Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

. 2016 ; 12 (1) : 1-222.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu směrnice, časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid26799652

Grantová podpora
R01 GM116908 NIGMS NIH HHS - United States
I01 BX001110 BLRD VA - United States
R01 CA078810 NCI NIH HHS - United States
R15 AI089518 NIAID NIH HHS - United States
R03 DK092434 NIDDK NIH HHS - United States
R01 EY026171 NEI NIH HHS - United States
I01 BX000976 BLRD VA - United States
R01 CA187305 NCI NIH HHS - United States
R01 AI091968 NIAID NIH HHS - United States
R01 NS078072 NINDS NIH HHS - United States
R01 HL126711 NHLBI NIH HHS - United States
R01 EY010199 NEI NIH HHS - United States
R01 DK044234 NIDDK NIH HHS - United States
R01 AR050429 NIAMS NIH HHS - United States
R01 HL072844 NHLBI NIH HHS - United States
MC_UU_12016/4 Medical Research Council - United Kingdom
R01 DK083575 NIDDK NIH HHS - United States
P20 RR024489 NCRR NIH HHS - United States
R21 AI115286 NIAID NIH HHS - United States
11359 Cancer Research UK - United Kingdom
13101 Cancer Research UK - United Kingdom
MC_UP_A390_1106 Medical Research Council - United Kingdom
K08 DK089117 NIDDK NIH HHS - United States
R01 GM021841 NIGMS NIH HHS - United States
P30 CA016672 NCI NIH HHS - United States
R01 NS065789 NINDS NIH HHS - United States
R01 CA159314 NCI NIH HHS - United States
R56 DK108921 NIDDK NIH HHS - United States
R01 CA140964 NCI NIH HHS - United States
R01 AI087669 NIAID NIH HHS - United States
MR/J010448/1 Medical Research Council - United Kingdom
R01 CA132136 NCI NIH HHS - United States
R01 EY024327 NEI NIH HHS - United States
MC_U132670600 Medical Research Council - United Kingdom
145505 Swiss National Science Foundation - Switzerland
R01 DK097441 NIDDK NIH HHS - United States
I01 BX001969 BLRD VA - United States
R03 DK106304 NIDDK NIH HHS - United States
R01 EY018884 NEI NIH HHS - United States
G0300648 Medical Research Council - United Kingdom
U54 CA149147 NCI NIH HHS - United States
R01 NS069566 NINDS NIH HHS - United States
R01 AG032611 NIA NIH HHS - United States
R01 DK076685 NIDDK NIH HHS - United States
R01 AG039756 NIA NIH HHS - United States
R01 CA138441 NCI NIH HHS - United States
U01 DK127747 NIDDK NIH HHS - United States
14BGIA20030027 American Heart Association-American Stroke Association - United States
R01 HL107594 NHLBI NIH HHS - United States
16337 Cancer Research UK - United Kingdom
K12 GM068524 NIGMS NIH HHS - United States
K08 CA193982 NCI NIH HHS - United States
K02 AG042095 NIA NIH HHS - United States
P01 DK098108 NIDDK NIH HHS - United States
P30 ES006694 NIEHS NIH HHS - United States
R01 AG020197 NIA NIH HHS - United States
R01 HL071158 NHLBI NIH HHS - United States
GM053396 NIGMS NIH HHS - United States
BBS/E/B/000C0413 Biotechnology and Biological Sciences Research Council - United Kingdom
R01 GM097355 NIGMS NIH HHS - United States
P01 CA108671 NCI NIH HHS - United States
R01 HL130230 NHLBI NIH HHS - United States
R01 DK079879 NIDDK NIH HHS - United States
16466 Cancer Research UK - United Kingdom
I01 BX002363 BLRD VA - United States
P42 ES027723 NIEHS NIH HHS - United States
K08 CA164047 NCI NIH HHS - United States
R01 HL079669 NHLBI NIH HHS - United States
R01 AR042527 NIAMS NIH HHS - United States
R01 AA022601 NIAAA NIH HHS - United States
R01 EY026885 NEI NIH HHS - United States
R01 DK090115 NIDDK NIH HHS - United States
K-1202 Parkinson's UK - United Kingdom
K01 DK075386 NIDDK NIH HHS - United States
P30 CA010815 NCI NIH HHS - United States
R01 AR060837 NIAMS NIH HHS - United States
G0801936 Medical Research Council - United Kingdom
R01 HL077328 NHLBI NIH HHS - United States
R15 GM102846 NIGMS NIH HHS - United States
R01 NS073813 NINDS NIH HHS - United States
R01 NS076896 NINDS NIH HHS - United States
11975 Cancer Research UK - United Kingdom
K01 AA019996 NIAAA NIH HHS - United States
R01 HL116329 NHLBI NIH HHS - United States
R01 DK033823 NIDDK NIH HHS - United States
R01 CA089121 NCI NIH HHS - United States
R00 DK094980 NIDDK NIH HHS - United States
NC/L000199/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research - United Kingdom
R01 DK098331 NIDDK NIH HHS - United States
R01 NS091218 NINDS NIH HHS - United States
R01 GM096193 NIGMS NIH HHS - United States
R03 DK089010 NIDDK NIH HHS - United States
R01 AT005076 NCCIH NIH HHS - United States
R01 CA184137 NCI NIH HHS - United States
R01 EY024581 NEI NIH HHS - United States
R01 GM053396 NIGMS NIH HHS - United States
I01 RX000444 RRD VA - United States
R01 HL117233 NHLBI NIH HHS - United States
R21 DK075494 NIDDK NIH HHS - United States
R01 HL114697 NHLBI NIH HHS - United States
MC_UU_12022/6 Medical Research Council - United Kingdom
R01 EY009083 NEI NIH HHS - United States
R01 CA178394 NCI NIH HHS - United States
G12 MD007595 NIMHD NIH HHS - United States
087518 Wellcome Trust - United Kingdom
R01 HL085629 NHLBI NIH HHS - United States
R01 HL117913 NHLBI NIH HHS - United States
R37 AG021904 NIA NIH HHS - United States
R00 AG042494 NIA NIH HHS - United States
P20 GM104934 NIGMS NIH HHS - United States
R01 AR062030 NIAMS NIH HHS - United States
R01 NS062792 NINDS NIH HHS - United States
P30 AG028740 NIA NIH HHS - United States
R01 HL059888 NHLBI NIH HHS - United States
P01 CA163200 NCI NIH HHS - United States
R01 EY028559 NEI NIH HHS - United States
R01 AG045223 NIA NIH HHS - United States
R21 DA029249 NIDA NIH HHS - United States
R56 DK037034 NIDDK NIH HHS - United States
R01 EY022633 NEI NIH HHS - United States
R15 CA151112 NCI NIH HHS - United States
MR/M019217/1 Medical Research Council - United Kingdom
R03 DK106344 NIDDK NIH HHS - United States
H-1201 Parkinson's UK - United Kingdom
R56 NS065789 NINDS NIH HHS - United States
R01 EY026979 NEI NIH HHS - United States
P20 GM103554 NIGMS NIH HHS - United States
R01 CA109182 NCI NIH HHS - United States
R01 CA184208 NCI NIH HHS - United States
K08 NS085324 NINDS NIH HHS - United States
R01 CA175120 NCI NIH HHS - United States
R01 AI146180 NIAID NIH HHS - United States
R01 CA193698 NCI NIH HHS - United States
F-1002 Parkinson's UK - United Kingdom
R01 CA122346 NCI NIH HHS - United States
R01 AI108906 NIAID NIH HHS - United States
14-1328 Worldwide Cancer Research - United Kingdom
R37 AI042999 NIAID NIH HHS - United States
MC_UP_A500_1019 Medical Research Council - United Kingdom
R01 CA143811 NCI NIH HHS - United States
R01 AI137198 NIAID NIH HHS - United States
R01 DK100163 NIDDK NIH HHS - United States
P20 GM103492 NIGMS NIH HHS - United States
R01 EY015537 NEI NIH HHS - United States
12918 Cancer Research UK - United Kingdom
R01 AI139675 NIAID NIH HHS - United States
MR/N004434/1 Medical Research Council - United Kingdom
P20 GM103652 NIGMS NIH HHS - United States
K22 CA181274 NCI NIH HHS - United States
R01 AI111935 NIAID NIH HHS - United States
K08 NS083739 NINDS NIH HHS - United States
MC_U105185860 Medical Research Council - United Kingdom
R03 NS087338 NINDS NIH HHS - United States
MC_U105170648 Medical Research Council - United Kingdom
P30 DK020541 NIDDK NIH HHS - United States
P30 DK020593 NIDDK NIH HHS - United States
I01 BX001746 BLRD VA - United States
R01 DK073336 NIDDK NIH HHS - United States
16464 Cancer Research UK - United Kingdom
R01 NS075685 NINDS NIH HHS - United States
R01 NS057553 NINDS NIH HHS - United States
R01 NS089737 NINDS NIH HHS - United States
P30 ES023512 NIEHS NIH HHS - United States
15816 Cancer Research UK - United Kingdom
T32 CA009686 NCI NIH HHS - United States
R01 EY027733 NEI NIH HHS - United States
R00 DK087928 NIDDK NIH HHS - United States
R01 HL056416 NHLBI NIH HHS - United States
R01 AA019954 NIAAA NIH HHS - United States
U54 HD090255 NICHD NIH HHS - United States
R01 HL130845 NHLBI NIH HHS - United States
R35 CA220446 NCI NIH HHS - United States
R01 AA021751 NIAAA NIH HHS - United States
R03 NS090939 NINDS NIH HHS - United States
R01 GM061766 NIGMS NIH HHS - United States
T32 AI007538 NIAID NIH HHS - United States
R01 NS085070 NINDS NIH HHS - United States
R01 AG026389 NIA NIH HHS - United States
R01 NS077239 NINDS NIH HHS - United States
12825 Cancer Research UK - United Kingdom
18974 Cancer Research UK - United Kingdom
P30 DK020579 NIDDK NIH HHS - United States
R01 DK062777 NIDDK NIH HHS - United States
R21 NS091928 NINDS NIH HHS - United States
R01 DK062092 NIDDK NIH HHS - United States
R01 GM060574 NIGMS NIH HHS - United States
I01 RX001477 RRD VA - United States
P30 DK020572 NIDDK NIH HHS - United States
R01 DK105118 NIDDK NIH HHS - United States
R01 HL130174 NHLBI NIH HHS - United States
R01 GM089919 NIGMS NIH HHS - United States
MR/M00869X/1 Medical Research Council - United Kingdom
G0601891 Medical Research Council - United Kingdom
R37 AI103197 NIAID NIH HHS - United States
R01 CA142862 NCI NIH HHS - United States
R01 CA149646 NCI NIH HHS - United States
R01 HL072166 NHLBI NIH HHS - United States
R01 HL098216 NHLBI NIH HHS - United States
R21 AR060444 NIAMS NIH HHS - United States
R01 EY005681 NEI NIH HHS - United States
R01 NS079697 NINDS NIH HHS - United States
19276 Cancer Research UK - United Kingdom
R01 AG038664 NIA NIH HHS - United States
R01 AR064420 NIAMS NIH HHS - United States
R01 GM114840 NIGMS NIH HHS - United States
R01 EY025362 NEI NIH HHS - United States
G1002186 Medical Research Council - United Kingdom
2014112 Doris Duke Charitable Foundation - United States
R15 AI119980 NIAID NIH HHS - United States
R00 AG048016 NIA NIH HHS - United States
MR/K019384/1 Medical Research Council - United Kingdom
R01 DK061498 NIDDK NIH HHS - United States
MR/L010933/1 Medical Research Council - United Kingdom
R01 DK107220 NIDDK NIH HHS - United States
R01 CA162405 NCI NIH HHS - United States
R01 EY010577 NEI NIH HHS - United States
10SDG2600164 American Heart Association-American Stroke Association - United States
RF1 AG043517 NIA NIH HHS - United States
R01 AI092084 NIAID NIH HHS - United States
R01 GM117466 NIGMS NIH HHS - United States
P01 AG031782 NIA NIH HHS - United States
R21 AI113526 NIAID NIH HHS - United States
R01 CA130893 NCI NIH HHS - United States
R01 EY013434 NEI NIH HHS - United States
R01 CA129536 NCI NIH HHS - United States
R56 HL122580 NHLBI NIH HHS - United States
R01 GM101056 NIGMS NIH HHS - United States
R01 GM063075 NIGMS NIH HHS - United States
R01 AG031867 NIA NIH HHS - United States
P20 GM103625 NIGMS NIH HHS - United States
G1000089 Medical Research Council - United Kingdom
R01 NS078560 NINDS NIH HHS - United States
R01 AI104928 NIAID NIH HHS - United States
15890 Cancer Research UK - United Kingdom
R01 AR059115 NIAMS NIH HHS - United States
R01 DK094652 NIDDK NIH HHS - United States
R01 DK095842 NIDDK NIH HHS - United States

A*STAR Institute of Molecular and Cell Biology Singapore

Aarhus University Department of Biomedicine Aarhus Denmark

Aix Marseille Université CNRS IBDM UMR 7288 Campus de Luminy Marseille France

Albert Einstein College of Medicine Department of Medicine Bronx NY USA

Albert Einstein College of Medicine Departments of Biochemistry and of Medicine Bronx NY USA

Amorepacific Corporation RandD Center Bioscience Research Institute Gyeonggi Korea

b A Mickiewicz University Department of General Botany Institute of Experimental Biology Faculty of Biology Poznań Poland

b Albert Einstein College of Medicine Department of Molecular Pharmacology Bronx NY USA

b Catholic University of Korea Seoul Korea

b Georgia Regents University Department of Neurology Augusta GA USA

b Ludwig Maximilians University Munich Department of Pharmacy Munich Germany

b Mossakowski Medical Research Centre Polish Academy of Sciences Electron Microscopy Platform Warsaw Poland

b Sapienza University of Rome Department of Experimental Medicine Rome Italy

ba Baker IDI Heart and Diabetes Institute Molecular Cardiology Laboratory Melbourne Australia

ba Max Planck Institute of Biochemistry Molecular Membrane and Organelle Biology Martinsried Germany

baa Université Paris Est Institut Mondor de Recherche Biomédicale Paris France

bab Université Paris Sud CEA CNRS Institute for Integrative Biology of the Cell Gif sur Yvette Cedex France

bac Université Paris Sud CEA CNRS Paris France

bad Université Paris Sud INSERM 1030 Gustave Roussy Cancer Campus Paris France

bae Université Paris Sud Institut Gustave Roussy CNRS UMR 8126 Villejuif France

baf Université Paris Sud Université Paris Saclay UMR 8126CNRS Institut Gustave Roussy Villejuif France

bag Universiti Sains Malaysia Advanced Medical and Dental Institute Ministry of Science Technology and Innovation Pulau Pinang Malaysia

bah University G dAnnunzio Department of Medical Oral and Biotechnological Sciences Chieti Italy

bai University Magna Graecia of Catanzaro Department of Health Sciences Catanzaro Italy

baj University Belgrade School of Medicine Belgrade Serbia

bak University Bourgogne Franche Comté EA 7270 INSERM Dijon France

bal University Clinic Heidelberg Department of Experimental Surgery Heidelberg Germany

bam University Clinics Institute of Cellular and Molecular Anatomy Frankfurt Germany

ban University College Cork Cork Cancer Research Centre BioSciences Institute Co Cork Ireland

bao University College Cork School of Pharmacy Department of Pharmacology and Therapeutics Cork Ireland

bap University College Dublin School of Chemical and Bioprocess Engineering Dublin Ireland

baq University College London Department of Clinical Neurosciences London UK

bar University College London MRC Laboratory for Molecular Cell Biology London UK

bas University College London UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology London UK

bat University Hospital Luigi Sacco Università di Milano Unit of Clinical Pharmacology National Research Council Institute of Neuroscience Department of Biomedical and Clinical Sciences Luigi Sacco Milano Italy

bau University Hospital Aachen IZKF and Department of Internal Medicine 3 Aachen Germany

bav University Hospital Center University of Lausanne Clinic of Neonatology Department of Pediatrics and Pediatric Surgery Lausanne Switzerland

baw University Hospital Cologne CECAD Research Center Cologne Germany

bax University Hospital Erlangen Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany

bay University Hospital Freiburg Department of Medicine 2 Freiburg Germany

baz University Hospital Jena Department of General Visceral and Vascular Surgery Experimental Transplantation Surgery Jena Germany

bb Baylor College of Medicine Department of Medicine Houston TX USA

bb Max Planck Institute of Biophysical Chemistry Department of Molecular Cell Biology Göttingen Germany

bba University Hospital La Coruña Microbiology Department La Coruña Spain

bbb University Hospital Muenster Albert Schweitzer Campus Internal Medicine D Department of Nephrology Hypertension and Rheumatology Münster Germany

bbc University Hospital of Göttingen Department of Nephrology and Rheumatology Göttingen Germany

bbd University Hospital of Lausanne Service and Central Laboratory of Hematology Lausanne Switzerland

bbe University Hospital of Muenster Department of Internal Medicine D Molecular Nephrology Muenster Germany

bbf University Hospital Ulm Sektion Experimentelle Anaestesiologie Ulm Germany

bbg University Hospital Zürich Division of Gastroenterology and Hepatolog Zürich Switzerland

bbh University Hospitals Leuven Department of Microbiology and Immunology Laboratory of Abdominal Transplantation Leuven Belgium

bbi University Hospitals Leuven Department of Neurology Leuven Belgium

bbj National Institute of Environmental Health Sciences Immunity Inflammation and Disease Laboratory Research Triangle Park NC USA

bbk University Lille INSERM CHU Lille Institut Pasteur de Lille U1011 EGID Lille France

bbl University Medical Center Freiburg Freiburg Germany

bbm University Medical Center Groningen University of Groningen Department of Hematology Groningen The Netherlands

bbn University Medical Center Hamburg Eppendorf Institute of Neuropathology Hamburg Germany

bbo University Medical Center of the Johannes Gutenberg University Institute for Pathobiochemistry Mainz Germany

bbp University Medical Center Utrecht Department of Cell Biology Groningen The Netherlands

bbq University Medical Centre Göttingen Clinic for Neurology and Department of Neuroimmunology Göttingen Germany

bbr University Medical Centre Göttingen Department of Neurodegeneration and Restorative Research Göttingen Germany

bbs University Medical Centre Utrecht Laboratory of Translational Immunology and Department of Pediatric Immunology Utrecht The Netherlands

bbt University Medicine Göttingen Department of Neurology Göttingen Germany

bbu University Montpellier 1 INSERM U1051 Montpellier France

bbv University Montpellier UMR5235 Montpellier France

bbw University of Aberdeen Division of Applied Medicine Aberdeen UK

bbx University of Adelaide Alzheimer's Disease Genetics Laboratory Adelaide Australia

bby University of Adelaide Department of Genetics and Evolution School of Biological Sciences Adelaide SA Australia

bbz University of Alabama at Birmingham Department of Cell Developmental and Integrative Biology Birmingham AL USA

bc Baylor College of Medicine Department of Molecular and Human Genetics Houston TX USA

bc Max Planck Institute of Psychiatry Translational Research in Psychiatry Munich Germany

bca University of Alabama at Birmingham Department of Medicine Division of Hematology and Oncology Comprehensive Cancer Center Birmingham AL USA

