Cancer. 2016;15:170–178.e3. doi: 10.1016/j.clcc.2015.09.003. PubMed DOI

Tsoumas D., Nikou S., Giannopoulou E., Champeris Tsaniras S., Sirinian C., Maroulis I., Taraviras S., Zolota V., Kalofonos H.P., Bravou V. Ilk expression in colorectal cancer is associated with emt, cancer stem cell markers and chemoresistance. Cancer Genom. Proteom. 2018;15:127–141. PubMed PMC

Yang Y., Wang G., Zhu D., Huang Y., Luo Y., Su P., Chen X., Wang Q. Epithelial-mesenchymal transition and cancer stem cell-like phenotype induced by twist1 contribute to acquired resistance to irinotecan in colon cancer. Int. J. Oncol. 2017;51:515–524. doi: 10.3892/ijo.2017.4044. PubMed DOI

Hu T., Li Z., Gao C.Y., Cho C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol. 2016;22:6876–6889. doi: 10.3748/wjg.v22.i30.6876. PubMed DOI PMC

Findlay V.J., Wang C., Nogueira L.M., Hurst K., Quirk D., Ethier S.P., Staveley O’Carroll K.F., Watson D.K., Camp E.R. Snai2 modulates colorectal cancer 5-fluorouracil sensitivity through mir145 repression. Mol. Cancer Ther. 2014;13:2713–2726. doi: 10.1158/1535-7163.MCT-14-0207. PubMed DOI PMC

Ikeguchi M., Taniguchi T., Makino M., Kaibara N. Reduced e-cadherin expression and enlargement of cancer nuclei strongly correlate with hematogenic metastasis in colorectal adenocarcinoma. Scand. J. Gastroenterol. 2000;35:839–846. PubMed

Lugli A., Zlobec I., Minoo P., Baker K., Tornillo L., Terracciano L., Jass J.R. Prognostic significance of the wnt signalling pathway molecules apc, β-catenin and e-cadherin in colorectal cancer: A tissue microarray-based analysis. Histopathology. 2007;50:453–464. doi: 10.1111/j.1365-2559.2007.02620.x. PubMed DOI

Roca F., Mauro L.V., Morandi A., Bonadeo F., Vaccaro C., Quintana G.O., Specterman S., de Kier Joffe E.B., Pallotta M.G., Puricelli L.I., et al. Prognostic value of e-cadherin, β-catenin, mmps (7 and 9), and timps (1 and 2) in patients with colorectal carcinoma. J. Surg. Oncol. 2006;93:151–160. doi: 10.1002/jso.20413. PubMed DOI

Ye Z., Zhou M., Tian B., Wu B., Li J. Expression of lncrna-ccat1, e-cadherin and n-cadherin in colorectal cancer and its clinical significance. Int. J. Clin. Exp. Med. 2015;8:3707–3715. PubMed PMC

Shan Z.Z., Yan X.B., Yan L.L., Tian Y., Meng Q.C., Qiu W.W., Zhang Z., Jin Z.M. Overexpression of tbx3 is correlated with epithelial-mesenchymal transition phenotype and predicts poor prognosis of colorectal cancer. Am. J. Cancer Res. 2015;5:344–353. PubMed PMC

Fan F., Samuel S., Evans K.W., Lu J., Xia L., Zhou Y., Sceusi E., Tozzi F., Ye X.C., Mani S.A., et al. Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 2012;1:5–16. doi: 10.1002/cam4.4. PubMed DOI PMC

Busch E.L., Keku T.O., Richardson D.B., Cohen S.M., Eberhard D.A., Avery C.L., Sandler R.S. Evaluating markers of epithelial-mesenchymal transition to identify cancer patients at risk for metastatic disease. Clin. Exp. Metastasis. 2016;33:53–62. doi: 10.1007/s10585-015-9757-7. PubMed DOI PMC

Mizushima N., Komatsu M. Autophagy: Renovation of cells and tissues. Cell. 2011;147:728–741. doi: 10.1016/j.cell.2011.10.026. PubMed DOI

Klionsky D.J., Baehrecke E.H., Brumell J.H., Chu C.T., Codogno P., Cuervo A.M., Debnath J., Deretic V., Elazar Z., Eskelinen E.L., et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition) Autophagy. 2011;7:1273–1294. doi: 10.4161/auto.7.11.17661. PubMed DOI PMC