bcb University of Alabama at Birmingham Department of Pathology Birmingham AL USA

bcc University of Alabama at Birmingham Department of Pathology Center for Free Radical Biology Birmingham AL USA

bcd University of Alabama at Birmingham Division of Molecular and Cellular Pathology Department of Pathology Birmingham AL USA

bce University of Alabama Department of Chemical and Biological Engineering Tuscaloosa AL USA

bcf University of Alberta Department of Biochemistry Edmonton Alberta Canada

bcg University of Alcala Department of System Biology Biochemistry and Molecular Biology Unit School of Medicine Madrid Spain

bch University of Amsterdam Academic Medical Center Laboratory of Experimental Oncology and Radiobiology Amsterdam North Holland The Netherlands

bci University of Amsterdam Department of Cellbiology and Histology Academic Medical Center Amsterdam The Netherlands

bcj University of Amsterdam Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands

bck University of Amsterdam Laboratory of Experimental Virology Center for Infection and Immunity Amsterdam Amsterdam The Netherlands

bcl University of Antwerp Department of Paediatric Oncology Antwerp Belgium

bcm University of Antwerp Laboratory of Physiopharmacology Wilrijk Antwerp Belgium

bcn University of Arizona Cancer Center Department of Medicine Tucson AZ USA

bco University of Arizona College of Medicine Barrow Neurological Institute Phoenix Children's Hospital Department of Child Health Phoenix AZ USA

bcp University of Arizona Department of Entomology Tucson AZ USA

bcq University of Arizona Department of Pharmacology and Toxicology College of Pharmacy Tucson AZ USA

bcr University of Arkansas for Medical Sciences Department of Cardiology Little Rock AR USA

bcs University of Arkansas for Medical Sciences Department of Microbiology and Immunology Little Rock AR USA

bct University of Arkansas for Medical Sciences Department of Pharmacology Toxicology Little Rock AR USA

bcu University of Arkansas Center of Excellence for Poultry Science Fayetteville AR USA

bcv University of Athens Department of Cell Biology and Biophysics Faculty of Biology Athens Greece

bcw University of Athens Medical School 2nd Department of Internal Medicine and Research Institute Attikon University General Hospital Athens Greece

bcx University of Groningen Department of Cell Biology Groningen The Netherlands

bcy University of Aveiro Institute for Research in Biomedicine iBiMED Aveiro Health Sciences Program Aveiro Portugal

bcz University of Aveiro QOPNA Department of Chemistry Aveiro Portugal

bd Baylor University Medical Center Department of Internal Medicine Division of Gastroenterology Baylor Research Institute Dallas TX

bd Mayo Clinic Department of Biochemistry Rochester MN USA

bda University of Barcelona Department of Biochemistry and Molecular Genetics Hospital Clínic IDIBAPS CIBERehd Barcelona Spain

bdb University of Barcelona School of Medicine Campus Bellvitge Hospitalet del Llobregat Spain

bdc University of Bari 'Aldo Moro' Department of Basic Medical Sciences Neurosciences and Organs of Senses Bari Italy

bdd University of Bari 'Aldo Moro' Department of Biomedical Sciences and Clinical Oncology Bari Italy

bde University of Bari 'Aldo Moro' Division of Medical Genetics DIMO School of Medicine Bari Italy

bdf University of Basel Biozentrum Basel BS Switzerland

bdg University of Basel Biozentrum Basel Switzerland

bdh University of Bayreuth Cell Biology Bayreuth Germany

bdi University of Bayreuth Department of Biochemistry Bayreuth Germany

bdj University of Belgrade Institute for Biological Research Sinisa Stankovic Belgrade Serbia

bdk University of Belgrade Institute of Histology and Embryology School of Medicine Belgrade Serbia

bdl University of Belgrade Institute of Medical and Clinical Biochemistry Faculty of Medicine Belgrade Serbia

bdm University of Belgrade School of Medicine Belgrade Serbia

bdn University of Belgrade School of Medicine Institute of Histology and Embryology Belgrade Serbia

bdo University of Bern Division of Experimental Pathology Institute of Pathology Bern Switzerland

bdp University of Bern Division of Pediatric Hematology Oncology Department of Clinical Research Bern Switzerland

bdq University of Bern Institute of Biochemistry and Molecular Medicine Bern Switzerland

bdr University of Bern Institute of Pharmacology Bern Switzerland

bds University of Birmingham Institute of Biomedical Research Institute of Cancer and Genomic Sciences College of Medical and Dental Sciences Edgbaston Birmingham UK

bdt University of Birmingham Institute of Immunology and Immunotherapy Birmingham West Midlands UK

bdu University of Bologna Department of Biomedical and Neuromotor Sciences Bologna Italy

bdv University of Bologna Dipartimento di Scienze Biomediche e Neuromotorie Bologna Italy

bdw University of Bonn Department of Neurology Bonn Germany

bdx University of Bonn Institute for Cell Biology Bonn Germany

bdy University of Bonn Institute of Reconstructive Neurobiology Bonn Germany

bdz University of Brescia Department of Molecular and Translational Medicine Brescia Italy

be Beatson Institute for Cancer Research University of Glasgow Glasgow UK

be Mayo Clinic Department of Neuroscience Jacksonville FL USA

bea University of Bristol School of Biochemistry Bristol UK

beb University of Bristol School of Cellular and Molecular Medicine Bristol UK

bec University of British Columbia Department of Biochemistry and Molecular Biology Vancouver BC Canada

bed University of British Columbia Department of Biochemistry and Molecular Biology Vancouver British Columbia Canada

bee University of British Columbia Department of Cellular and Physiological Sciences Vancouver BC Canada

bef University of British Columbia Department of Medicine and Brain Research Center Vancouver BC Canada

beg University of British Columbia Department of Pathology and Laboratory Medicine James Hogg Research Centre Vancouver BC Canada

beh University of British Columbia Department of Pathology and Laboratory Medicine Vancouver BC Canada

bei University of British Columbia Department of Psychiatry Vancouver BC Canada

bej University of British Columbia Department of Urological Sciences Vancouver BC Canada

bek University of British Columbia Medical Genetics and BC Cancer Agency Terry Fox Laboratory Vancouver BC Canada

bel University of British Columbia Michael Smith Laboratories Department of Chemical and Biological Engineering Vancouver BC Canada

bem University of British Columbia Michael Smith Laboratories Vancouver British Columbia Canada

ben University of Buenos Aires IDEHU CONICET Faculty of Pharmacy and Biochemistry Buenos Aires Argentina

beo University of Buenos Aires Institute of Biochemistry and Biophysics School of Pharmacy and Biochemistry Buenos Aires Argentina

bep University of Buenos Aires National Council for Scientific and Technical Research Institute for Biochemistry and Molecular Medicine Department of Pathophysiology School of Pharmacy and Biochemistry Buenos Aires Argentina

beq University of Calabria Department of Biology Ecology and Earth Science Laboratory of Electron Microscopy Cosenza Italy

ber University of Calabria Department of Pharmacy Health and Nutritional Sciences Arcavacata di Rende Italy

bes University of Calabria Department of Pharmacy Health and Nutritional Sciences Section of Preclinical and Translational Pharmacology Rende Italy

bet University of Calcutta Department of Biotechnology Dr B C Guha Centre for Genetic Engineering and Biotechnology Kolkata WB India

beu University of Calgary Department of Biochemistry and Molecular Biology Libin Cardiovascular Institute of Alberta Calgary AB Canada

bev University of Calgary Faculty of Veterinary Medicine Calgary AB Canada

bew University of California Berkeley Department of Molecular and Cell Biology Berkeley CA USA

bex University of California Berkeley Howard Hughes Medical Institute Department of Molecular and Cell Biology Berkeley CA USA

bey University of California Davis Cancer Center Davis CA USA

bez University of California Davis Department of Medical Microbiology and Immunology School of Medicine Davis CA USA

bf Beckman Research Institute City of Hope Department of Molecular Pharmacology Duarte CA USA

bf Mayo Clinic Division of Nephrology and Hypertension Rochester MN USA

bfa University of California Davis Department of Molecular and Cellular Biology Davis CA USA

bfb University of California Davis Department of Neurobiology Physiology and Behavior Davis CA USA

bfc University of California Davis Department of Plant Biology and the Genome Center College of Biological Sciences Davis CA USA

bfd University of California Davis Mann Laboratory Department of Plant Sciences Davis CA USA

bfe University of California Irvine Department of Developmental and Cell Biology Irvine CA USA

bff University of California Irvine Department of Neurosurgery Irvine CA USA

bfg University of California Irvine Department of Psychiatry and Human Behavior Irvine CA USA

bfh University of California Irvine Irvine CA USA

bfi University of California Los Angeles Department of Medicine Los Angeles CA USA

bfj University of California Los Angeles Larry Hillblom Islet Research Center David Geffen School of Medicine Los Angeles CA USA

bfk University of California Riverside Department of Cell Biology and Neuroscience Riverside CA USA

bfl University of California San Diego Department of Cellular and Molecular Medicine La Jolla CA USA

bfm University of California San Diego Department of Medicine La Jolla CA USA

bfn University of California San Diego Department of Medicine San Diego CA USA

bfo University of California San Diego Department of Pathology La Jolla CA USA

bfp University of California San Diego Department of Pediatrics Division of Infectious Diseases La Jolla CA USA

bfq University of California San Diego Department of Pediatrics La Jolla CA USA

bfr University of California San Diego Department of Pharmacology and Moores Cancer Center La Jolla CA USA

bfs University of California San Diego Department of Pharmacology La Jolla CA USA

bft University of California San Diego Departments of Cellular and Molecular Medicine Neurosciences and Pediatrics Division of Biological Sciences Institute for Genomic Medicine La Jolla CA USA

bfu University of California San Diego Division of Biological Sciences La Jolla CA USA

bfv University of California San Diego Division of Biological Sciences Section of Molecular Biology La Jolla CA USA

bfw University of California San Diego Division of Biological Sciences Section of Molecular Biology La Jolla CA USA

bfx University of California San Diego San Diego Center for Systems Biology La Jolla CA USA

bfy University of California San Diego Moores Cancer Center La Jolla CA USA

bfz University of California San Diego School of Medicine Department of Psychiatry La Jolla CA USA

bg Beckman Research Institute City of Hope Department of Neuroscience Irell and Manella Graduate School of Biological Science Duarte CA USA

bg Mayo Clinic Rochester MN USA

bga University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences La Jolla CA USA

bgb University of California San Francisco Department of Microbiology and Immunology San Francisco CA USA

bgc University of California San Francisco Department of Neurological Surgery San Francisco CA USA

bgd University of California San Francisco Department of Neurology San Francisco CA USA

bge FONDAP Center for Geroscience Brain Health and Metabolism Santiago Chile

bgf University of California San Francisco Department of Pharmaceutical Chemistry San Francisco CA USA

bgg University of California San Francisco Department of Surgery San Francisco CA USA

bgh University of California San Francisco Departments of Neurology and Physiology ; Gladstone Institute of Neurological Disease San Francisco CA USA

bgi University of California San Francisco School of Medicine Department of Pathology San Francisco CA USA

bgj University of California San Francisco UCSF Diabetes Center Department of Cell and Tissue Biology San Francisco CA USA

bgk University of California Santa Barbara Department of Molecular Cellular and Developmental Biology Santa Barbara CA USA

bgl University of Cambridge Addenbrooke's Hospital Department of Medicine Cambridge UK

bgm University of Cambridge Cambridge Institute for Medical Research Addenbrooke's Hospital Department of Medical Genetics Cambridge UK

bgn University of Cambridge Cambridge Institute for Medical Research Cambridge UK

bgo University of Cambridge Cancer Research UK Cambridge Institute Li Ka Shing Centre Cambridge UK

bgp University of Cambridge Department of BIochemistry Cambridge UK

bgq University of Cambridge Department of Medical Genetics Cambridge Institute for Medical Research Cambridge UK

bgr University of Cambridge Department of Medicine Addenbrooke's Hospital Cambridge UK

bgs University of Cambridge Division of Virology Department of Pathology Cambridge UK

bgt University of Camerino School of Biosciences and Veterinary Medicine Camerino Italy

bgu University of Camerino School of Pharmacy Camerino Italy

bgv University of Camerino School of Pharmacy Section of Experimental Medicine Camerino MC Italy

bgw University of Campinas Department of Biochemistry and Tissue Biology Campinas São Paulo Brazil

bgx University of Canterbury Biomolecular Interaction Centre School of Biological Sciences Christchurch New Zealand

bgy University of Cape Town Department of Human Biology Cape Town Western Province South Africa

bgz University of Cape Town Redox Laboratory Department of Human Biology Cape Town South Africa

bh Beechcroft Fulbourn Hospital Cambridge UK

bh Mayo Clinic Schulze Center for Novel Therapeutics Division of Oncology Research Department of Oncology Rochester MN USA

bha University of Central Florida College of Medicine Burnett School of Biomedical Sciences Orlando FL USA

bhb University of Chicago Department of Medicine Section of Dermatology Chicago IL USA

bhc University of Chicago Department of Pathology Chicago IL USA

bhd University of Chicago Pritzker School of Medicine Department of Neurology Chicago IL USA

bhe University of Chicago The Ben May Department for Cancer Research Chicago IL USA

bhf University of Chile Advanced Center for Chronic Diseases Division of Cardiovascular Diseases Faculty of Medicine Santiago Chile

bhg P Catholic University of Chile Advanced Center for Chronic Diseases Faculty of Medicine Santiago Chile

bhh University of Chile Biomedical Neuroscience Institute Santiago Chile

bhi University of Chile Faculty of Medicine ICBM Molecular and Clinical Pharmacology Santiago Chile

bhj University of Chile Institute of Biomedical Sciences Center for Molecular Studies of the Cell Program of Cellular Molecular Biology and Biomedical Neuroscience Institute Faculty of Medicine Santiago Chile

bhk University of Cincinnati College of Medicine Cincinnati Children's Research Foundation and Department of Pediatrics Cincinnati OH USA

bhl University of Cincinnati College of Medicine Department of Cancer Biology Cincinnati OH USA

bhm University of Cincinnati Cincinnati Children's Hospital Cincinnati OH USA

bhn University of Cincinnati Cincinnati OH USA

bho University of Coimbra CNC Center for Neuroscience and Cell Biology and Faculty of Medicine Coimbra Portugal

bhp University of Coimbra Center for Neuroscience and Cell Biology and Faculty of Pharmacy Coimbra Portugal

bhq University of Coimbra CNC Center for Neuroscience and Cell Biology Cantanhede Portugal

bhr University of Coimbra Coimbra Portugal

bhs University of Coimbra Faculty of Medicine Center for Neuroscience and Cell Biology Coimbra Portugal

bht University of Coimbra IBILI Faculty of Medicine Coimbra Portugal

bhu University of Cologne Department of Dermatology Cologne Germany

bhv University of Cologne Institute for Genetics CECAD Research Center Cologne Germany

bhw University of Cologne Institute of Biochemistry 1 Medical Faculty Koeln Germany

bhx University of Cologne Medical Faculty Center for Biochemistry Cologne Germany

bhy University of Colorado Denver Boulder CO USA

bhz University of Colorado Denver Division of Medical Oncology Department of Medicine Aurora CO USA

bi Beijing Anzhen Hospital Capital Medical University Beijing Institute of Heart Lung and Blood Vessel Diseases Beijing China

bi McGill University Department of Anatomy and Cell Biology Montreal Canada

bia University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences Department of Pharmaceutical Sciences Aurora CO USA

bib University of Colorado Denver ; and Denver VAMC Denver CO USA

bic University of Colorado Department of Pediatrics Center for Cancer and Blood Disorders Aurora CO USA

bid University of Colorado HHMI Department of Chemistry and Biochemistry Aurora CO USA

bie University of Colorado School of Medicine Anschutz Medical Campus Aurora CO USA

bif University of Colorado School of Medicine Aurora CO USA

big University of Colorado School of Medicine Department of Immunology and Microbiology Aurora CO USA

bih University of Colorado School of Medicine Department of Pharmacology Aurora CO USA

bii University of Colorado School of Medicine Division of Infectious Diseases Aurora CO USA

bij University of Copenhagen Biotech Research and Innovative Center Copenhagen Denmark

bik University of Copenhagen Department of Biology Copenhagen Denmark

bil University of Copenhagen Department of Plant and Environmental Sciences Section for Genetics and Microbiology Copenhagen Denmark

bim University of Crete Department of Basic Sciences Faculty of Medicine Heraklion Crete Greece

bin University of Crete Institute of Molecular Biology and Biotechnology Heraklion Crete Greece

bio University of Crete School of Medicine Department of Infectious Diseases Heraklion Crete Greece

bip University of Cyprus Department of Biological Sciences Bioinformatics Research Laboratory Nicosia Cyprus

biq University of Debrecen Debrecen Hungary

bir University of Debrecen Faculty of Pharmacy Department of Pharmacology Debrecen Hungary

bis University of Delaware Department of Biological Sciences Newark DE USA

bit University of Delaware The Center for Translational Cancer Research Newark DE USA

biu University of Dundee Centre for Gene Regulation and Expression College of Life Sciences UK

biv University of Dundee MRC Protein Phosphorylation and Ubiquitylation Unit School of Life Sciences Dundee UK

biw University of East Anglia Norwich Medical School Norfolk UK

bix University of Eastern Finland Faculty of Health Science School of Pharmacy Toxicology Kuopio Finland

biy University of Eastern Finland Kuopio University Hospital Department of Ophthalmology Kuopio Finland

biz University of Edinburgh Easter Bush The Roslin Insitute Midlothian UK

bj Beijing Institute of Pharmacology and Toxicology State Key Laboratory of Toxicology and Medical Countermeasures Beijing China

bj McGill University Department of Biochemistry Montreal Quebec Canada

bja University of Edinburgh Edinburgh Cancer Research Centre Edinburgh UK

bjb University of Edinburgh Edinburgh Cancer Research UK Centre MRC Institute of Genetics and Molecular Medicine Edinburgh UK

bjc University of Erlangen Nuremberg Department of Internal Medicine 3 Erlangen Germany

bjd University of Exeter Medical School European Centre for Environment and Human Health Truro Cornwall UK

bje University of Exeter School of Biosciences Exeter UK

bjf University of Extremadura Department of Medicine Faculty of Veterinary Medicine Cáceres Spain

bjg University of Ferrara Department of Morphology Surgery and Experimental Medicine Ferrara Italy

bjh University of Florence Department of Biology Florence Italy

bji University of Florida College of Medicine Department of Anatomy and Cell Biology Gainesville FL USA

bjj University of Florida College of Medicine Department of Neuroscience Gainesville FL USA

bjk University of Florida Department of Aging and Geriatric Research Gainesville FL USA

bjl University of Florida Department of Animal Sciences IFAS College of Agriculture and Life Science Gainesville FL USA

bjm University of Florida Department of Applied Physiology and Kinesiology Gainesville FL USA

bjn University of Florida Department of Pediatrics Genetics and Metabolism Gainesville FL USA

bjo University of Florida Department of Surgery Gainesville FL USA

bjp University of Florida Gainesville FL USA

bjq University of Florida Institute on Aging Gainesville FL USA

bjr University of Freiburg Department of Dermatology Medical Center Center for Biological Systems Analysis Freiburg Germany

bjs University of Fribourg Department of Medicine Division of Physiology Faculty of Science Fribourg Switzerland

bjt University of Fribourg Department of Medicine Division of Physiology Fribourg Switzerland

bju University of Geneva Department of Cellular Physiology and Metabolism Geneva Switzerland

bjv University of Geneva School of Medicine Department of Pathology and Immunology Geneva Switzerland

bjw University of Georgia College of Veterinary Medicine Department of Biosciences and Diagnostic Imaging Athens GA USA

bjx University of Georgia Department of Infectious Diseases Athens GA USA

bjy University of Glasgow Cancer Research UK Beatson Institute Glasgow UK

bjz University of Glasgow Institute of Cancer Sciences Glasgow UK

bk Beijing Jishuitan Hospital Department of Molecular Orthopedics Beijing Institute of Traumatology and Orthopedics Beijing China

bk McGill University Department of Critical Care Montreal Quebec Canada

bka University of Glasgow Institute of Infection Immunity and Inflammation Glasgow UK

bkb University of Glasgow Wolfson Wohl Cancer Research Centre MVLS Institute of Cancer Sciences Glasgow UK

bkc University of Göttingen Department of Geobiology Göttingen Germany

bkd University of Göttingen Department of Neurology Göttingen Germany

bke University of Graz Institute of Molecular Biosciences BioTechMed Graz Graz Austria

bkf University of Groningen Molecular Cell Biology Groningen The Netherlands

bkg University of Heidelberg Center for Molecular Biology Heidelberg Germany

bkh University of Heidelberg Institute of Anatomy and Cell Biology Heidelberg Germany

bki University of Helsinki Biomedicum Helsinki Finland

bkj University of Helsinki Department of Biosciences Helsinki Finland

bkk University of Helsinki Department of Physiology Faculty of Medicine Helsinki Finland

bkl University of Hong Kong Department of Pharmacology and Pharmacy Hong Kong China

bkm University of Hong Kong Division of Oral and Maxillofacial Surgery Faculty of Dentistry Hong Kong

bkn University of Hong Kong Hong Kong China

bko University of Hong Kong Laboratory of Neurodegenerative Diseases School of Biomedical Sciences LKS Faculty of Medicine Hong Kong China

bkp University of Houston College of Pharmacy Pharmacological and Pharmaceutical Sciences Houston TX USA

bkq University of Houston Department of Biology and Biochemistry Center for Nuclear Receptors and Cell Signaling Houston TX USA

bkr University of Idaho Plant Soil and Entomological Sciences Moscow ID USA

bks University of Illinois at Chicago College of Medicine Department of Ophthalmology and Visual Sciences Chicago IL USA

bkt University of Illinois at Chicago College of Medicine Department of Pediatrics Chicago IL USA

bku University of Illinois at Chicago Departments of Anesthesiology and Pharmacology Chicago IL USA

bkv University of Illinois at Chicago Departments of Ophthalmology and Microbiology and Immunology Chicago IL USA

bkw University of Illinois at Chicago Deprtment of Biochemistry and Molecular Genetics Chicago IL USA

bkx University of Illinois at Chicago Division of Gastroenterology and Hepatology Department of Medicine Chicago IL USA

bky University of Illinois at Urbana Champaign Department of Molecular and Integrative Physiology Urbana IL USA

bkz University of Illinois at Urbana Champaign Institute for Genomic Biology Urbana IL USA

bl Bellvitge Biomedical Research Institute L'Hospitalet Cell Death Regulation Group Barcelona Spain

bl McGill University Department of Neuroscience Montreal Neurological Institute Montreal QC Canada

bla University of Innsbruck Institute for Biomedical Aging Research Innsbruck Austria

blb University of Insubria Department of Biotechnology and Life Sciences Varese Italy

blc University of Iowa Children's Hospital Iowa City IA USA

bld University of Iowa Department of Health and Human Physiology Iowa City IA USA

ble University of Iowa Department of Internal Medicine Iowa City IA USA

blf University of Iowa Department of Medicine Iowa City IA USA

blg University of Iowa Department of Ophthalmology and Visual Sciences Iowa City IA USA

blh University of Jyväskylä Department of Biology of Physical Activity Jyväskylä Finland

bli University of Kansas and University of Kansas Cancer Center Departments of Molecular Biosciences and Radiation Oncology Lawrence KS USA

blj University of Kansas Medical Center Department of Pharmacology Toxicology and Therapeutics Kansas City KS USA

blk University of Kaohsiung Medical University Department of Physiology Faculty of Medicine College of Medicine Kaohsiung Taiwan

bll University of Kentucky College of Medicine Department of Pharmacology and Nutritional Sciences Lexington KY USA

blm University of Kentucky Department of Biology Lexington KY USA

bln University of Kentucky Department of Molecular and Cellular Biochemistry Lexington KY USA

blo University of Kentucky Department of Pharmacology and Nutritional Sciences Lexington KY USA

blp University of Kentucky Department of Toxicology and Cancer Biology Lexington KY USA

blq University of Kiel Department of Cardiology Kiel Germany

blr University of Kiel Institute of Clinical Molecular Biology Kiel Germany

bls University of Kiel Institute of Human Nutrition and Food Science Kiel Germany

blt University of La Réunion CYROI IRG Immunopathology and Infection Research Grouping Reunion France

blu University of L'Aquila Department of Biotechnological and Applied Clinical Sciences Division of Radiotherapy and Radiobiology L'Aquila Italy

blv University of Lausanne Department of Biochemistry Epalinges Switzerland

blw University of Lausanne Department of Fundamental Neurosciences Faculty of Biology and Medicine Lausanne Switzerland

blx University of Lausanne Department of Ophthalmology Lausanne Switzerland

bly Hakim Sabzevari University Department of Biology Faculty of Basic Sciences Sabzevar Iran

blz University of Leicester Department of Cancer Studies Leicester UK

bm Bellvitge Biomedical Research Institute Neurometabolic Diseases Laboratory Barcelona Spain

bm McGill University Department of Pharmacology and Therapeutics Montreal Quebec Canada

bma University of Leicester Department of Genetics Leicester UK

bmb University of Leuven Campus Gasthuisberg Department of Cellular and Molecular Medicine Laboratory for Cell Death Research and Therapy Leuven Belgium

bmc University of Leuven Department of Neurosciences Leuven Belgium

bmd KU Leuven University of Leuven Center for Human Genetics; VIB Center for the Biology of Disease Leuven Belgium

bme University of Liege GIGA Signal Transduction Department Protein Signalisation and Interaction Laboratory Liège Belgium

bmf University of Lille INSERM UMR1011 Institut Pasteur de Lille EGID Lille France

bmg University of Limoges Department of Histology and Cell Biology Limoges France

bmh University of Liverpool Cellular and Molecular Physiology Institute of Translational Medicine Liverpool UK

bmi University of Ljubljana Institute of Cell Biology Faculty of Medicine Ljubljana Slovenia

bmj University of London RVC Department of Comparative Biomedical Sciences UCL Consortium for Mitochondrial Research London UK

bmk University of Louisiana at Monroe School of Pharmacy Monroe LA USA

bml University of Louisville Department of Biochemistry and Molecular Genetics Louisville KY USA

bmm University of Louisville Department of Medicine Louisville KY USA

bmn University of Louisville Department of Medicine Institute of Molecular Cardiology Diabetes and Obesity Center Louisville KY USA

bmo University of Louisville Department of Physiology Louisville KY USA

bmp University of Louisville James Graham Brown Cancer Center Department of Medicine Department of Pharmacology and Toxicology Louisville KY USA

bmq University of Louisville School of Medicine Department of Anatomical Sciences and Neurobiology Louisville KY USA

bmr University of Louisville School of Medicine Department of Physiology and Biophysics Louisville KY USA

bms University of Luxembourg Luxembourg Center for Systems Biomedicine Luxembourg

bmt University of Macau State Key Lab of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences Macao China

bmu University of Malta Department of Physiology and Biochemistry Faculty of Medicine and Surgery Msida Malta

bmv University of Manchester Breakthrough Breast Cancer Research Unit Manchester Centre for Cellular Metabolism UK

bmw University of Manchester Faculty of Life Sciences Manchester UK

bmx University of Manchester Institute of Cancer Sciences Faculty of Medical and Human Sciences Manchester UK

bmy University of Manitoba CancerCare Manitoba Manitoba Institute of Cell Biology Departments of Biochemistry and Medical Genetics and Immunology Winnipeg Manitoba Canada

bmz University of Manitoba Department of Human Anatomy and Cell Science Winnipeg Manitoba Canada

bn Ben Gurion University Department of Clinical Biochemistry and the National Institute of Biotechnology in the Negev Beer Sheva Israel

bn McGill University Goodman Cancer Research Centre and Department of Biochemistry Montreal Quebec Canada

bna University of Manitoba Department of Physiology and Pathophysiology Winnipeg Manitoba Canada

bnb University of Manitoba Institute of Cardiovascular Sciences College of Medicine Faculty of Health Sciences Winnipeg Manitoba Canada

bnc University of Maryland Department of Nutrition and Food Science College Park MD USA

bnd University of Maryland Department of Veterinary Medicine College Park MD USA

bne University of Maryland School of Medicine Center for Biomedical Engineering and Technology Department of Physiology Baltimore MD USA

bnf University of Maryland School of Medicine Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research National Study Center for Trauma and EMS Baltimore MD USA

bng University of Maryland School of Medicine Department of Anesthesiology Baltimore MD USA

bnh University of Maryland School of Medicine Department of Chemistry Baltimore MD USA

bni University of Maryland School of Medicine Department of Microbiology and Immunology Baltimore MD USA

bnj University of Maryland School of Medicine Department of Obstetrics Gynecology and Reproductive Sciences Baltimore MD USA

bnk University of Maryland School of Medicine Department of Pharmacology Baltimore MD USA

bnl University of Maryland School of Medicine Institute of Human Virology Baltimore MD USA

bnm University of Massachusetts Medical School Department of Molecular Cell and Cancer Biology Worcester MA USA

bnn University of Massachusetts Medical School Department of Neurology Worcester MA USA

bno University of Massachusetts Medical School Howard Hughes Medical Institute Worcester MA USA

bnp University of Medicine and Dentistry of New Jersey Cellular and Molecular Signaling Newark NJ USA

bnq Cell Signalling and Cell Death Division and University of Melbourne Walter and Eliza Hall Institute of Medical Research Department of Medical Biology Parkville Victoria Australia

bnr University of Melbourne Department of Pathology Parkville Victoria Australia

bns University of Melbourne Department of Physiology Parkville Australia

bnt Murdoch Childrens Research Institute University of Melbourne Department of Paediatrics Royal Children's Hospital Melbourne Victoria Australia

bnu University of Miami Miller School of Medicine Department of Molecular and Cellular Pharmacology Miami FL USA

bnv University of Miami Miller School of Medicine Sylvester Comprehensive Cancer Center Miami FL USA

bnw University of Michigan Medical School Department of Internal Medicine Ann Arbor MI USA

bnx University of Michigan Medical School Department of Pathology Ann Arbor MI USA

bny University of Michigan Ann Arbor MI USA

bnz University of Michigan Department of Cell and Developmental Biology Ann Arbor MI USA

bo Ben Gurion University of the Negev and Mental Health Center Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit Beer Sheva Israel

bo McGill University Health Centre Research Institute Meakins Christie Laboratories Montreal Quebec Canada

boa University of Michigan Department of Microbiology and Immunology Ann Arbor MI USA

bob University of Michigan Department of Molecular and Integrative Physiology Ann Arbor MI USA

boc University of Michigan Department of Molecular Cellular and Developmental Biology Ann Arbor MI USA

bod University of Michigan Department of Ophthalmology and Visual Sciences Ann Arbor MI USA

boe University of Michigan Department of Radiation Oncology Ann Arbor MI USA

bof University of Michigan Department of Radiation Oncology Division of Radiation and Cancer Biology Ann Arbor MI USA

bog University of Michigan Life Sciences Institute Ann Arbor MI USA

boh University of Michigan Molecular and Behavioral Neuroscience Institute Departments of Computational Medicine and Bioinformatics Psychiatry and Human Genetics Ann Arbor MI USA

boi University of Michigan Neurosurgery Ann Arbor MI USA

boj University of Michigan Ophthalmology and Visual Sciences Kellogg Eye Center Ann Arbor MI USA

bok University of Michigan School of Dentistry Department of Biologic and Materials Sciences Ann Arbor MI USA

bol University of Milan Department of Experimental Oncology European Institute of Oncology and Department of Biosciences Milan Italy

bom University of Milan Department of Health Sciences Milan Italy

bon University of Milan Istituto Auxologico Italiano Department of Clinical Sciences and Community Health Milan Italy

boo Life and Health Sciences Research Institute School of Health Sciences University of Minho Braga Portugal

bop University of Minho Molecular and Environmental Biology Centre Department of Biology Braga Portugal

boq ICVS 3B's PT Government Associate Laboratory Braga Guimarães Portugal

bor University of Minnesota Department of Biochemistry Molecular Biology and Biophysics Minneapolis MN USA

bos University of Minnesota Department of Genetics Cell Biology and Development Minneapolis MN USA

bot University of Minnesota Department of Lab Medicine and Pathology Minneapolis MN USA

bou University of Minnesota Department of Neuroscience Minneapolis MN USA

bov University of Minnesota Department of Surgery Minneapolis MN USA

bow University of Modena and Reggio Emilia Department of Life Sciences Modena Italy

box University of Modena and Reggio Emilia Department of Surgery Medicine Dentistry and Morphological Sciences Modena Italy

boy University of Modena and Reggio Emilia School of Medicine Department of Surgery Medicine Dentistry and Morphological Sciences Modena Italy

boz University of Montpellier INRA UMR 866 Dynamique Musculaire et Métabolisme Montpellier France

bp Bernhard Nocht Institute for Tropical Medicine Hamburg Germany

bp McGill University Health Centre Department of Medicine Montreal Quebec Canada

bpa University of Montpellier UMR 866 Dynamique Musculaire et Métabolisme Montpellier France

bpb University of Montpellier UMR 5554 Montpellier France

bpc University of Murcia IMIB Virgen de la Arrixaca Hospital Human Anatomy and Psycobiology Department Cell Therapy and Hematopoietic Transplantation Unit Murcia Spain

bpd University of Nagasaki Molecular and Cellular Biology Graduate School of Human Health Science Nagasaki Japan

bpe University of Namur Laboratory of Biochemistry and Cell Biology Namur Belgium

bpf University of Namur Research Unit in Molecular Physiology Namur Belgium

bpg University of Naples Federico 2 Department of Veterinary Medicine and Animal Production Naples Italy

bph University of Nebraska Medical Center Department of Internal Medicine Omaha NE USA

bpi University of Nebraska Medical Center Omaha NE USA

bpj University of Nebraska Lincoln Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences Lincoln NE USA

bpk University of New Mexico Comprehensive Cancer Center Department of Molecular Genetics and Microbiology Albuquerque NM USA

bpl University of New Mexico Department of Internal Medicine Albuquerque NM USA

bpm University of New Mexico Department of Pathology and Cancer Research and Treatment Center Albuquerque NM USA

bpn University of New Mexico Health Sciences Center Department of Molecular Genetics and Microbiology Albuquerque NM USA

bpo University of New South Wales Inflammation and Infection Research Centre School of Medical Sciences Sydney NSW Australia

bpp University of New South Wales School of Biotechnology and Biomolecular Sciences Sydney NSW Australia

bpq University of Newcastle School of Biomedical Sciences and Pharmacy Newcastle NSW Australia

bpr University of Newcastle School of Medicine and Public Health Callaghan NSW Australia

bps University of Nice INSERM U1065 C3M Nice France

bpt University of Nice Sophia Antipolis INSERM U1081 CNRS 7284 Faculty of Medicine Nice France

bpu University of Nice Sophia Antipolis Institute for Research on Cancer and Aging of Nice Nice France

bpv University of Nice Sophia Antipolis IRCAN Nice France

bpw University of Niigata Department of Neurosurgery Brain Research Institute Niigata Japan

bpx University of North Carolina Department of Genetics Chapel Hill NC USA

bpy University of North Carolina Department of Microbiology Immunology Chapel Hill NC USA

bpz University of North Carolina Lineberger Comprehensive Cancer Center Chapel Hill NC USA

bq Beth Israel Deaconess Medical Center Medical Genetics Boston MA USA

bq McGill University Health Centre Research Institute Meakins Christie Laboratories Montreal Quebec Canada

bqa University of North Carolina Lineberger Comprehensive Cancer Center Institute of Inflammatory Diseases Center for Translational Immunology Chapel Hill NC USA

bqb University of North Carolina Microbiology and Immunology Chapel Hill NC USA

bqc University of North Dakota Department of Biomedical Sciences School of Medicine and Health Sciences Grand Forks ND USA

bqd University of North Texas Health Science Center Department of Molecular and Medical Genetics Fort Worth TX USA

bqe University of Nottingham School of Life Sciences Nottingham UK

bqf University of Occupational and Environmental Health School of Medicine Department of Neurology Fukuoka Japan

bqg University of Occupational and Environmental Health 3rd Department of Internal Medicine Kitakyushu Japan

bqh University of Oklahoma Health Sciences Center Department of Medicine Oklahoma City OK USA

bqi University of Oklahoma Health Sciences Center Department of Pathology Oklahoma City OK USA

bqj University of Oklahoma Health Sciences Center Section of Molecular Medicine Department of Medicine Oklahoma City OK USA

bqk University of Oslo Centre for Cancer Biomedicine Oslo Norway

bql University of Oslo Centre for Molecular Medicine Norway Oslo Norway

bqm University of Oslo Department of Biochemistry Institute for Cancer Research Oslo Norway

bqn University of Oslo Department of Molecular Oncology Department of Urology Oslo Norway

bqo University of Oslo Department of Clinical Molecular Biology Oslo Norway

bqp University of Oslo Department of Ophthalmology Oslo Norway

bqq Centre for Cancer Research and Cell Biology Queen's University Belfast Lisburn Road Belfast UK

bqr University of Oslo Institute of Basic Medical Sciences Oslo Norway

bqs University of Oslo Oslo University Hospital Centre for Molecular Medicine Norway Nordic EMBL Partnership Oslo Norway

bqt University of Osnabrueck Division of Microbiology Osnabrueck Germany

bqu University of Osnabrueck Fachbereich Biologie Chemie Osnabrueck Germany

bqv University of Ottawa Department of Cellular and Molecular Medicine Faculty of Medicine Ottawa Ontario Canada

bqw University of Ottawa Department of Cellular and Molecular Medicine Ottawa Ontario Canada

bqx University of Oviedo Department of Animal Physiology Faculty of Medicine Campus del Cristo Oviedo Spain

bqy University of Oxford Acute Stroke Programme Radcliffe Department of Medicine Oxford UK

bqz University of Oxford CRUK MRC Oxford Institute for Radiation Oncology Oxford UK

br Binghamton University State University of New York Binghamton NY USA

br McGill University Lady Davis Institute for Medical Research Montreal Quebec Canada

bra University of Oxford Nuffield Department of Obstetrics and Gynaecology Oxford UK