Panda P.K., Mukhopadhyay S., Das D.N., Sinha N., Naik P.P., Bhutia S.K. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin. Cell Dev. Biol. 2015;39:43–55. doi: 10.1016/j.semcdb.2015.02.013. PubMed DOI

Bhutia S.K., Mukhopadhyay S., Sinha N., Das D.N., Panda P.K., Patra S.K., Maiti T.K., Mandal M., Dent P., Wang X.Y., et al. Autophagy: Cancer’s friend or foe? Adv. Cancer Res. 2013;118:61–95. PubMed PMC

Roy S., Debnath J. Autophagy and tumorigenesis. Semin. Immunopathol. 2010;32:383–396. doi: 10.1007/s00281-010-0213-0. PubMed DOI PMC

Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gelinas C., Fan Y., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64. doi: 10.1016/j.ccr.2006.06.001. PubMed DOI PMC

Martinez-Outschoorn U.E., Trimmer C., Lin Z., Whitaker-Menezes D., Chiavarina B., Zhou J., Wang C., Pavlides S., Martinez-Cantarin M.P., Capozza F., et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, hif1 induction and nfkappab activation in the tumor stromal microenvironment. Cell Cycle. 2010;9:3515–3533. doi: 10.4161/cc.9.17.12928. PubMed DOI PMC

Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A., Karantza V., et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34:856–880. doi: 10.15252/embj.201490784. PubMed DOI PMC

Su Z., Yang Z., Xu Y., Chen Y., Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer. 2015;14:48. doi: 10.1186/s12943-015-0321-5. PubMed DOI PMC

Gong C., Bauvy C., Tonelli G., Yue W., Delomenie C., Nicolas V., Zhu Y., Domergue V., Marin-Esteban V., Tharinger H., et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene. 2013;32:2261–2272. doi: 10.1038/onc.2012.252. PubMed DOI PMC

Burada F., Nicoli E.R., Ciurea M.E., Uscatu D.C., Ioana M., Gheonea D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J. Gastrointest. Oncol. 2015;7:271–284. doi: 10.4251/wjgo.v7.i11.271. PubMed DOI PMC

Bhardwaj M., Cho H.J., Paul S., Jakhar R., Khan I., Lee S.J., Kim B.Y., Krishnan M., Khaket T.P., Lee H.G., et al. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget. 2018;9:3278–3291. doi: 10.18632/oncotarget.22890. PubMed DOI PMC

Li J., Hou N., Faried A., Tsutsumi S., Takeuchi T., Kuwano H. Inhibition of autophagy by 3-ma enhances the effect of 5-fu-induced apoptosis in colon cancer cells. Ann. Surg. Oncol. 2009;16:761–771. doi: 10.1245/s10434-008-0260-0. PubMed DOI

Choi J.H., Yoon J.S., Won Y.W., Park B.B., Lee Y.Y. Chloroquine enhances the chemotherapeutic activity of 5-fluorouracil in a colon cancer cell line via cell cycle alteration. APMIS. 2012;120:597–604. doi: 10.1111/j.1600-0463.2012.02876.x. PubMed DOI

Sasaki K., Tsuno N.H., Sunami E., Tsurita G., Kawai K., Okaji Y., Nishikawa T., Shuno Y., Hongo K., Hiyoshi M., et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010;10:370. doi: 10.1186/1471-2407-10-370. PubMed DOI PMC

Ma Q., Chang Z., Wang W., Wang B. Rapamycin-mediated mtor inhibition reverses drug resistance to adriamycin in colon cancer cells. Hepatogastroenterology. 2015;62:880–886. PubMed

Levy J., Cacheux W., Bara M.A., L’Hermitte A., Lepage P., Fraudeau M., Trentesaux C., Lemarchand J., Durand A., Crain A.M., et al. Intestinal inhibition of atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol. 2015;17:1062–1073. doi: 10.1038/ncb3206. PubMed DOI

Klionsky D.J., Abdelmohsen K., Abe A., Abedin M.J., Abeliovich H., Acevedo Arozena A., Adachi H., Adams C.M., Adams P.D., Adeli K., et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) Autophagy. 2016;12:1–222. doi: 10.1080/15548627.2015.1100356. PubMed DOI PMC