brb University of Padova Department of Biology Padova Italy

brc University of Padova Department of Molecular Medicine Padova Italy

brd University of Padova Department of Woman's and Child's Health Laboratory of Oncohematology Padova Italy

bre University of Padova Venetian Institute of Molecular Medicine Department of Biomedical Science Padova Italy

brf University of Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Palermo Italy

brg University of Parma Department of Biomedical Biotechnological and Translational Sciences Parma Italy

brh University of Parma Department of Biomedicine Biotechnology and Translational Research Parma Italy

bri University of Pavia Department of Biology and Biotechnology Pavia Italy

brj University of Pavia Department of Health Sciences Pavia Italy

brk University of Pennsylvania Perelman School of Medicine Department of Radiation Oncology Philadelphia PA USA

brl University of Pennsylvania Abramson Cancer Center Philadelphia PA USA

brm University of Pennsylvania Center for Cell and Molecular Therapy The Children Hospital of Philadelphia Department of Neurology Perelman School of Medicine Philadelphia PA USA

brn University of Pennsylvania Department of Anatomy and Cell Biology Philadelphia PA USA

bro University of Pennsylvania Department of Biochemistry SDM Philadelphia PA USA

brp University of Pennsylvania Department of Microbiology Philadelphia PA USA

brq University of Pennsylvania Department of Obstetrics and Gynecology ; Perelman School of Medicine Philadelphia PA USA

brr Laboratoire Européen Performance Santé Altitude EA 4604 University of Perpignan Via Domitia Font Romeu France

brs University of Perugia Department of Experimental Medicine Perugia Italy

brt University of Pisa Department of Translational Research and New Technologies in Medicine and Surgery Pisa Italy

bru University of Pisa Interdepartmental Research Centre on Biology and Pathology of Aging Pisa Italy

brv University of Pittsburgh Cancer Institute Hillman Cancer Center Research Pavilion Pittsburgh PA USA

brw University of Pittsburgh Cancer Institute Pittsburgh PA USA

brx University of Pittsburgh Medical Center Department of Surgery Pittsburgh PA USA

bry University of Pittsburgh Department of Critical Care Medicine Center for Critical Care Nephrology Clinical Research Investigation and Systems Modeling of Acute Illness Center Pittsburgh PA USA

brz University of Pittsburgh Department of Microbiology and Molecular Genetics Pittsburgh PA USA

bs Bio21 Molecular Science and Biotechnology Institute Department of Biochemistry and Molecular Biology Parkville Victoria Australia

bs McGill University McGill Parkinson Program Department of Neurology and Neurosurgery Montreal QC Canada

bsa University of Pittsburgh Department of Pathology Pittsburgh PA USA

bsb University of Pittsburgh Department of Surgery Hillman Cancer Center Pittsburgh PA USA

bsc University of Pittsburgh Department of Surgery Pittsburgh PA USA

bsd University of Pittsburgh Department of Surgery University of Pittsburgh Cancer Institute Pittsburgh PA USA

bse University of Pittsburgh Pittsburgh PA USA

bsf University of Pittsburgh School of Dental Medicine Department of Endodontics Pittsburgh PA USA

bsg University of Pittsburgh School of Medicine Department of Anesthesiology Pittsburgh PA USA

bsh University of Pittsburgh School of Medicine Department of Critical Care Medicine Pittsburgh PA USA

bsi University of Pittsburgh School of Medicine Department of Immunology Pittsburgh PA USA

bsj University of Pittsburgh School of Medicine Department of Pathology and Center for Neuroscience Pittsburgh PA USA

bsk University of Pittsburgh School of Medicine Department of Pediatrics Pittsburgh PA USA

bsl University of Pittsburgh School of Medicine Department of Pharmacology and Chemical Biology Pittsburgh PA USA

bsm University of Pittsburgh School of Medicine Department of Surgery Division of Endocrine Surgery Pittsburgh PA USA

bsn University of Pittsburgh Vascular Medicine Institute Pittsburgh PA USA

bso University of Poitiers EA3808 Molecular Targets and Therapeutics in Alzheimer's Disease Poitiers France

bsp University of Porto Cancer Drug Resistance Group IPATIMUP Institute of Molecular Pathology and Immunology Porto Portugal

bsq University of Porto Department of Biological Sciences Faculty of Pharmacy Porto Portugal

bsr University of Porto Department of Pathology and Oncology Faculty of Medicine Porto Portugal

bss University of Porto i3S Instituto de Investigação e Inovação em Saúde Porto Portugal

bst University of Pretoria Department of Physiology Pretoria Gauteng South Africa

bsu University of Quebec at Trois Rivieres Department of Biology and Medicine Trois Rivieres Quebec Canada

bsv University of Queensland Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences Brisbane Queensland Australia

bsw University of Queensland Australian Institute for Bioengineering and Nanotechnology Brisbane Australia

bsx University of Reading School of Pharmacy Reading UK

bsy University of Reading School of Pharmacy Whiteknights Reading UK

bsz University of Rochester Medical Center Department of Anesthesiology Rochester NY USA

bt Biochimie et Physiologie Moléculaire des Plantes UMR5004 CNRS INRA UM2 SupAgro Institut de Biologie Intégrative des Plantes Montpellier France

bt McGill University Montreal Neurological Institute Montreal QC Canada

bta University of Rochester Medical Center Department of Pathology and Laboratory Medicine Rochester NY USA

btb University of Siena Department of Medicine Surgery and Neuroscience Siena Italy

btc University of Rome Sapienza Department of Medical Surgical Sciences and Biotechnologies Latina Italy

btd University of Rome Tor Vergata Department of Biology Rome Italy

bte University of Rome Tor Vergata Department of Biomedicine and Prevention Rome Italy

btf University of Rome Tor Vergata Department of Chemistry Rome Italy

btg University of Rome Tor Vergata Department of Clinical Sciences and Translational Medicine Rome Italy

bth University of Rome Tor Vergata Department of Experimental Medicine and Surgery Rome Italy

bti University of Rome Tor Vergata Department of Surgery and Experimental Medicine Rome Italy

btj University of Rome Tor Vergata Department of System Medicine Rome Italy

btk University of Rome Tor Vergata Department of Systems Medicine Rome Italy

btl University of Rome Tor Vergata Department of Biology Rome Italy

btm University of Rzeszow Institute of Cell Biology Rzeszow Poland

btn University of Salento Department of Biological and Environmental Science and Technology Lecce Italy

bto University of Salento Department of Biological and Environmental Sciences and Technologies Lecce Italy

btp University of Salerno Department of Pharmacy Fisciano Salerno Italy

btq University of Salerno Section of Neurosciences Department of Medicine and Surgery Salerno Italy

btr University of São Paulo Institute of Biomedical Science Department of Cell and Developmental Biology São Paulo SP Brazil

bts University of São Paulo Ribeirão Preto Medical School Department of Biochemistry and Immunology Ribeirão Preto São Paulo Brazil

btt University of São Paulo Ribeirão Preto Medical School Department of Physiology Ribeirão Preto São Paulo Brazil

btu University of São Paulo School of Physical Education and Sport Cellular and Molecular Exercise Physiology Laboratory São Paulo Brazil

btv University of Science and Technology of China Anhui China

btw University of Science and Technology of China CAS Key Laboratory of Innate Immunity and Chronic Disease School of Lifesciences Hefei Anhui China

btx University of Science and Technology of China School of Life Sciences and Hefei National Laboratory for Physical Sciences at Microscale Hefei Anhui China

bty University of Science and Technology of China School of Life Sciences Hefei Anhui China

btz University of Sevilla Department of Cell Biology Sevilla Spain

bu Biomedical Research Foundation of the Academy of Athens Center of Clinical Experimental Surgery and Translational Research Athens Greece

bu McMaster University Department of Biology Hamilton Ontario Canada

bua University of Sevilla Instituto de Biomedicina de Sevilla Oral Medicine Department Sevilla Spain

bub University of Sheffield Department of Biomedical Sciences Sheffield UK

buc University of Sherbrooke Faculté de Médecine et des Sciences de la Santé Department of Medicine Gastroenterology Division Sherbrooke Québec Canada

bud University of Siena Department of Molecular and Developmental Medicine Siena Italy

bue University of Silesia Department of Animal Histology and Embryology Katowice Poland

buf University of South Alabama Mitchell Cancer Institute Mobile AL USA

bug University of South Australia and SA Pathology Centre for Cancer Biology Adelaide SA Australia

buh University of South Australia Early Origins of Adult Health Research Group School of Pharmacy and Medical Sciences Sansom Institute for Health Research Adelaide SA Australia

bui University of South Carolina School of Medicine Department of Cell Biology and Anatomy Columbia SC USA

buj University of South Carolina School of Medicine Department of Pathology Microbiology and Immunology Columbia SC USA

buk University of South Carolina Upstate Department of Biology Division of Natural Sciences and Engineering Spartanburg SC

bul University of South Carolina Environmental Health and Disease Laboratory Department of Environmental Health Sciences Columbia SC USA

bum University of South Dakota Division of Basic Biomedical Sciences Vermillion SD USA

bun University of South Dakota Sanford School of Medicine Division of Basic Biomedical Sciences Vermillion SD USA

buo University of South Dakota Vermillion SD USA

bup University of South Florida Byrd Alzheimer's Institute Tampa FL USA

buq University of South Florida Department of Cell Biology Microbiology and Molecular Biology Tampa FL USA

bur University of South Florida Department of Molecular Medicine Tampa FL USA

bus University of South Florida Department of Pharmaceutical Science Tampa FL USA

but University of South Florida Department of Pharmaceutical Sciences College of Pharmacy Byrd Alzheimer's Institute Tampa FL USA

buu University of Southampton Cancer Sciences Southampton UK

buv University of Southampton Centre for Biological Sciences Highfield Campus Southampton UK

buw University of Southern California Department of Molecular Microbiology and Immunology Keck School of Medicine Los Angeles CA USA

bux University of Southern California Keck School of Medicine Department of Molecular Microbiology and Immunology Los Angeles CA USA

buy University of Southern California Keck School of Medicine Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research Department of Cell and Neurobiology Los Angeles CA USA

buz University of Southern California Keck School of Medicine Neurology and Pathology Los Angeles CA USA

bv Biomedical Research Foundation of the Academy of Athens Laboratory of Neurodegenerative Diseases Athens Attiki Greece

bv MD Anderson Cancer Center Department of Cancer Biology Houston TX USA

bva University of Southern California Research ALPD and Cirrhosis Center Keck School of Medicine Los Angeles CA USA

bvb University of Southern California The Saban Research Institute Developmental Neuroscience Program Children's Hospital Los Angeles Los Angeles CA USA

bvc University of Southern Denmark Villum Center for Bioanalytical Sciences Department of Biochemistry and Molecular Biology Odense Denmark

bvd University of St Andrews School of Medicine St Andrews Fife UK

bve University of Strathclyde Strathclyde Institute of Pharmacy and Biomedical Sciences Glasgow UK

bvf University of Sunderland Department of Pharmacy Health and Wellbeing Faculty of Applied Sciences Sunderland UK

bvg University of Sydney Department of Cardiology Sydney NSW Australia

bvh University of Sydney Department of Neurogenetics Kolling Institute St Leonards NSW Australia

bvi University of Sydney Department of Pathology and Bosch Institute Sydney New South Wales Australia

bvj University of Szeged Department of Medical Microbiology and Immunobiology Szeged Csongrád Hungary

bvk University of Szeged Department of Ophthalmology Faculty of Medicine Szeged Hungary

bvl University of Tartu Department of Pharmacology Tartu Estonia

bvm University of Tartu Institute of Biomedicine and Translational Medicine Tartu Estonia

bvn University of Tasmania School of Health Sciences Launceston Tasmania

bvo University of Tennessee Health Science Center Department of Physiology Memphis TN USA

bvp University of Texas at Austin College of Pharmacy Division of Medicinal Chemistry Austin TX USA

bvq University of Texas Department of Biochemistry Dallas TX USA

bvr University of Texas Southwestern Medical Center Department of Internal Medicine Center for Autophagy Research Dallas TX USA

bvs University of Texas Health Science Center at Houston Center for Human Genetics Institute of Molecular Medicine Houston TX USA

bvt University of Texas Health Science Center at Houston Department of Pathology and Laboratory Medicine Houston TX USA

bvu University of Texas Health Science Center at Houston School of Dentistry Houston TX USA

bvv University of Texas Health Science Center at San Antonio CTRC Institute for Drug Development San Antonio TX USA

bvw University of Texas Health Science Center at San Antonio Department of Molecular Medicine San Antonio TX USA

bvx University of Texas Health Science Center at San Antonio Department of Pathology San Antonio TX USA

bvy University of Texas Health Science Center at San Antonio Department of Urology San Antonio TX USA

bvz University of Texas Health Sciences Center Houston Department of Integrative Biology and Pharmacology Houston TX USA

bw Biomolecular Sciences and Biotechnology Institute Groningen The Netherlands

bw MD Anderson Cancer Center Department of Genomic Medicine Houston TX USA

bwa University of Texas MD Anderson Cancer Center Department of Bioinformatics and Computational Biology Houston TX USA

bwb University of Texas MD Anderson Cancer Center Department of Genitourinary Medical Oncology Houston TX USA

bwc University of Texas MD Anderson Cancer Center Department of Hematopathology Houston TX USA

bwd University of Texas MD Anderson Cancer Center Department of Neuro Oncology Houston TX USA

bwe University of Texas MD Anderson Cancer Center Department of Systems Biology Houston TX USA

bwf University of Texas MD Anderson Cancer Center Houston TX USA

bwg University of Texas MD Anderson Cancer Center The Proteomics and Metabolomics Core Facility Houston TX USA

bwh University of Texas Medical Branch Department of Microbiology and Immunology Galveston TX USA

bwi University of Texas Medical Branch Department of Nutrition and Metabolism Galveston TX USA

bwj University of Texas Medical Branch Department of Pathology Galveston TX USA

bwk University of Texas Medical School at Houston Department of Neurobiology and Anatomy Houston TX USA

bwl University of Texas Medical School at Houston Division of Cardiovascular Medicine Department of Medicine Houston TX USA

bwm University of Texas Southwestern Medical Center at Dallas Department of Dermatology Dallas TX

bwn University of Texas Southwestern Medical Center Dallas TX USA

bwo University of Texas Southwestern Medical Center Department of Internal Medicine Center for Mineral Metabolism and Clinical Research Dallas TX USA

bwp University of Texas Southwestern Medical Center Department of Internal Medicine Dallas TX

bwq University of Texas Southwestern Medical Center Department of Neuroscience Dallas TX

bwr University of Texas Southwestern Medical Center Medicine and Molecular Biology Dallas TX

bws University of Virginia Departments of Biology and Cell Biology Charlottesville VA USA

bwt University of the District of Columbia Cancer Research Laboratory Washington DC USA

bwu University of Tokyo Bioimaging Center Graduate School of Frontier Sciences Chiba Japan

bwv University of Tokyo Department of Biochemistry and Molecular Biology Graduate School and Faculty of Medicine Tokyo Japan

bww University of Tokyo Department of Biotechnology Tokyo Japan

bwx University of Tokyo Institute of Molecular and Cellular Biosciences Tokyo Japan

bwy University of Toledo Department of Biological Sciences Toledo OH USA

bwz University of Toronto Department of Cell and Systems Biology Toronto Ontario Canada

bx BIOSS Centre for Biological Signalling Studies Freiburg Germany

bx MD Anderson Cancer Center Department of Gynecologic Oncology and Reproductive Medicine Houston TX USA

bxa University of Toronto Department of Laboratory Medicine and Pathobiology Toronto Ontario Canada

bxb University of Toronto Department of Molecular Genetics Toronto Ontario Canada

bxc University of Toronto Hospital for Sick Children Research Institute Department of Physiology and Experimental Medicine Toronto Canada

bxd University of Toronto Hospital for Sick Children Toronto Ontario Canada

bxe University of Toronto Molecular Structure and Function Research Institute Hospital for Sick Children Toronto ON Canada

bxf University of Toronto Sunnybrook Research Institute Sunnybrook Health Sciences Centre Toronto Ontario Canada

bxg University of Toronto Lunenfeld Tanenbaum Research Institute Mount Sinai Hospital Department of Obstetrics and Gynecology Toronto Ontario Canada

bxh University of Toulouse INSERM UMR 1037 Cancer Research Center of Toulouse Toulouse France

bxi University of Toulouse INSERM UMR 1048 Toulouse France

bxj University of Toyama Division of Natural Drug Discovery Institute of Natural Medicine Toyama Japan

bxk University of Trento The Microsoft Research Centre for Computational and Systems Biology Rovereto TN Italy

bxl University of Tromsø The Arctic University of Norway Department of Medical Biology Tromsø Norway

bxm University of Tromsø The Arctic University of Norway Molecular Cancer Research Group Institute of Medical Biology Tromsø Norway

bxn University of Tübingen Center for Plant Molecular Biology Department of Plant Biochemistry Tübingen Germany

bxo University of Tübingen Institute of Medical Genetics and Applied Genomics Tübingen Germany

bxp University of Turin Department of Clinical and Biological Sciences Turin TO Italy

bxq University of Turin Department of Clinical and Biological Sciences Unit of Experimental Medicine and Clinical Pathology Turin Italy

bxr University of Turin Neuroscience Institute Cavalieri Ottolenghi Turin Italy

bxs University of Turin Turin Italy

bxt University of Tuscia Department for Innovation in Biological Agro food and Forest Systems Viterbo Italy

bxu University of Udine Dipartimento di Scienze Mediche e Biologiche Udine Italy

bxv University of Ulm Institute of Applied Physiology Ulm Germany

bxw University of Ulsan College of Medicine Asan Medical Center Department of Biochemistry and Molecular Biology Seoul Korea

bxx University of Ulsan College of Medicine Asan Medical Center Department of Surgery Seoul Korea

bxy University of Ulsan College of Medicine Department of Brain Science Seoul Korea

bxz University of Urbino Carlo Bo Department of Biomolecular Sciences Urbino Italy

by Bogomoletz Institute of Physiology National Academy of Sciences Ukraine General and Molecular Pathophysiology Department Kiev Ukraine

by Medical Center of the Johannes Gutenberg University Mainz Germany

bya University of Utah School of Medicine Department of Biochemistry Salt Lake City UT USA

byb University of Utah School of Medicine Department of Pathology Salt Lake City UT USA

byc University of Valencia Departamento de Bioquimica y Biologia Molecular IATA CSIC Valencia Spain

byd University of Valencia Departamento de Biotecnología IATA CSIC Valencia Spain

bye University of Valencia Department of Pharmacology Valencia Spain

byf University of Valencia Department of Physiology Burjassot Valencia Spain

byg University of Verona Department of Neurological Biomedical and Movement Sciences Verona Italy

byh University of Vienna Department of Chromosome Biology Max F Perutz Laboratories Vienna Austria

byi University of Vienna Max F Perutz Laboratories Vienna Austria

byj University of Virginia Charlottesville VA USA

byk University of Virginia Department of Cell Biology Charlottesville VA USA

byl University of Warwick Life Sciences Coventry UK

bym University of Washington Department of Pathology Seattle WA

byn University of Waterloo Department of Biology Waterloo Ontario Canada

byo University of Waterloo Department of Kinesiology Waterloo Ontario Canada

byp University of Wisconsin Department of Dermatology Madison WI USA

byq Washington University in St Louis Department of Biology St Louis MO USA

byr University of Wisconsin Department of Medicine Madison WI USA

bys University of Wisconsin Department of Ophthalmology and Visual Sciences McPherson Eye Research Institute Madison WI USA