Ahn C.H., Jeong E.G., Lee J.W., Kim M.S., Kim S.H., Kim S.S., Yoo N.J., Lee S.H. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS. 2007;115:1344–1349. doi: 10.1111/j.1600-0463.2007.00858.x. PubMed DOI

Han Y., Xue X.F., Shen H.G., Guo X.B., Wang X., Yuan B., Guo X.P., Kuang Y.T., Zhi Q.M., Zhao H. Prognostic significance of beclin-1 expression in colorectal cancer: A meta-analysis. Asian Pac. J. Cancer Prev. 2014;15:4583–4587. doi: 10.7314/APJCP.2014.15.11.4583. PubMed DOI

Scopa C.D., Tsamandas A.C., Zolota V., Kalofonos H.P., Batistatou A., Vagianos C. Potential role of bcl-2 and ki-67 expression and apoptosis in colorectal carcinoma: A clinicopathologic study. Dig. Dis. Sci. 2003;48:1990–1997. doi: 10.1023/A:1026178506348. PubMed DOI

Park J.M., Huang S., Wu T.T., Foster N.R., Sinicrope F.A. Prognostic impact of beclin 1, p62/sequestosome 1 and lc3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol. Ther. 2013;14:100–107. doi: 10.4161/cbt.22954. PubMed DOI PMC

Wu S., Sun C., Tian D., Li Y., Gao X., He S., Li T. Expression and clinical significances of beclin1, lc3 and mtor in colorectal cancer. Int. J. Clin. Exp. Pathol. 2015;8:3882–3891. PubMed PMC

Cai Z., Ke J., He X., Yuan R., Chen Y., Wu X., Wang L., Wang J., Lan P., Wu X. Significance of mtor signaling and its inhibitor against cancer stem-like cells in colorectal cancer. Ann. Surg. Oncol. 2014;21:179–188. doi: 10.1245/s10434-013-3146-8. PubMed DOI

Cho D.H., Jo Y.K., Kim S.C., Park I.J., Kim J.C. Down-regulated expression of atg5 in colorectal cancer. Anticancer Res. 2012;32:4091–4096. PubMed

Choi J.H., Cho Y.S., Ko Y.H., Hong S.U., Park J.H., Lee M.A. Absence of autophagy-related proteins expression is associated with poor prognosis in patients with colorectal adenocarcinoma. Gastroenterol. Res. Pract. 2014;2014:179586. doi: 10.1155/2014/179586. PubMed DOI PMC

Lai K., Killingsworth M.C., Lee C.S. The significance of autophagy in colorectal cancer pathogenesis and implications for therapy. J. Clin. Pathol. 2014;67:854–858. doi: 10.1136/jclinpath-2014-202529. PubMed DOI

Mokarram P., Albokashy M., Zarghooni M., Moosavi M.A., Sepehri Z., Chen Q.M., Hudecki A., Sargazi A., Alizadeh J., Moghadam A.R., et al. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy. 2017;13:781–819. doi: 10.1080/15548627.2017.1290751. PubMed DOI PMC

Yang M., Zhao H., Guo L., Zhang Q., Zhao L., Bai S., Zhang M., Xu S., Wang F., Wang X., et al. Autophagy-based survival prognosis in human colorectal carcinoma. Oncotarget. 2015;6:7084–7103. doi: 10.18632/oncotarget.3054. PubMed DOI PMC

Gil J., Pesz K.A., Sasiadek M.M. May autophagy be a novel biomarker and antitumor target in colorectal cancer? Biomark. Med. 2016;10:1081–1094. doi: 10.2217/bmm-2016-0083. PubMed DOI

Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., et al. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4. PubMed DOI PMC

Moriwaki K., Bertin J., Gough P.J., Orlowski G.M., Chan F.K. Differential roles of ripk1 and ripk3 in tnf-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 2015;6:e1636. doi: 10.1038/cddis.2015.16. PubMed DOI PMC

Vachon P.H. Methods for assessing apoptosis and anoikis in normal intestine/colon and colorectal cancer. Methods Mol. Biol. 2018;1765:99–137. PubMed