byt University of Wisconsin School of Medicine and Public Health Department of Cell and Regenerative Biology Carbone Cancer Center Madison WI USA

byu University of Wisconsin School of Veterinary Medicine Department of Pathobiological Sciences Madison WI USA

byv University of Wyoming School of Pharmacy College of Health Sciences Laramie WY USA

byw University of York Centre for Immunology and Infection Department of Biology Hull York Medical School York UK

byx University of York Department of Biology Heslington York UK

byy University of Zaragoza Department of Biochemistry and Molecular and Cell Biology Faculty of Sciences Zaragoza Spain

byz University of Zürich Department of Radiation Oncology Zurich Switzerland

bz Boise State University Department of Biological Sciences Boise ID USA

bz Medical College of Wisconsin Department of Biochemistry Milwaukee WI USA

bza University of Zurich Epidemiology Biostatistics and Prevention Institute Zurich Switzerland

bzb University of Zurich Institute of Experimental Immunology Zurich Switzerland

bzc University of Zürich Institute of Physiology Zürich Switzerland

bzd University Paul Sabatier INSERM U1048 Toulouse France

bze University Pierre et Marie Curie UMR8256 INSERM U 1164 Biological Adaptation and Ageing Paris France

bzf University Roma Tre Department of Science LIME Rome Italy

bzg US Food and Drug Administration National Center for Toxicological Research Division of Systems Biology Jefferson AR USA

bzh US Food and Drug Administration National Center for Toxicology Research Division of Microbiology Jefferson AR USA

bzi USDA Human Nutrition Research Center on Aging at Tufts University Department of Neuroscience and Aging Boston MA USA

bzj VA Nebraska Western Iowa Health Care System Omaha NE USA

bzk VA Pittsburgh Health System University of Pittsburgh Medical Center Pittsburgh PA USA

bzl Vall d'Hebron Research Institute Neurodegenerative Diseases Lab Barcelona Spain

bzm Vall d'Hebron Research Institute CIBERNED Neurodegenerative Diseases Research Group Barcelona Spain

bzn Van Andel Institute Center for Neurodegenerative Science Grand Rapids MI USA

bzo Van Andel Research Institute Laboratory of Systems Biology Grand Rapids MI USA

bzp Vancouver Prostate Centre Vancouver BC Canada

bzq Vanderbilt University Medical Center Department of Pediatric Surgery Nashville TN USA

bzr Vanderbilt University Department of Neurology Nashville TN USA

bzs Vanderbilt University School of Medicine Department of Molecular Physiology and Biophysics Nashville TN USA

bzt Vanderbilt University School of Medicine Department of Pathology Microbiology and Immunology Nashville TN USA

bzu Vanderbilt University School of Medicine Pathology Microbiology and Immunology Nashville TN USA

bzv Venus Medicine Research Center Baddi Himachal Pradesh India

bzw Virginia Commonwealth University Department of Biochemistry and Molecular Biology Richmond VA USA

bzx Virginia Commonwealth University Department of Human and Molecular Genetics Richmond VA USA

bzy Virginia Commonwealth University Department of Internal Medicine Division of Pulmonary Disease and Critical Care Medicine Richmond VA USA

bzz Virginia Commonwealth University Department of Internal Medicine Richmond VA USA

c Aarhus University Hospital Department of Nuclear Medicine and PET Center Aarhus Denmark

c Albert Einstein College of Medicine Department of Pathology Bronx NY USA

c CEA DSV 12;BM INSERM U1169 Gene Therapy for Neurodegenerative Diseases Fontenay aux Roses Cedex France

c Georgia Regents University Department of Orthopaedic Surgery Augusta GA USA

c Icahn School of Medicine at Mount Sinai Department of Medicine New York NY USA

c Lund University Biomedical Centre Department of Experimental Medical Science Lund Sweden

c Sapienza University of Rome Department of Molecular Medicine Rome Italy

ca Boston Children's Hospital F M Kirby Neuroscience Center Boston MA USA

ca Medical College of Wisconsin Department of Pediatrics Milwaukee WI USA

caa Virginia Commonwealth University Department of Microbiology and Immunology Richmond VA USA

cab Virginia Commonwealth University Institute of Molecular Medicine Massey Cancer Center Virginia Commonwealth University School of Medicine Department of Human and Molecular Genetics Richmond VA USA

cac Virginia Commonwealth University Internal Medicine VCU Pauley Heart Center Richmond VA USA

cad Virginia Commonwealth University Massey Cancer Center Department of Internal Medicine Richmond VA USA

cae Virginia Commonwealth University Massey Cancer Center Department of Medicine Richmond VA USA

caf Virginia Commonwealth University Massey Cancer Center Richmond VA USA

cag Vita Salute San Raffaele University San Raffaele Scientific Institute Autoimmunity and Vascular Inflammation Unit Milan Italy

cah San Raffaele Scientific Institute European Institute for Research in Cystic Fibrosis Milan Italy

cai INSPE Institute of Experimental Neurology Division of Neuroscience San Raffaele Scientific Institute Milan Italy

caj San Raffaele Scientific Institute Milan Italy

cak VU University Medical Center Department of Medical Oncology Amsterdam The Netherlands

cal VU University Medical Center Department of Molecular Cell Biology and Immunology Amsterdam The Netherlands

cam VU University Medical Center Department of Pathology Amsterdam The Netherlands

can University of Nevada School of Medicine Department of Pharmacology Reno NV USA

cao VU University Medical Center Academic Medical Center Department of Clinical Genetics and Alzheimer Center Amsterdam Netherlands

cap Department of Genome Analysis Amsterdam Netherlands

caq VU University Departments of Functional Genomics and Molecular and Cellular Neuroscience Center for Neurogenomics and Cognitive Research Amsterdam Netherlands

car Wake Forest University Department of Surgery and Cancer Biology Winston Salem NC USA

cas Wake Forest University Department of Surgery Hypertension and Vascular Research Center Wake Forest Comprehensive Cancer Center Winston Salem NC USA

cat Warsaw University of Life Sciences SGGW Faculty of Veterinary Medicine Department of Physiological Sciences Warsaw Poland

Catholic University of Korea College of Pharmacy Bucheon Korea

cau Warsaw University of Life Sciences Department of Physiological Sciences Faculty of Veterinary Medicine Warsaw Poland

cav Washington State University Vancouver School of Molecular Biosciences Vancouver WA USA

caw Washington State University School of Molecular Biosciences Pullman WA USA

cax Washington University in St Louis School of Medicine Department of Internal Medicine St Louis MO USA

cay Washington University in St Louis School of Medicine Department of Ophthalmology and Visual Sciences St Louis MO USA

caz Washington University Department of Medicine St Louis MO USA

cb Boston University Department of Biology Boston MA USA

cb Medical Research Council Toxicology Unit Leicester UK

cba Washington University School of Medicine Cardiovascular Division Department of Medicine St Louis MO USA

cbb Washington University School of Medicine Department of Developmental Biology St Louis MO USA

cbc Washington University School of Medicine Department of Neurology St Louis MO USA

cbd Washington University School of Medicine Department of Pathology and Immunology St Louis MO USA

cbe Washington University School of Medicine Departments of Obstetrics and Gynecology and Pathology and Immunology St Louis MO USA

cbf Washington University School of Medicine Division of Endocrinology Metabolism and Lipid Research Department of Medicine St Louis MO USA

cbg Washington University School of Medicine John Cochran VA Medical Center Center for Cardiovascular Research St Louis MO USA

cbh Wayne State University School of Medicine Cardiovascular Research Institute Detroit MI USA

cbi Wayne State University School of Medicine Department of Pathology Karmanos Cancer Institute Detroit MI USA

cbj Wayne State University School of Medicine Departments of Oncology and Pathology Detroit MI USA

cbk Wayne State University School of Medicine Detroit MI USA

cbl Weill Cornell Medical College Department of Obstetrics and Gynecology New York NY USA

cbm Weill Cornell Medical College Division of Nephrology and Hypertension Joan and Sanford 1 Weill Department of Medicine New York NY USA

cbn Weill Cornell Medical College Joan and Sanford 1 Weill Department of Medicine New York NY USA

cbo Weill Cornell Medical College New York NY USA

cbp Weizmann Institute of Science Department of Biological Chemistry Rehovot Israel

cbq Weizmann Institute of Science Department of Chemical Biology Rehovot Israel

cbr Weizmann Institute of Science Department of Molecular Genetics Rehovot Israel

cbs Wenzhou Medical University School of Optometry and Ophthalmology and Eye Hospital Wenzhou Zhejiang China

cbt Western University Department of Obstetrics and Gynaecology London ON Canada

cbu Westfälische Wilhelms Universität Münster Albert Schweitzer Campus 1 Institute of Experimental Musculoskeletal Medicine Münster Germany

cbv Whitehead Institute HHMI and Massachusetts Institute of Technology Cambridge MA USA

cbw Wonkwang University Department of Dental Pharmacology School of Dentistry Chonbuk Korea

cbx Wuhan University College of Life Science State Key Laboratory of Virology Wuhan Hubei China

cby Xiamen University School of Life Sciences Fujian China

cbz Xi'an Jiaotong University Health Center Department of Pharmacology Xi'an Shaanxi China

cc Boston University Department of Medicine Boston MA USA

cc Medical School Goethe University Institute of Biochemistry 2 Frankfurt Germany

cca Xi'an Jiaotong University Health Science Center Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Shaanxi China

ccb Xijing Hospital The 4th Military Medical University Xi'an China

ccc Xuzhou Medical College Department of Pathology Xuzhou Jiangsu China

ccd Yale University School of Medicine Department of Microbial Pathogenesis and Howard Hughes Medical Institute New Haven CT USA

cce Yale University School of Medicine Section of Pulmonary Critical Care and Sleep Medicine New Haven CT USA

ccf Yamaguchi University Joint Faculty of Veterinary Medicine Laboratory of Veterinary Hygiene Yamaguchi Japan

ccg Yeshiva University New York NY USA

cch Yokohama City University Graduate School of Medicine Department of Human Genetics Yokohama Japan

cci Yonsei University College of Life Science and Biotechnology Department of Systems Biology Seoul Korea

ccj Yonsei University College of Medicine Corneal Dystrophy Research Institute ; and Department of Ophthalmology Seoul Korea

cck Yonsei University College of Medicine Severance Biomedical Science Institute Seoul Korea

ccl Yonsei University Department of Biomedical Engineering College of Health Science Seoul Korea

ccm Yonsei University Division of Biological Science and Technology Wonju Korea

ccn York College The City University of New York Department of Biology Jamaica NY USA

cco York University School of Kinesiology and Health Science Toronto Ontario Canada

ccp Zhejiang Cancer Hospital Department of Medical Oncology Hangzhou China

ccq Zhejiang University Deparment of Pharmacology College of Pharmaceutical Sciences Hangzhou Zhejiang China

ccr Zhejiang University Department of Biomedical Engineering Qiushi Academy for Advanced Studies Hangzhou China

ccs Zhejiang University Department of Food Science and Nutrition Hangzhou China

cct Zhejiang University Hangzhou China

ccu Zhejiang University Institute of Agriculture and Biotechnology Hangzhou China

ccv Zhejiang University Institute of Hematology 1st Affiliated Hospital College of Medicine Hangzhou China

ccw Zhejiang University Institute of Insect Science Hangzhou China

ccx Zhejiang University Institute of Pharmacology Toxicology and Biochemical Pharmaceutics Hangzhou China

ccy Zhejiang University Life Sciences Institute Zhejiang China

ccz Zhejiang University School of Medicine Department of Biochemistry Hangzhou Zhejiang China

cd Brandeis University Department of Biology Waltham MA USA

cd Medical University of Graz Division of Cardiology Graz Austria

cda Zhejiang University Sir Run Run Shaw Hospital College of Medicine Hangzhou Zhejiang China

cdb Zhejiang University Sir Run Run Shaw Hospital Department of Medical Oncology Hangzhou Zhejiang China

cdc Zhengzhou University Affiliated Cancer Hospital Zhengzhou China

ce Brescia University Department of Clinical and Experimental Sciences Brescia Italy

ce Medical University of Graz Institute of Molecular Biology and Biochemistry Centre of Molecular Medicine Graz Austria

Cedars Sinai Heart Institute Barbra Streisand Women's Heart Center Los Angeles CA USA

Centre Antoine Lacassagne Nice France

cf Brigham and Women's Hospital Ann Romney Center for Neurologic Diseases Department of Neurology Harvard Medical School Boston MA USA

cf Medical University of Lodz Department of Molecular Pathology and Neuropathology Lodz Poland

cg Brigham and Women's Hospital Harvard Medical School Boston MA USA

cg Medical University of Silesia Department of Pharmacology Katowice Poland

ch Brigham and Women's Hospital Harvard Medical School Department of Neurosurgery Boston MA

ch Medical University of South Carolina Biochemistry and Molecular Biology Charleston SC USA

Chulabhorn International College of Medicine Thammasat University Pathum Thani Thailand

ci British Columbia Cancer Agency Genome Sciences Centre Vancouver BC Canada

ci Medical University of South Carolina Department of Biochemistry and Molecular Biology Hollings Cancer Center Charleston SC USA

cj British Columbia Cancer Agency Terry Fox Laboratory Vancouver BC Canada

cj Medical University of South Carolina Department of Cell and Molecular Pharmacology and Experimental Therapeutics Charleston SC USA

ck Broad Institute of MIT and Harvard Cambridge MA USA

ck Medical University of South Carolina Department of Ophthalmology Charleston SC USA

cl Brown University Department of Ecology and Evolutionary Biology Providence RI USA

cl Medical University of South Carolina Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology Charleston SC USA

cm Brown University Department of Molecular Biology Cell Biology and Biochemistry Providence RI USA

cm Medical University of Vienna Department of Dermatology CD Lab Skin Aging Vienna Austria

cn Budapest University of Technology and Economics Institute of Enzymology RCNC HAS and Department of Applied Biotechnology Budapest Hungary

cn Medical University of Vienna Department of Dermatology Vienna Austria

co C S 1 C U A M Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain

co Medical University of Vienna Internal Medicine 1 Vienna Austria

cp Cambridge University Department of Medicine Cambridge UK

cp MedImmune Respiratory Inflammation and Autoimmunity Research Department Gaithersburg MD USA

cq Capital Medical University Center for Medical Genetics Beijing Children's Hospital Beijing China

cq Meiji University Department of Life Sciences Kanagawa Japan

cr Capital Normal University Beijing China

cr Memorial Sloan Kettering Cancer Center New York NY USA

cs Cardiff University Heath Park Institute of Cancer and Genetics Cardiff Wales UK

cs Merck KGaA RandD Merck Serono Darmstadt Germany

ct Cardiff University Institute of Cancer and Genetics Cardiff Wales UK

ct Merck Research Laboratories Rahway NJ USA

cu Cardiff University Systems Immunity Research Institute Cardiff Wales UK

cu Miami VA Healthcare System and University of Miami Miller School of Medicine Oncology Hematology Miami FL USA

cv Case Western Reserve University Department of Ophthalmology and Visual Sciences Cleveland OH USA

cv Moffitt Cancer Center Department of Tumor Biology Tampa FL USA

cw Case Western Reserve University Molecular Biology and Microbiology Cleveland OH USA

cw Monash University Centre for Inflammatory Diseases Lupus Research Laboratory Clayton Victoria Australia

cx Case Western Reserve University School of Medicine Department of Physiology and Biophysics Cleveland OH USA

cx Monash University Clayton Campus Department of Biochemistry and Molecular Biology Melbourne Victoria Australia

cy Case Western Reserve University School of Medicine Division of Infectious Diseases and HIV Medicine Department of Medicine Cleveland OH USA

cy Monash University Department of Biochemistry and Molecular Biology Victoria Australia

cz Catalan Institution for Research and Advanced Studies Barcelona Spain

cz Monash University Department of Microbiology Victoria Australia

e Aarhus University Department of Clinical Medicine Aarhus Denmark

e Albert Einstein College of Medicine Departments of Medicine and Molecular Pharmacology Bronx NY USA

e Cedars Sinai Medical Center Department of Medicine Los Angeles CA USA

e Georgia Regents University Medical College of Georgia Augusta GA USA

e Icahn School of Medicine at Mount Sinai Department of Pharmacology and Systems Therapeutics New York NY USA

e Luxembourg Institute of Health Laboratory of Experimental Hemato Oncology Department of Oncology Luxembourg City Luxembourg

e Scientific Institute IRCCS Eugenio Medea Bosisio Parini Italy

ea Centro de Investigación Príncipe Felipe Valencia Spain

ea NARO Institute of Floricultural Science Tsukuba Japan

eb Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC Unidad de Biotecnología Médica y Farmacéutica Guadalajara Jalisco México

eb NAS of Ukraine Department of Molecular Genetics and Biotechnology Institute of Cell Biology Lviv Ukraine

ec Centro de Investigaciones Biológicas Department of Cellular and Molecular Biology Madrid Spain

ec Nasonova Research Institute of Rheumatology Immunology and Molecular Biology Laboratory Moscow Russia

ed Centro de Investigaciones en Bioquímica Clínica e Inmunología Universidad Nacional de Córdoba Departamento de Bioquímica Clínica Facultad de Ciencias Químicas Córdoba Argentina

ed National Academy of Sciences of Ukraine Department of Biotechnology and Microbiology Lviv Ukraine

ee Centro de Pesquisas Aggeu Magalhães FIOCRUZ PE Departamento de Microbiologia Recife PE Brazil

ee National and Kapodistrian University of Athens Department of Cell Biology and Biophysics Faculty of Biology Athens Greece

ef Chang Gung Memorial Hospital Department of Pathology Chiayi Taiwan

ef National Brain Research Centre Manesar Gurgaon India

eg Chang Gung University Chang Gung Memorial Hospital Department of Cardiology Internal Medicine Taoyuan Taiwan

eg National Cancer Center Cancer Cell and Molecular Biology Branch Division of Cancer Biology Research Institute Goyang Korea

eh Chang Gung University College of Medicine Department of Neurology Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan

eh National Cancer Center Division of Cancer Biology Research Institute Gyeonggi Korea

ei Chang Gung University Department of Biochemistry and Molecular Biology and Graduate Institute of Biomedical Sciences College of Medicine Taoyuan County Taiwan

ei National Center of Neurology and Psychiatry Department of Degenerative Neurological Diseases Kodaira Tokyo Japan

ej Chang Gung University Department of Biochemistry College of Medicine Taoyuan Taiwan

ej National Center of Neurology and Psychiatry Department of Neuromuscular Research National Institute of Neuroscience Tokyo Japan

ek Chang Gung University Department of Biomedical Sciences College of Medicine Taoyuan Taiwan

ek National Cheng Kung University College of Medicine Department of Pharmacology and Institute of Basic Medical Sciences Tainan Taiwan

el Chang Gung University Molecular Regulation and Bioinformatics Laboratory Department of Parasitology Taoyuan Taiwan

el National Cheng Kung University Department of Microbiology and Immunology College of Medicine Tainan Taiwan

em Chang Jung Christian University Department of Bioscience Technology Tainan Taiwan

em National Cheng Kung University Department of Pharmacology Tainan Taiwan

en Changzheng Hospital The 2nd Military Medical University Department of Cardiothoracic Surgery Shanghai China

en National Cheng Kung University Institute of Clinical Medicine Tainan Taiwan

eo Charité Universitätsmedizin Berlin Department of Anesthesiology and Intensive Care Medicine Campus Charité Mitte and Campus Virchow Klinikum Berlin Germany

eo National Cheng Kung University Medical College Department of Environmental and Occupational Health Tainan Taiwan

ep Charité Universitätsmedizin Berlin Department of Neuropathology Campus Charité Mitte Berlin Germany

ep National Chung Hsing University Graduate Institute of Biomedical Sciences Taichung Taiwan

eq Charles University Prague Faculty of Medicine in Hradec Kralove Department of Medical Biology and Genetics Hradec Kralove Czech Republic

eq National Chung Hsing University Institute of Molecular Biology Taichung Taiwan

er Charles University Prague Faculty of Science Department of Genetics and Microbiology Prague Czech Republic

er National Chung Hsing University Institute of Biomedical Sciences College of Life Sciences Taichung Taiwan

es Ditmanson Medical Foundation Chia Yi Christian Hospital Center for Translational Medicine Chiayi City Taiwan

es National Fisheries Research and Development Institute Busan Korea

et Chiba University Department of Nanobiology Chiba Japan

et National Health Research Institutes Institute of Molecular and Genomic Medicine Miaoli Taiwan

eu Chiba University Medical Mycology Research Center Chiba Japan

eu National Health Research Institutes Immunology Research Center Miaoli Taiwan

ev Children's Hospital of Philadelphia Research Institute Philadelphia PA USA

ev National Health Research Institutes Institute of Biotechnology and Pharmaceutical Research Miaoli County Taiwan

ew Children's Hospital Department of Neurology Boston MA USA

ew National Ilan University Department of Biotechnology and Animal Science Yilan City Taiwan

ex China Academy of Chinese Medical Sciences Institute of Basic Medical Sciences of Xiyuan Hospital Beijing China

ex National Institute for Basic Biology Department of Cell Biology Okazaki Japan

ey China Agricultural University College of Animal Science and Technology State Key Laboratory of Animal Nutrition Beijing China

ey National Institute for Basic Biology Sokendai Okazaki Japan

ez China Agricultural University Department of Animal Nutrition and Feed Science Beijing China

ez National Institute for Infectious Diseases L Spallanzani IRCCS Rome Italy

f Aarhus University Department of Molecular Biology and Genetics Aarhus Denmark

f Albert Einstein College of Medicine Departments of Medicine and Molecular Pharmacology Bronx NY USA

f Cedars Sinai Medical Center VAGLAHS UCLA Pancreatic Research Group Los Angeles CA USA

f Georgia Regents University Medical College of Georgia Department of Cellular Biology and Anatomy Augusta GA USA

f Icahn School of Medicine at Mount Sinai Division of Hematology and Oncology Department of Medicine New York NY USA

f Luxembourg Institute of Health Department of Oncology Luxembourg City Luxembourg

f Scientific Institute IRCCS Eugenio Medea Laboratory of Molecular Biology Bosisio Parini Lecco Italy

fa China Agricultural University Department of Nutrition and Food Safety Beijing China

fa National Institute for Infectious Diseases Department of Epidemiology and Preclinical Research Translational Research Unit Rome Italy

fb China Medical University Department of Microbiology Taichung Taiwan

fb National Institute of Biological Sciences Beijing China

fc China Medical University School of Chinese Medicine Taichung Taiwan

fc National Institute of Gastoenterology Laboratory of Experimental Immunopathology Castellana Grotte Italy

fd Chinese Academy of Medical Sciences and Peking Union Medical College Department of Physiology Institute of Basic Medical Sciences Beijing China

fd National Institute of Infectious Diseases Department of Bacteriology 1 Tokyo Japan

fe Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medicinal Biotechnology Beijing China

fe National Institute of Neuroscience National Center of Neurology and Psychiatry Department of Degenerative Neurological Diseases Tokyo Japan

ff Chinese Academy of Medical Sciences and Peking Union Medical College MOH Key Laboratory of Systems Biology of Pathogens Institute of Pathogen Biology Beijing China

ff National Institute of Technology Rourkela Department of Life Science Rourkela Odisha India

fg Chinese Academy of Medical Sciences and Peking Union Medical College Molecular Immunology and Cancer Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Beijing China

fg National Institute on Aging Intramural Research Program Laboratory of Neurosciences Baltimore MD USA

fh Chinese Academy of Medical Sciences and Peking Union Medical College National Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Beijing China

fh National Institute on Aging National Institutes of Health Biomedical Research Center RNA Regulation Section Laboratory of Genetics Baltimore MD USA

fi Chinese Academy of Sciences CAS Key Laboratory of Infection and Immunity Institute of Biophysics Beijing China

fi National Institutes of Health Cardiovascular Branch NHLB Bethesda MD USA

fj Chinese Academy of Sciences Division of Medical Physics Institute of Modern Physics Lanzhou Gansu Province China

fj National Institutes of Health Cell Biology and Physiology Center National Heart Lung and Blood Institute Bethesda MD USA

fk Chinese Academy of Sciences Division of Physical Biology and Bioimaging Center Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Shanghai China

fk National Institutes of Health Cell Biology Section Neurogenetics Branch National Institute of Neurological Disorders and Stroke Bethesda MD USA

fl Chinese Academy of Sciences Institute of Biophysics State Key Laboratory of Biomacromolecules Beijing China

fl National Institutes of Health Experimental Transplantation and Immunology Branch National Cancer Institute Bethesda MD USA

fm Chinese Academy of Sciences Institute of Hydrobiology Wuhan Hubei China

fm National Institutes of Health Laboratory of Clinical Infectious Diseases National Institute of Allergy and Infectious Diseases Bethesda MD USA

fn Chinese Academy of Sciences Institute of Microbiology Beijing China

fn National Institutes of Health Laboratory of Immunoregulation National Institute of Allergy and Infectious Diseases Bethesda MD USA

fo Chinese Academy of Sciences Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Shanghai China

fo National Institutes of Health National Cancer Institute Urologic Oncology Branch Bethesda MD USA

fp Chinese Academy of Sciences Institute of Zoology Beijing China

fp National Institutes of Health National Heart Lung and Blood Institute Bethesda MD USA

fq Chinese Academy of Sciences Key Laboratory of Developmental and Evolutionary Biology Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Shanghai China

fq National Institutes of Health National Institute of Allergy and Infectious Disease Cytokine Biology Section Bethesda MD USA

fr Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology Guangdong China

fr National Institutes of Health National Institute of Environmental Health Sciences Clinical Research Program Research Triangle Park NC USA

fs Chinese Academy of Sciences South China Botanical Garden Guangzhou China

fs National Institutes of Health National Institute on Aging Biomedical Research Center Laboratory of Neurosciences Baltimore MD USA

ft Chinese Academy of Sciences State Key Laboratory of Biomacromolecules Institute of Biophysics Beijing China

ft National Institutes of Health NIAID Laboratory of Systems Biology Bethesda MD USA

fu Chinese Academy of Sciences State Key Laboratory of Mycology Institute of Microbiology Beijing China

fu National Institutes of Health NIAMS Laboratory of Muscle Stem Cells and Gene Regulation Bethesda MD USA

fv Chinese Academy of Sciences State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Beijing China

fv National Institutes of Health NIDDK Genetics of Development and Disease Branch Bethesda MD USA

fw Chinese Academy of Sciences State Key Laboratory of Plant Cell and Chromosome Engineering Institute of Genetics and Developmental Biology Beijing China

fw National Institutes of Health NIDDK LCMB Bethesda MD USA

fx Chinese University of Hong Kong Department of Anaesthesia and Intensive Care Hong Kong

fx National Institutes of Health Rocky Mountain Laboratories NIAID Coxiella Pathogenesis Section Hamilton MT USA

fy Chinese University of Hong Kong Department of Anaesthesia and Intensive Care Shatin NT Hong Kong

fy National Jewish Health Denver CO USA

fz Chinese University of Hong Kong Institute of Digestive Diseases Department of Medicine and Therapeutics State Key Laboratory of Digestive Disease Hong Kong

fz Freiburg Institute for Advanced Studies University of Freiburg Germany

g 2nd Hospital of Lanzhou University Key Laboratory of Digestive System Tumors Gansu China

g Aarhus University Medical Research Laboratory Institute for Clinical Medicine Aarhus Denmark

g Albert Einstein College of Medicine Departments of Pathology Microbiology and Immunology New York NY USA

g Center for Dementia Research Nathan S Kline Institute Orangeburg NY USA

g Georgia Regents University Medical College of Georgia Department of Medicine Augusta GA USA

g Icahn School of Medicine at Mount Sinai Division of Liver Diseases New York NY USA

g Maastricht University Maastricht Radiation Oncology Lab GROW School for Oncology and Developmental Biology Maastricht The Netherlands

ga Chinese University of Hong Kong Institute of Digestive Diseases Shatin Hong Kong

ga National Neuroscience Institute Singapore

gb Chinese University of Hong Kong School of Biomedical Sciences Faculty of Medicine Shatin NT Hong Kong

gb National Research Council Rome Italy

gc Chinese University of Hong Kong School of Chinese Medicine Faculty of Medicine Shatin NT Hong Kong

gc National Research Council Institute of Food Sciences Avellino Italy

gd Chinese University of Hong Kong School of Life Science Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology Sha Tin Hong Kong

gd National Sun Yat Sen University Department of Biological Sciences Kaohsiung Taiwan

ge Chonbuk National University Department of Pharmacology Medical School Chonbuk Korea

ge National Taiwan University Department of Life Science and Center for Biotechnology Taipei Taiwan

Georgia Regents University Cancer Center Department of Medicine Augusta GA USA

Georgia Regents University Institute for Regenerative and Reparative Medicine Augusta GA USA

gf Christian Albrechts University Institut für Biochemie Kiel Germany

gf National Taiwan University Department of Life Science Institute of Molecular and Cellular Biology Taipei Taiwan

gg Christian Albrechts University of Kiel Department of Nephrology and Hypertension Kiel Germany

gg National Taiwan University Department of Life Science Taipei Taiwan

gh Chulalongkorn University Department of Clinical Chemistry Faculty of Allied Health Sciences Bangkok Thailand

gh National Taiwan University Department of Pharmacology College of Medicine Taipei Taiwan

gi Chungbuk National University College of Veterinary Medicine Cheongju Chungbuk Korea

gi National Taiwan University Department of Urology College of Medicine Taipei Taiwan

Girona Biomedical Research Institute Catalonia Spain

gj Chungnam National University School of Medicine Department of Biochemistry Infection Signaling Network Research Center Cancer Research Institute Daejeon Korea

gj National Taiwan University Graduate Institute of Brain and Mind Sciences College of Medicine Taipei Taiwan

gk Chungnam National University School of Medicine Department of Pharmacology Daejeon Korea

gk National Taiwan University Institute of Molecular Medicine College of Medicine Taipei Taiwan

gl Chungnam National University School of Medicine Infection Signaling Network Research Center Daejeon Korea

gl Department of Cardiology Nanhai Hospital Affiliated to Southern Medical University Foshan Guangdong Province China

gm Chung Shan Medical University Institute of Medicine Taichung Taiwan

gm National Tsing Hua University Department of Chemical Engineering Hsinchu Taiwan

gn CIBER de Diabetes y Enfermedades Metabólicas Asociadas Instituto de Salud Carlos 3 Barcelona Spain

gn National Tsing Hua University Institute of Biotechnology Institute of Systems Neuroscience and Department of Life Science HsinChu City Taiwan

go CIBER de Enfermedades Raras Valencia Spain

go National University Cancer Institute National University Health System Singapore

gp CIBERER Spanish Network for Rare Diseases Madrid Spain

gp National University of Ireland Apoptosis Research Centre Galway Ireland

gq CIBERNED ISCIII Unidad Asociada Neurodeath Madrid Spain

gq National University of Ireland Pharmacology and Therapeutics Galway Ireland

gr Cincinnati Children's Hospital Medical Center Division of Clinical Pharmacology Cincinnati OH USA

gr National University of Ireland Regenerative Medicine Institute Galway Ireland

gs Cincinnati Children's Hospital Medical Center Division of Experimental Hematology and Cancer Biology Cincinnati OH USA

gs National University of Singapore Department of Biological Sciences Singapore

gt Cincinnati Children's Hospital Medical Center Division of Oncology Cincinnati OH USA

gt National University of Singapore Department of Pharmacy Singapore

gu City University of Hong Kong Department of Biomedical Sciences Kowloon Tong Hong Kong China

gu National University of Singapore Department of Physiology Singapore

gv City University of New York Department of Biology Queens College and The Graduate Center Flushing NY USA

gv National University of Singapore Department of Physiology Yong Loo Lin School of Medicine Singapore

gw Cleveland Clinic Cleveland OH USA

gw National University of Singapore Yong Loo Lin School of Medicine Department of Biochemistry Singapore

gx Cleveland Clinic Department of Cancer Biology Cleveland OH USA

gx National University of Singapore Department of Microbiology and Immunology Yong Loo Lin School of Medicine National University Health System Singapore

gy Cleveland Clinic Department of Cellular and Molecular Medicine Cleveland OH USA

gy Nationwide Children's Hospital Center for Microbial Pathogenesis Columbus OH USA

gz Cleveland Clinic Taussig Cancer Institute Cleveland OH USA

gz INCI CNRS UPR3212 Institut des Neurosciences Cellulaires and Intégratives Strasbourg France

h 2nd Military Medical University Department of Cardiothoracic Surgery Changzheng Hospital Shanghai China

h Albert Einstein College of Medicine Montefiore Medical Center Bronx NY USA

h Alberystwyth University Institute of Biological Environmental and Rural Sciences Penglais Aberystwyth Wales UK

h Center of Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czech Republic

h German Cancer Research Center Pediatric Oncology Heidelberg Germany

h Maastricht University Medical Centre NUTRIM Department of Molecular Genetics Maastricht The Netherlands

h MRC Cancer Unit University of Cambridge Hutchison MRC Research Centre Cambridge UK

ha CNR Institute of Cell Biology and Neurobiology and IRCCS Santa Lucia Foundation Rome Italy

ha NCI CCR Basic Research Laboratory Frederick MD USA

hb CNRS UM Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé Montpellier France

hb Nencki Institute of Experimental Biology Neurobiology Center Laboratory of Molecular Neurobiology Warsaw Poland

hc CNRS Immunopathology and Therapeutic Chemistry Institut de Biologie Moléculaire et Cellulaire Strasbourg France

hc Neurodegenerative Diseases Research Group Vall d'Hebron Research Institute CIBERNED Barcelona Spain

hd CNRS UMR 7280 Marseille France

hd Neurogenomiks Neurosciences Department Faculty of Medicine and Odontology University of Basque Leioa Spain

he CNRS UMR 5534 Villeurbanne France

he Neuroscience Research Institute Santa Barbara CA USA

hf Colonia Ciudad Universitaria Neurodevelopment and Physiology Department Neuroscience Division Instituto de Fisiologia Celular UNAM Mexico DF Mexico

hf Neurounion Biomedical Foundation Santiago Chile

hg Colorado Mesa University Department of Biological Sciences Grand Junction CO USA

hg New York Blood Center Lindsley F Kimball Research Institute New York NY USA

hh Columbia University Medical Center Department of Neurology New York NY USA

hh New York Institute of Technology Department of Biomedical Sciences College of Osteopathic Medicine Old Westbury NY USA

hi Columbia University Medical Center Department of Pathology and Cell Biology New York NY USA

hi New York Medical College Department of Medicine Pharmacology and Physiology Valhalla NY USA

hj Columbia University Medical Center New York NY USA

hj New York University Langone Medical Center Nathan Kline Institute for Psychiatric Research Orangeburg NY USA

hk Columbia University College of Physicians and Surgeons Department of Pediatrics New York NY USA

hk New York University School of Medicine Departments of Neuroscience and Physiology and Psychiatry New York NY USA

hl Columbia University Department of Biological Sciences New York NY USA

hl New York University School of Medicine Skirball Institute Department of Microbiology New York NY USA

hm Columbia University Department of Chemistry New York NY USA

hm New York University Department of Psychiatry New York NY ; and Center for Dementia Research Nathan S Kline Institute Orangeburg NY USA

hn Columbia University Department of Medicine New York NY USA

hn New York University Department of Psychiatry New York NY USA

ho Columbia University Department of Neurology New York NY USA

ho New York University Nathan Kline Institute Orangeburg NY USA

hp Columbia University Taub Institute for Alzheimer's Disease Research Department of Pathology and Cell Biology New York NY USA

hp Newcastle University Campus for Ageing and Vitality Institute for Cell and Molecular Biosciences and Institute for Ageing Newcastle upon Tyne UK

hq Comenius University in Bratislava Department of Biochemistry Faculty of Natural Sciences Bratislava Slovak Republic

hq Newcastle University The Medical School Institute of Cellular Medicine Newcastle upon Tyne UK

hr Complejo Hospitalario Universitario de Albacete Unidad de Neuropsicofarmacología Albacete Spain

hr New York Presbyterian Hospital Weill Cornell Medical Center New York NY USA

hs Complutense University Instituto de Investigaciones Sanitarias San Carlos Department of Biochemistry and Molecular Biology 1 School of Biology Madrid Spain

hs Niigata University Graduate School of Medical and Dental Sciences Laboratory of Biosignaling Niigata Japan

ht Concordia University Biology Department Montreal Quebec Canada

ht Niigata University School of Medicine Department of Biochemistry Niigata Japan

hu Concordia University Department of Biology Montreal Canada

hu NINDS National Institutes of Health Synaptic Function Section Bethesda MD USA

hv Consejo Superior de Investigaciones Científicas Centro de Investigaciones Biológicas Madrid Spain

hv Nippon Medical School Department of Cardiovascular Medicine Tokyo Japan

hw Consejo Superior de Investigaciones Científicas Institute of Parasitology and Biomedicine López Neyra Granada Spain

hw North Dakota State University Department of Chemistry and Biochemistry Fargo ND USA

hx Consejo Superior de Investigaciones Científicas Instituto de Bioquímica Vegetal y Fotosíntesis Sevilla Spain

hx North Shore University Hospital Department of Emergency Medicine Manhasset NY USA

hy Consejo Superior de Investigaciones Científicas Universidad de Salamanca Campus Miguel de Unamuno Instituto de Biología Molecular y Celular del Cáncer Centro de Investigación del Cáncer Salamanca Spain

hy Northeastern University Department of Bioengineering Boston MA USA

hz Consejo Superior de Investigaciones Científicas Universidad de Salamanca Experimental Therapeutics and Translational Oncology Program Instituto de Biología Molecular y Celular del Cáncer Salamanca Spain