Pandurangan A.K., Divya T., Kumar K., Dineshbabu V., Velavan B., Sudhandiran G. Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J. Gastrointest. Oncol. 2018;10:244–259. PubMed PMC

Paoli P., Giannoni E., Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta. 2013;1833:3481–3498. doi: 10.1016/j.bbamcr.2013.06.026. PubMed DOI

Zhang X., Chen L. The recent progress of the mechanism and regulation of tumor necrosis in colorectal cancer. J. Cancer Res. Clin. Oncol. 2016;142:453–463. doi: 10.1007/s00432-015-1997-z. PubMed DOI PMC

Huang C.Y., Yu L.C. Pathophysiological mechanisms of death resistance in colorectal carcinoma. World J. Gastroenterol. 2015;21:11777–11792. doi: 10.3748/wjg.v21.i41.11777. PubMed DOI PMC

Shanmugathasan M., Jothy S. Apoptosis, anoikis and their relevance to the pathobiology of colon cancer. Pathol. Int. 2000;50:273–279. doi: 10.1046/j.1440-1827.2000.01047.x. PubMed DOI

Zhang L., Yu J. Role of apoptosis in colon cancer biology, therapy, and prevention. Curr. Colorectal Cancer Rep. 2013;9:331–340. doi: 10.1007/s11888-013-0188-z. PubMed DOI PMC

Miquel C., Borrini F., Grandjouan S., Auperin A., Viguier J., Velasco V., Duvillard P., Praz F., Sabourin J.C. Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am. J. Clin. Pathol. 2005;123:562–570. doi: 10.1309/JQ2X3RV3L8F9TGYW. PubMed DOI

Yamamoto H., Imai K. Microsatellite instability: An update. Arch. Toxicol. 2015;89:899–921. doi: 10.1007/s00204-015-1474-0. PubMed DOI

Kim M.R., Jeong E.G., Chae B., Lee J.W., Soung Y.H., Nam S.W., Lee J.Y., Yoo N.J., Lee S.H. Pro-apoptotic puma and anti-apoptotic phospho-bad are highly expressed in colorectal carcinomas. Dig. Dis. Sci. 2007;52:2751–2756. doi: 10.1007/s10620-007-9799-z. PubMed DOI

Wilson T.R., McLaughlin K.M., McEwan M., Sakai H., Rogers K.M., Redmond K.M., Johnston P.G., Longley D.B. C-flip: A key regulator of colorectal cancer cell death. Cancer Res. 2007;67:5754–5762. doi: 10.1158/0008-5472.CAN-06-3585. PubMed DOI

Xiang G., Wen X., Wang H., Chen K., Liu H. Expression of x-linked inhibitor of apoptosis protein in human colorectal cancer and its correlation with prognosis. J. Surg. Oncol. 2009;100:708–712. PubMed

Krajewska M., Kim H., Kim C., Kang H., Welsh K., Matsuzawa S., Tsukamoto M., Thomas R.G., Assa-Munt N., Piao Z., et al. Analysis of apoptosis protein expression in early-stage colorectal cancer suggests opportunities for new prognostic biomarkers. Clin. Cancer Res. 2005;11:5451–5461. doi: 10.1158/1078-0432.CCR-05-0094. PubMed DOI

Endo K., Kohnoe S., Watanabe A., Tashiro H., Sakata H., Morita M., Kakeji Y., Maehara Y. Clinical significance of smac/diablo expression in colorectal cancer. Oncol. Rep. 2009;21:351–355. doi: 10.3892/or_00000229. PubMed DOI

Shintani M., Sangawa A., Yamao N., Kamoshida S. Smac/diablo expression in human gastrointestinal carcinoma: Association with clinicopathological parameters and survivin expression. Oncol. Lett. 2014;8:2581–2586. doi: 10.3892/ol.2014.2598. PubMed DOI PMC

Marcucci F., Rumio C. How tumor cells choose between epithelial-mesenchymal transition and autophagy to resist stress-therapeutic implications. Front. Pharmacol. 2018;9:714. doi: 10.3389/fphar.2018.00714. PubMed DOI PMC

De Krijger I., Mekenkamp L.J., Punt C.J., Nagtegaal I.D. Micrornas in colorectal cancer metastasis. J. Pathol. 2011;224:438–447. doi: 10.1002/path.2922. PubMed DOI