hz Northern Illinois University Department of Biological Sciences DeKalb IL USA

i 2nd Military Medical University Department of Pharmacology Shanghai China

i Academia Sinica Institute of Biological Chemistry Taipei Taiwan

i Albert Ludwigs University Renal Division Freiburg Germany

i Center of Investigation and Advanced Studies Cinvestav IPN Mexico City Mexico

i German Cancer Research Center Lysosomal Systems Biology Heidelberg Germany

i Macau University of Science and Technology State Key Laboratory of Quality Research in Chinese Medicine Macau China

i MRC Harwell Mammalian Genetics Unit Oxfordshire UK

ia Consiglio Nazionale delle Ricerche Core Research Laboratory Siena Italy

ia Northwestern University Department of Cell and Molecular Biology Feinberg School of Medicine Chicago IL USA

ib BioCruces Health Research Institute Cruces University Hospital Stem Cells and Cell Therapy Laboratory Barakaldo Spain

ib Northwestern University Department of Neurology Feinberg School of Medicine Chicago IL USA

ic CSIC UAM and CIBERER Institute for Biomedical Research Alberto Sols Madrid Spain

ic Northwestern University Division of Hematology Oncology Chicago IL USA

Icahn School of Medicine at Mount Sinai Department of Otolaryngology Tisch Cancer Institute at Mount Sinai New York NY USA

id CSIR Centre for Cellular and Molecular Biology Hyderabad India

id Northwestern University Feinberg School of Medicine Department of Neurology Chicago IL USA

ie CSIR Indian Institute of Chemical Technology Biomaterials Group Hyderabad India

ie Northwestern University Robert H Lurie Comprehensive Cancer Center Chicago IL USA

if CSS Mendel Institute Neurogenetics Unit Rome Italy

if Norwegian Veterinary Institute Oslo Norway

ig Curtin University School of Biomedical Sciences Perth Australia

ig Obihiro University of Agriculture and Veterinary Medicine National Research Center for Protozoan Diseases Obihiro Hokkaido Japan

ih Curtin University School of Pharmacy Bentley Australia

ih Ohio State University Department of Microbial Infection and Immunity Columbus OH USA

ii Dalhousie University Biochemistry and Molecular Biology Halifax NS Canada

ii Ohio State University Department of Molecular and Cellular Biochemistry Columbus OH USA

ij Dalhousie University Department of Microbiology and Immunology Halifax Nova Scotia Canada

ij Ohio State University Department of Molecular Genetics Columbus OH USA

ik Dalhousie University Department of Pediatrics Halifax Nova Scotia Canada

ik Ohio State University Department of Surgery Davis Heart and Lung Research Institute Columbus OH USA

il Dalhousie University Department of Pharmacology Halifax Nova Scotia Canada

il Ohio State University Department of Veterinary Biosciences College of Veterinary Medicine Columbus OH USA

im Dalian Medical University Cancer Center Institute of Cancer Stem Cell Dalian Liaoning Province China

im Ohio State University DHLRI Department of Medicine Columbus OH USA

in Dalian Medical University Department of Environmental and Occupational Hygiene Dalian China

in Ohio State University The James Comprehensive Cancer Center Department of Molecular Virology Immunology and Medical Genetics and Department of Surgery Division of Surgical Oncology Columbus OH USA

io Dalian Medical University Department of Food Nutrition and Safety Dalian China

io Ohio University Division of Physical Therapy Athens OH USA

ip Dalian Medical University Institute of Cancer Stem Cell Dalian China

ip Oregon Health and Science University Casey Eye Institute Portland OR USA

iq Danish Cancer Society Research Center Cell Death and Metabolism Unit Center for Autophagy Recycling and Disease Copenhagen Denmark

iq Oregon Health and Science University Knight Cardiovascular Institute Portland OR USA

ir Danish Cancer Society Research Center Cell Stress and Survival Unit Copenhagen Denmark

ir Oregon State University Department of Pharmaceutical Sciences College of Pharmacy Corvallis OR USA

is Danish Cancer Society Research Center Unit of Cell Stress and Survival Copenhagen Denmark

is Osaka Prefecture University Graduate School of Life and Environmental Science Osaka Japan

it Danish Cancer Society Research Center Unit of Cell Stress and Survival Copenhagen Denmark

it Osaka University Graduate School of Dentistry Department of Preventive Dentistry Osaka Japan

iu Dartmouth College Department of Chemistry Hanover NH USA

iu Osaka University Graduate School of Medicine Department of Nephrology Osaka Japan

iv Democritus University of Thrace Department of Pathology Alexandroupolis Greece

iv Osaka University Graduate School of Medicine Department of Pediatrics Osaka Japan

iw Democritus University of Thrace Laboratory of Molecular Hematology Alexandroupolis Greece

iw Osaka University Department of Genetics Graduate School of Medicine Laboratory of Intracellular Membrane Dynamics Graduate School of Frontier Biosciences Osaka Japan

ix Democritus University of Thrace Medical School Department of Pathology Alexandroupolis Greece

ix Osaka University Department of Genetics Graduate School of Medicine Osaka Japan

iy Democritus University of Thrace School of Medicine Alexandroupolis Greece

iy Osaka University Graduate School of Dentistry Osaka Japan

iz Denver VAMC Denver CO USA

iz Osaka University Graduate School of Frontier Biosciences Osaka Japan

j 2nd University of Naples Department of Biochemistry and Biophysics Naples Italy

j Academia Sinica Institute of Biomedical Sciences Taipei Taiwan

j All India Institute of Medical Sciences Department of Anatomy New Delhi India

j College of Science Central China Normal University Wuhan China

j German Cancer Research Center Systems Biology of Cell Death Mechanisms Heidelberg Germany

j Mackay Memorial Hospital Department of Radiation Oncology Taipei Taiwan

j MRC Human Immunology Unit Weatherall Institute of Molecular Medicine and BRC Translational Immunology Lab NDM Oxford UK

ja Department of Cellular and Molecular Medicine Center for Biological Research and Center for Biomedical Network Research on Rare Diseases Madrid Spain

ja Oslo University Hospital Center for Eye Research Oslo Norway

jb Department of Medical Chemistry Molecular Biology and Pathobiochemistry Budapest Hungary

jb Oslo University Hospital Centre for Cancer Biomedicine Oslo Norway

jc Dong A University College of Medicine and Mitochondria Hub Regulation Center Department of Anatomy and Cell Biology Busan Korea

jc Oslo University Hospital Centre for Immune Regulation Oslo Norway

jd Dong Eui University Department of Chemistry Busan Korea

jd Oslo University Hospital Department of Biochemistry Institute for Cancer Research Oslo Norway

je Drexel University College of Medicine Department of Pathology Philadelphia PA USA

je Oslo University Hospital Department of Molecular Cell Biology Institute for Cancer Research Oslo Norway

jf Duke University Department of Medicine Human Vaccine Institute Durham NC USA

jf Oslo University Hospital Institute for Microbiology Oslo Norway

jg Duke University Department of Molecular Genetics and Microbiology Durham NC USA

jg University of Oslo and Oslo University Hospital Prostate Cancer Research Group Centre for Molecular Medicine Oslo Norway

jh Duke University Department of Ophthalmology Durham NC USA

jh Otto von Guericke University Magdeburg Department of General Visceral and Vascular Surgery Magdeburg Germany

ji Duke University Medical Center Department of Immunology Durham NC USA

ji Otto von Guericke University Magdeburg Institute of Molecular and Clinical Immunology Magdeburg Germany

jj Duke University Medical Center Department of Medicine Durham NC USA

jj Oviedo University Morphology and Cellular Biology Department Oviedo Spain

jk Duke University Medical Center Department of Molecular Genetics and Microbiology Durham NC USA

jk Oxford University Department of Oncology Weatherall Institute of Molecular Medicine John Radcliffe Hospital Molecular Oncology Laboratories Oxford UK

jl Duke University Nicholas School of the Environment Durham NC USA

jl Paris Cardiovascular Research Center PARCC Clichy France

jm Duke NUS Graduate Medical School Cancer and Stem Cell Biology Program Singapore

jm Paris Descartes University Sorbonne Paris Cité Imagine Institute Paris France

jn Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine Naples Italy

jn Paris Diderot University Sorbonne Paris Cité INSERM CNRS Paris France

jo Durham VA Medical Center GRECC Durham NC USA

jo Peking University 1st Hospital Department of Internal Medicine Beijing China

jp DZNE German Center for Neurodegenerative Diseases and CAESAR Research Center Bonn Germany

jp Peking University 1st Hospital Renal Division Beijing China

jq East China Normal University School of Life Science Shanghai China

jq Peking University Department of Immunology Beijing China

jr East China Normal University Shanghai China

jr Peking University Department of Medicine Beijing China

js Eberhard Karls University Tübingen Interfaculty Institute of Cell Biology Tübingen Germany

js Peking University Health Science Center Center for Human Disease Genomics Beijing China

jt Institute for Research in Biomedicine Bellinzona Switzerland Università Svizzera italiana Lugano Switzerland

jt Peking University Health Science Center Department of Biochemistry and Molecular Biology Beijing China

ju Ecole Polytechnique Federale de Lausanne Global Health Institute School of Life Sciences Lausanne Switzerland

ju Peking University Institute of Nephrology Key Laboratory of Renal Disease Ministry of Health of China Key Laboratory of Chronic Kidney Disease Prevention and Treatment Ministry of Education Beijing China

jv Edinburgh Napier University School of Life Sport and Social Sciences Edinburgh UK

jv Pennsylvania State University College of Medicine Department of Cellular and Molecular Physiology Hershey PA USA

jw Edinburgh University MRC Human Genetics Unit Edinburgh UK

jw Pennsylvania State University College of Medicine Department of Pediatrics Hershey PA USA

jx Ege University Faculty of Science Department of Biology Bornova Izmir Turkey

jx Pennsylvania State University College of Medicine Department of Pharmacology Hershey PA USA

jy Emory University Department of Biology Atlanta GA USA

jy Pennsylvania State University College of Medicine Department of Pharmacology Pennsylvania State University Hershey Cancer Institute Hershey PA USA

jz Emory University Department of Cell Biology Atlanta GA USA

jz Laboratory of Translational Oncology and Experimental Cancer Therapeutics Department of Hematology Oncology and Molecular Therapeutics Program Fox Chase Cancer Center Philadelphia PA USA

k 2nd University of Naples Department of Biochemistry Biophysics and General Pathology Naples Italy

k Academia Sinica Institute of Molecular Biology Taipei Taiwan

k All India Institute of Medical Sciences Department of Gastroenterology New Delhi India

k Central Michigan University College of Medicine Mt Pleasant MI USA

k German Center for Neurodegenerative Diseases Munich Germany

k Macquarie University Department of Biomedical Sciences Faculty of Medicine and Health Sciences Sydney NSW Australia

k MRC Laboratory of Molecular Biology Cambridge UK

ka Emory University Department of Hematology and Medical Oncology Atlanta GA USA

ka Pennsylvania State University College of Medicine Hershey Cancer Institute and Department of Pediatrics Hershey PA USA

kb Emory University School of Medicine Department of Microbiology and Immunology Atlanta GA USA

kb Pennsylvania State University Department of Biochemistry and Molecular Biology Center for Eukaryotic Gene Regulation University Park PA USA

kc Emory University School of Medicine Department of Pharmacology and Neurology Atlanta GA USA

kc Perelman School of Medicine at the University of Pennsylvania Department of Genetics Philadelphia PA USA

kd Emory University School of Medicine Department of Pharmacology Atlanta GA USA

kd Perelman School of Medicine at the University of Pennsylvania Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics Philadelphia PA USA

ke Emory University School of Medicine Division of Digestive Diseases Atlanta GA USA

ke Pfizer Inc Drug Safety Research and Development San Diego CA USA

kf Emory University School of Medicine Emory Vaccine Center and Department of Microbiology and Immunology Atlanta GA USA

kf Plymouth University Peninsula School of Medicine and Dentistry Plymouth UK

kg Emory University School of Medicine Winship Cancer Institute Atlanta GA USA

kg Polish Academy of Sciences Institute of Biochemistry and Biophysics Warsaw Poland

kh Emory University Division of Endocrinology Metabolism and Lipids Department of Medicine Atlanta GA USA

kh Polytechnic University of Marche Department of Clinical Science Faculty of Medicine Ancona Italy

ki Emory University Winship Cancer Institute Department of Hematology and Medical Oncology Atlanta GA USA

ki Polytechnic University of Marche Department of Life and Environmental Sciences Ancona Italy

kj Eötvös Loránd University Department of Anatomy Cell and Developmental Biology Budapest Hungary

kj Pontificia Universidad Católica de Chile Physiology Department Santiago Chile

kk Eötvös Loránd University Department of Biological Anthropology Budapest Hungary

kk Post Graduate Institute of Medical Education and Research Department of Biophysics Chandigarh India

kl Eötvös Loránd University Department of Genetics Budapest Hungary

kl Post Graduate Institute of Medical Education and Research Department of Urology Chandigarh India

km Centre de Recherche des Cordeliers Equipe 11 labellisée par la Ligue Nationale contre le Cancer Paris France

km Program in Rare and Genetic Diseases Centro de Investigación Príncipe Felipe IBV CSIC Associated Unit at CIPF Valencia Spain

kn Erasmus MC University Medical Center Rotterdam Department of Surgery Rotterdam The Netherlands

kn Providence Portland Medical Center Earle A Chiles Research Institute Portland OR USA

ko Ernst Moritz Arndt University Institute of Pharmacy Greifswald Germany

ko Public Health England Health Protection Services Modelling and Economics Unit Colindale London UK

kp ETH Zurich Department of Biology Institute of Molecular Health Sciences Zurich Switzerland

kp Pusan National University Department of Biological Sciences Busan Korea

kq ETH Zurich Institute of Biochemistry Zurich Switzerland

kq Qilu Hospital of Shandong University Cardiology Jinan Shandong China

kr ETH Zurich Institute of Molecular Health Sciences Zurich Switzerland

kr Qilu Hospital of Shandong University Department of Traditional Chinese Medicine Jinan China

ks ETH Zurich Institute of Molecular Systems Biology Zurich Switzerland

ks Qingdao University Department of Neurology Qingdao Municipal Hospital School of Medicine Qingdao Shandong Province China

kt ETH Zürich LFW D 18 1 Zürich Switzerland

kt Queen Elizabeth Hospital Department of Clinical Oncology Kowloon Hong Kong

ku ETH Zurich ScopeM Zurich Switzerland

ku Queen Mary University of London Blizard Institute Centre for Cell Biology and Cutaneous Research London UK

kv European Institute of Oncology Department of Experimental Oncology Milan Italy

kv Queen Mary University of London Barts Cancer Institute Center for Molecular Oncology London UK

kw European Molecular Biology Laboratory Structural and Computational Biology Unit Heidelberg Germany

kw Queen Mary University of London Blizard Institute Department of Neuroscience and Trauma London UK

kx Evelina's Children Hospital Guy's and St Thomas' Hospital NHS Foundation Trust Department of Paediatric Neurology Neuromuscular Service London UK

kx Queen Mary University of London Blizard Institute Flow Cytometry Core Facility London UK

ky Ewha W University Brain and Cognitive Sciences Pharmacy Seoul Korea

ky Queen Mary University of London Centre for Haemato Oncology Barts Cancer Institute London UK

kz Federal University of Rio de Janeiro Insititute of Microbiology Department of Immunology Rio de Janeiro Brazil

kz Queens College of the City University of New York Department of Biology Flushing NY USA

l Academic Medical Center Department of Gastroenterology and Hepatology Amsterdam The Netherlands

l All India Institute of Medical Sciences Department of Physiology New Delhi India

l Central South University Department of Pediatrics Xiangya Hospital Changsha Hunan China

l German Institute of Human Nutrition Department of Molecular Toxicology Nuthetal Germany

l Magna Graecia University Department of Health Sciences Catanzaro Italy

l MRC Mitochondrial Biology Unit Cambridge UK

l Semmelweis University Department of Medical Chemistry Molecular Biology and Pathobiochemistry Budapest Hungary

la Federal University of Rio de Janeiro Institute of Biophysics Carlos Chagas Filho Laboratory of Immunoreceptors and Signaling Rio de Janeiro Brazil

la Queen's University of Belfast Centre for Experimental Medicine Belfast UK

lb Federal University of São Paulo Department of Pharmacology Paulista School of Medicine São Paulo Brazil

lb Radboud University Nijmegen Medical Center Department of Internal Medicine Division of Endocrinology Nijmegen The Netherlands

lc Federico 2 University Department of Translational Medicine Naples Italy

lc Radboud University Nijmegen Medical Center Department of Internal Medicine Nijmegen The Netherlands

ld Federico 2 University Telethon Institute of Genetics and Medicine Department of Medical and Translational Sciences Naples Italy

ld Radboud University Nijmegen Medical Center Department of Radiation Oncology Nijmegen The Netherlands

le 1st Hospital of Jilin University Changchun Jilin China

le Radboud University Institute for Molecules and Materials Department of Molecular Materials Nijmegen The Netherlands

lf 1st Hospital of Jilin University Department of Neurosurgery Changchun China

lf Regina Elena National Cancer Institute Experimental Chemotherapy Laboratory Rome Italy

lg FISABIO Hospital Dr Peset Valencia Spain

lg Research Center Borstel Borstel Germany

lh Flinders University School of Biological Sciences Bedford Park South Australia Australia

lh Rice University Chemical and Biomolecular Engineering Houston TX USA

li Florida Atlantic University Department of Biological Sciences Jupiter FL USA

li Rice University Department of BioSciences Houston TX USA

lj Florida Atlantic University Schmidt College of Medicine Department of Biomedical Sciences Boca Raton FL USA

lj RIKEN Brain Science Institute Laboratory for Developmental Neurobiology Saitama Japan

lk Florida International University Department of Dietetics and Nutrition Miami FL USA

lk RIKEN Global Research Cluster Glycometabolome Team Systems Glycobiology Research Group Saitama Japan

ll Fondazione IRCCS Istituto Nazionale dei Tumori Department of Experimental Oncology and Molecular Medicine Milan Italy

ll Rio de Janeiro Federal University Instituto de Biofísica Carlos Chagas Filho Rio de Janeiro Brazil

lm Food and Drug Administration Jefferson AR USA

lm Ritsumeikan University Department of Biotechnology Shiga Japan

ln Forschungszentrum Juelich ICS 6 Structural Biochemistry Juelich Germany

ln Rockefeller University New York NY USA

lo George Washington University Department of Biochemistry and Molecular Medicine Washington DC USA

lo Roswell Park Cancer Institute Department of Pharmacology and Therapeutics Buffalo NY USA