Koehler B.C., Jassowicz A., Scherr A.L., Lorenz S., Radhakrishnan P., Kautz N., Elssner C., Weiss J., Jaeger D., Schneider M., et al. Pan-bcl-2 inhibitor obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling. BMC Cancer. 2015;15:919. doi: 10.1186/s12885-015-1929-y. PubMed DOI PMC

Gulhati P., Bowen K.A., Liu J., Stevens P.D., Rychahou P.G., Chen M., Lee E.Y., Weiss H.L., O’Connor K.L., Gao T., et al. Mtorc1 and mtorc2 regulate emt, motility, and metastasis of colorectal cancer via rhoa and rac1 signaling pathways. Cancer Res. 2011;71:3246–3256. doi: 10.1158/0008-5472.CAN-10-4058. PubMed DOI PMC

Gugnoni M., Sancisi V., Manzotti G., Gandolfi G., Ciarrocchi A. Autophagy and epithelial-mesenchymal transition: An intricate interplay in cancer. Cell Death Dis. 2016;7:e2520. doi: 10.1038/cddis.2016.415. PubMed DOI PMC

Qian H.R., Shi Z.Q., Zhu H.P., Gu L.H., Wang X.F., Yang Y. Interplay between apoptosis and autophagy in colorectal cancer. Oncotarget. 2017;8:62759–62768. doi: 10.18632/oncotarget.18663. PubMed DOI PMC

Stanislav J., Mls J., Cervinka M., Rudolf E. The role of autophagic cell death and apoptosis in irinotecan-treated p53 null colon cancer cells. Anticancer Agents Med. Chem. 2013;13:811–820. PubMed

Fujikawa H., Tanaka K., Toiyama Y., Saigusa S., Inoue Y., Uchida K., Kusunoki M. High trkb expression levels are associated with poor prognosis and emt induction in colorectal cancer cells. J. Gastroenterol. 2012;47:775–784. doi: 10.1007/s00535-012-0532-0. PubMed DOI

Catalano M., D’Alessandro G., Lepore F., Corazzari M., Caldarola S., Valacca C., Faienza F., Esposito V., Limatola C., Cecconi F., et al. Autophagy induction impairs migration and invasion by reversing emt in glioblastoma cells. Mol. Oncol. 2015;9:1612–1625. doi: 10.1016/j.molonc.2015.04.016. PubMed DOI PMC

De Smedt L., Palmans S., Andel D., Govaere O., Boeckx B., Smeets D., Galle E., Wouters J., Barras D., Suffiotti M., et al. Expression profiling of budding cells in colorectal cancer reveals an emt-like phenotype and molecular subtype switching. Br. J. Cancer. 2017;116:58–65. doi: 10.1038/bjc.2016.382. PubMed DOI PMC

Ren B.J., Zhou Z.W., Zhu D.J., Ju Y.L., Wu J.H., Ouyang M.Z., Chen X.W., Zhou S.F. Alisertib induces cell cycle arrest, apoptosis, autophagy and suppresses emt in ht29 and caco-2 cells. Int. J. Mol. Sci. 2016;17:41. doi: 10.3390/ijms17010041. PubMed DOI PMC

Bertrand M., Petit V., Jain A., Amsellem R., Johansen T., Larue L., Codogno P., Beau I. Sqstm1/p62 regulates the expression of junctional proteins through epithelial-mesenchymal transition factors. Cell Cycle. 2015;14:364–374. doi: 10.4161/15384101.2014.987619. PubMed DOI PMC

Shen H., Yin L., Deng G., Guo C., Han Y., Li Y., Cai C., Fu Y., Liu S., Zeng S. Knockdown of beclin-1 impairs epithelial-mesenchymal transition of colon cancer cells. J. Cell. Biochem. 2018;119:7022–7031. doi: 10.1002/jcb.26912. PubMed DOI

Zhang M.Y., Wang L.Y., Zhao S., Guo X.C., Xu Y.Q., Zheng Z.H., Lu H., Zheng H.C. Effects of beclin 1 overexpression on aggressive phenotypes of colon cancer cells. Oncol. Lett. 2019;17:2441–2450. doi: 10.3892/ol.2018.9817. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...