Lovelace Respiratory Research Institute Molecular Biology and Lung Cancer Program Albuquerque NM USA

lp Foundation for Research and Technology Hellas Heraklion Crete Greece

lp Royal College of Surgeons in Ireland Department of Physiology and Medical Physics Dublin Ireland

lq 4th Military Medical University Department of Biochemistry and Molecular Biology Xi'an China

lq Royal Military College Chemistry and Chemical Engineering Kingston ON Canada

lr 4th Military Medical University Department of Oral Anatomy and Physiology and TMD College of Stomatology Xi'an China

lr Royal North Shore Hospital Cardiovascular and Hormonal Research Laboratory Royal North Shore Hospital and Kolling Institute Sydney NSW Australia

ls 4th Military Medical University Department of Pulmonary Medicine Xijing Hospital Xi'an Shaanxi Province China

ls Ruhr University Bochum Biochemie Intrazellulärer Transportprozesse Bochum Germany

lt Ruhr University Bochum Department of Molecular Cell Biology Institute of Biochemistry and Pathobiochemistry Bochum Germany

lt The Francis Crick Institute Mill Hill Laboratory London UK

lu Freiburg University Center for Biological Systems Analysis Core Facility Proteomics Freiburg Germany

lu Ruhr University Bochum Medical Faculty System Biochemistry Bochum Germany

Luxembourg Institute of Health and Centre Hospitalier de Luxembourg Luxembourg

lv Freie Universität Berlin Institute of Pharmacy Berlin Germany

lv Ruhr University Bochum University Hospital Bergmannsheil Department of Neurology Heimer Institute for Muscle Research Bochum Germany

lw Freshwater Aquaculture Collaborative Innovation Center of Hubei Province Wuhan China

lw Ruprecht Karls University Heidelberg Division of Pediatric Neurology Department of Pediatrics Heidelberg University Hospital Heidelberg Germany

lx Friedrich Alexander University Erlangen Nürnberg Department of Medicine 1 Erlangen Germany

lx Rush University Medical Center Department of Anatomy and Cell Biology Chicago IL USA

ly Fudan University Shanghai Medical College Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Institute of Biomedical Sciences Shanghai China

ly Russian Academy of Sciences Kazan Institute of Biochemistry and Biophysics Kazan Tatarstan Russia

lz Fudan University Shanghai Medical College Key Laboratory of Molecular Virology Shanghai China

lz Rutgers New Jersey Medical School Department of Cell Biology and Molecular Medicine Newark NJ USA

m Academic Medical Center University of Amsterdam Department of Cell Biology and Histology Amsterdam The Netherlands

m Alpert Medical School of Brown University Vascular Research Laboratory Providence Veterans Affairs Medical Center Department of Medicine Providence RI USA

m Central University of Venezuela Institute for Anatomy Caracas Venezuela

m Ghent University Department of Biomedical Molecular Biology Inflammation Research Center VIB Methusalem Program Gent Belgium

m Mahidol University Department of Anatomy Faculty of Science Bangkok Thailand

m MRC Toxicology Unit Leicester UK

m Semmelweis University Institute of Human Physiology and Clinical Experimental Research Budapest Hungary

ma Fudan University Cancer Center Department of Integrative Oncology Shanghai China

ma Rutgers University Department of Cell Biology and Neuroscience Piscataway NJ USA

mb Cancer Institute Fudan University Shanghai Cancer Center Collaborative Innovation Center of Cancer Medicine Department of Oncology Shanghai Medical College Fudan University Shanghai China

mb Rutgers University Molecular Biology and Biochemistry Piscataway NJ USA

mc Fudan University Department of Biosynthesis Key Laboratory of Smart Drug Delivery Ministry of Education School of Pharmacy Shanghai China

mc Rutgers University New Jersey Medical School Department of Cell Biology and Molecular Medicine Newark NJ USA

md Fudan University Department of Neurosugery Shanghai China

md Rutgers University The State University of New Jersey Department of Cell Biology and Neuroscience Piscataway NJ USA

me Fujian Provincial Hospital Department of Urology Fuzhou China

me Rutgers University The State University of New Jersey Rutgers Cancer Institute of New Jersey New Brunswick NJ USA

mf Gdansk University of Technology Department of Pharmaceutical Technology and Biochemistry Gdansk Poland

mf Rutgers University Robert Wood Johnson Medical School Pharmacology Department Piscataway NJ USA

mg Geisel School of Medicine at Dartmouth Department of Biochemistry Hanover NH USA

mg Rutgers University Robert Wood Johnson Medical School Rutgers Cancer Institute of New Jersey Piscataway NJ USA

mh Geisel School of Medicine at Dartmouth Department of Microbiology and Immunology Lebanon NH USA

mh Sabanci University Molecular Biology Genetics and Bioengineering Program Istanbul Turkey

mi Geisinger Clinic Weis Center for Research Danville PA USA

mi SaBio Instituto de Investigación en Recursos Cinegéticos IREC CSIC UCLM JCCM Ciudad Real Spain

mj Genentech Inc Department of Cancer Immunology South San Francisco CA USA

mj Saint Louis University School of Medicine Department of Molecular Microbiology and Immunology St Louis MO USA

mk Genentech Inc Department of Immunology South San Francisco CA USA

mk Saitama Medical University Saitama Medical Center Department of General Thoracic Surgery Saitama Japan

ml Genentech Inc Department of Neuroscience South San Francisco CA USA

ml Saitama University Graduate School of Science and Engineering Saitama Japan

mm Genentech Inc Department of Translational Oncology South San Francisco CA USA

mm San Diego State University Department of Biology and Center for Microbial Sciences San Diego CA USA

mn Genentech Inc Immunology and Infectious Diseases South San Francisco CA USA

mn San Diego State University Department of Biology San Diego CA USA

mo Georg August Universität Göttingen Department of Molecular Microbiology and Genetics Institute of Microbiology and Genetics Göttingen Germany

mo San Paolo Hospital Medical School Unit of Obstetrics and Gynecology Milano Italy

Monash University School of Biological Sciences Melbourne Victoria Australia

mp Georg August Universität Göttingen Institute of Microbiology and Genetics Department of Genetics of Eukaryotic Microorganisms Göttingen Germany

mp San Raffaele Institute Dept of Therapeutic Research and Medicine Evaluation Sulmona L'Aquila Italy

mq Georg August University Göttingen Department of Nephrology and Rheumatology Göttingen Germany

mq Sanford Burnham Prebys NCI Cancer Center Cell Death and Survival Networks Program La Jolla CA USA

mr Georg August University Göttingen Institute of Cellular Biochemistry Göttingen Germany

mr Sanford Consortium for Regenerative Medicine La Jolla CA USA

ms George Mason University Manassas VA USA

ms Sanford Burnham Medical Research Institute Cell Death and Survival Networks Program La Jolla CA USA

mt George Washington University Department of Anatomy and Regenerative Biology Washington DC USA

mt Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA

mu George Washington University Flow Cytometry Core Facility Washington DC USA

mu Sangamo Biosciences Richmond CA USA

mv Georgetown University Medical Center Department of Neuroscience Washington DC USA

mv Sanofi Vitry Sur Seine France

mw Georgetown University Medical Center Department of Oncology Washington DC USA

mw São Paulo University Biochemistry Department ; and Santo Amaro University Life Sciences São Paulo Brazil

mx Georgetown University Department of Pharmacology and Physiology Washington DC USA

mx Sapienza University of Rome DAHFMO Section of Histology Rome Italy

my Georgetown University Lombardi Comprehensive Cancer Center Departments of Oncology and Pathology Washington DC USA

my Sapienza University of Rome DAHFMO Section of Anatomy Rome Italy

mz Georgetown University Lombardi Comprehensive Cancer Center Washington DC USA

mz Sapienza University of Rome Department of Biochemical Sciences A Rossi Fanelli Rome Italy

Nagasaki University Graduate School of Biomedical Sciences Department of Molecular Microbiology and Immunology Nagasaki Japan

o Aix Marseille Université CNRS UMR 7278 IRD198 INSERM U1095 Medicine Faculty Marseille France

o Anhui University of Science and Technology Department of Immunology and Medical Inspection Huainan Anhui China

o Centre de Recherche du CHU de Québec Faculty of Pharmacy Québec Canada

o Goethe University Medical School Experimental Neurology Frankfurt am Main Germany

o Mahidol University Salaya Campus Institute of Molecular Biosciences Nakorn Pathom Thailand

o Nagasaki University Department of Molecular Microbiology and Immunology Graduate School of Biomedical Sciences Nagasaki Japan

o Seoul National University College of Medicine Department of Ophthalmology Seoul Korea

oa Gunma University Laboratory of Molecular Membrane Biology Institute for Moleclualr and Cellular Regulation Gunma Japan

oa Shandong University School of Chemistry and Chemical Engineering Jinan Shandong China

ob Gunma University Laboratory of Molecular Traffic Institute for Moleclualr and Cellular Regulation Gunma Japan

ob Shandong University School of Life Sciences Jinan China

oc Gustave Roussy Cancer Campus Villejuif France

oc Shandong University School of Medicine Department of Pharmacology Jinan Shandong Province China

od Gustave Roussy Comprehensive Cancer Center Villejuif France

od Shanghai Institute of Materia Medica Division of Antitumor Pharmacology Shanghai China

oe Gustave Roussy Institute Villejuif France

oe Shanghai Jiao Tong University Bio 10 Institutes Shanghai China

of Gyeongsang National University School of Medicine Department of Biochemistry and Convergence Medical Science and Institute of Health Sciences JinJu Korea

of Shanghai Jiao Tong University Department of Endocrinology and Metabolism Affiliated Sixth People's Hospital Shanghai Diabetes Institute Shanghai Key Laboratory of Diabetes Mellitus Shanghai Clinical Center for Diabetes Shanghai China

og Hadassah Hebrew University Medical Center Endocrinology and Metabolism Service Department of Medicine Jerusalem Israel

og Shanghai Jiao Tong University School of Biomedical Engineering and Med 10 Research Institute Shanghai China

oh Hadassah Hebrew University Medical Center Department of Neurology Jerusalem Israel

oh Shanghai Jiao Tong University School of Life Sciences and Biotechnology Shanghai China

oi Hallym University Department of Anatomy and Neurobiology College of Medicine Kangwon Do Korea

oi Shanghai Jiao Tong University School of Medicine Center for Reproductive Medicine Renji Hospital Shanghai China

oj Hallym University Department of Biomedical Gerontology Chuncheon Kangwon do Korea; and Anyang Gyeonggi do Korea

oj Shanghai Jiao Tong University School of Medicine Department of Biochemistry and Molecular Biology Shanghai China

ok Hallym University Department of Microbiology College of Medicine Chuncheon Gangwon Korea

ok Shanghai Jiao Tong University School of Medicine Department of Pharmacology and Chemical Biology Shanghai China

ol Hallym University Ilsong Institute of Life Science Chuncheon Korea

ol Shanghai Jiao Tong University School of Medicine Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education Shanghai China

om Hallym University School of Medicine Department of Physiology Chuncheon Korea

om Shanghai Jiao Tong University School of Medicine Renji Hospital Shanghai China

on Hampton University Department of Pharmaceutical Sciences School of Pharmacy Hampton VA USA

on Shanghai Jiao Tong University School of Medicine Shanghai Institute of Hypertension Shanghai China

oo Hangzhou Normal University Department of Pharmacology School of Medicine Hangzhou China

oo Shanghai Jiao Tong University School of Medicine Shanghai Institute of Immunology Shanghai China

op Hannover Medical School Department for Clinical Immunology and Rheumotology Hannover Germany

op Shanghai Jiao Tong University School of Medicine State Key Laboratory of Medical Genomics; Shanghai Institute of Hematology; Shanghai Rui Jin Hospital Shanghai China

oq Hannover Medical School Department of Biochemistry Hannover Germany

oq Shanghai Jiao Tong University State Key Laboratory of Oncogenes and Related Genes Renji Med 10 Clinical Stem Cell Research Center Ren Ji Hospital School of Medicine Shanghai China

or Hannover Medical School Institute of Molecular and Translational Therapeutic Strategies Hannover Germany

or University of Sharjah College of Medicine United Arab Emirates

os Hanyang University College of Pharmacy Ansan Korea

os Shanghai Jiao Tong University School of Medicine Renji Hospital Shanghai China

ot Harbin Medical University College of Bioinformatics Science and Technology Harbin Heilongjiang China

ot Shanghai Medical School of Fudan University Department of Anatomy Histology and Embryology Shanghai China

ou Harbin Medical University Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin China

ou Shanghai University of Traditional Chinese Medicine Department of Biochemistry Shanghai China

ov Harbor UCLA Medical Center and Los Angeles Biomedical Research Institute Division of Medical Genetics Department of Pediatrics Torrance CA USA

ov Shanghai Veterinary Research Institute Shanghai China

ow Harvard Medical School and Broad Institute Boston MA USA

ow Shantou University Medical College Cancer Research Center Shantou Guangdong China

ox Harvard Medical School Boston MA USA

ox Shantou University Medical College Department of Biochemistry and Molecular Biology Shantou China

oy Harvard Medical School Brigham and Women's Hospital Department of Genetics Division of Genetics Boston MA USA

oy Shin Kong Wu Ho Su Memorial Hospital Department of Urology Taipei Taiwan

oz Harvard Medical School Dana Farber Cancer Institute Boston MA USA

oz Sichuan University Aging Research Group State Key Lab for Biotherapy West China Hospital Chengdu China

p Aix Marseille Université U2M Centre d'Immunologie de Marseille Luminy Marseille France

p Applied Genetic Technologies Corporation Alachua FL USA

p Centre de Recherche en Cancérologie de Marseille INSERM U1068 CNRS UMR 7258 Aix Marseille Université Institut Paoli Calmette Parc Scientifique et Technologique de Luminy Marseille France

p Goethe University of Frankfurt Institute of Biophysical Chemistry Frankfurt am Main Germany

p Malaysian Institute of Pharmaceuticals and Nutraceuticals Pulau Pinang Malaysia

p Nagasaki University Division of Dental Pharmacology Graduate School of Biomedical Sciences Nagasaki Japan

p Seoul National University College of Medicine Department of Physiology and Biomedical Sciences Seoul Korea

pa Harvard Medical School Dana Farber Cancer Institute and Beth Israel Deaconess Medical Center Department of Radiation Oncology Boston MA USA

pa Sichuan University Key Laboratory of Bio Resources and Eco Environment of Ministry of Education College of Life Science Chengdu Sichuan China

pb Harvard Medical School Department of Cell Biology Boston MA USA

pb Sichuan University State Key Laboratory of Biotherapy Collaborative Innovation Center of Biotherapy West China Hospital Chengdu China

pc Harvard Medical School Laboratory of Comparative Immunology Center for the Study of Inflammatory Bowel Disease Massachusetts General Hospital Research Institute Boston MA USA

pc Sichuan University State Key Laboratory of Biotherapy Collaborative Innovation Center of Biotherapy; West China Hospital Chengdu China

pd Harvard Medical School Neurology Residency Program Brigham and Women's Hospital and Massachusetts General Hospital Boston MA USA

pd Sichuan University West China Hospital State Key Labortary of Biotherapy Sichuan China

pe Harvard Medical School Ophthalmology Boston MA USA

pe Sidra Medical and Research Centre Doha Qatar

pf Harvard University Department of Statistics Cambridge MA USA

pf Simon Fraser University Department of Molecular Biology and Biochemistry Burnaby BC Canada

pg Harvard University School of Public Health Department of Genetics and Complex Diseases Boston MA USA

pg Singapore Eye Research Institute Singapore National Eye Center Singapore

ph Health Research Institute Germans Trias i Pujol Badalona Spain

ph Sir Runrun Shaw Hospital Medical School of Zhejiang University Department of Medical Oncology Hangzhou China

pi Hebrew University of Jerusalem Faculty of Agriculture Food and Environment Biochemistry and Food Science Rehovot Israel

pi Sixth Affiliated Hospital of Sun Yat Sen University Gastrointestinal Institute Department of Radiation Oncology Guangzhou Guangdong China

pj Heidelberg University Deutsches Krebsforschungszentrum Proteostasis in Neurodegenerative Disease CHS Research Group at CellNetworks Heidelberg Germany

pj Soochow University College of Pharmaceutical Sciences Jiangsu China

pk Heidelberg University Zentrum für Molekulare Biologie der Universität Heidelberg Heidelberg Germany

pk Soochow University Department of Neurology 2nd Affiliated Hospital of Soochow University and Institute of Neuroscience Suzhou China

pl Heinrich Heine University Institute of Clinical Chemistry and Laboratory Diagnostic Medical Faculty Duesseldorf Germany

pl Soochow University Department of Pathogenic Biology Suzhou Jiangsu China

pm Heinrich Heine University Institut für Physikalische Biologie Duesseldorf Germany

pm Soochow University School of Pharmaceutical Science Department of Pharmacology and Laboratory of Aging and Nervous Diseases Suzhou China

pn Heinrich Heine University Institute of Molecular Medicine Düsseldorf Germany

pn Soochow University School of Pharmaceutical Science Department of Pharmacology Laboratory of Aging and Nervous Diseases Su Zhou Jiangsu Province China

po Soochow University School of Pharmaceutical Science Department of Pharmacology Suzhou China

po Systems oriented Immunology and Inflammation Research Helmholtz Centre for Infection Research Braunschweig Germany

pp Helsinki University Central Hospital Medical Faculty Division of Child Psychiatry Helsinki Finland

pp Sorbonne Universités CNRS UPMC Univ Paris 06 UMR 7622 IBPS Paris France

pq Helsinki University Department of Medical Genetics Helsinki Finland

pq Sorbonne Universités UMR S1127 Paris France

pr Henan University of Technology College of Bioengineering Zhengzhou Henan Province China

pr Sorbonne Universités University Pierre and Marie Curie Paris 6 Brain and Spine Institute INSERM U1127 CNRS UMR722 Paris France

ps Hirosaki University Graduate School of Medicine Hirosaki Japan

ps Sorbonne Universités UPMC Univ Paris 06 INSERM U1135 CNRS ERL 8255 Center for Immunology and Microbial Infections CIMI Paris Paris France

pt Hokkaido University Graduate School of Medicine Department of Obstetrics and Gynecology Sapporo Hokkaido Japan

pt Sorbonne Universités UPMC Univ Paris 06 INSERM UMRS974 CNRS FRE 3617 Center for Research in Myology Paris France

pu Hokkaido University Faculty of Pharmaceutical Sciences Sapporo Japan

pu South China Normal University College of Biophotonics Guangdong China

pv Hokkaido University Research Faculty of Agriculture Sapporo Japan

pv Southern Medical University Department of Cardiology Nanfang Hospital Guangzhou China

pw Hong Kong Baptist University School of Chinese Medicine Kowloon Tong Hong Kong

pw Southern Medical University School of Pharmaceutical Sciences Guangzhou Guangdong China

px Hong Kong Polytechnic University Department of Health Technology and Informatics Faculty of Health and Social Sciences Kowloon Hong Kong

px Spanish Council for Scientific Research Institute for Advanced Chemistry of Catalonia Department of Biomedicinal Chemistry Barcelona Spain

py Spanish National Cancer Research Centre Cell Division and Cancer Group Madrid Spain

py The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong

pz Hôpital Beaujon Paris France

pz St Anna Kinderkrebsforschung Children's Cancer Research Institute Immunological Diagnostics Vienna Austria

q Ajou University College of Pharmacy Gyeonggido Korea

q Asahi University Department of Internal Medicine Gifu Japan

q Centre de Recherche en Cancérologie de Nantes Angers CNRS UMR6299 INSERM U892 Nantes France

q Goethe University School of Medicine Institute of Biochemistry 2 and Buchmann Institute for Molecular Life Sciences Frankfurt am Main Germany

q Mannheim University of Applied Sciences Institute of Molecular and Cell Biology Mannheim Germany

q Nagoya University School of Medicine Nagoya Japan

q Seoul National University College of Medicine Neuroscience Research Institute Department of Medicine Seoul Korea

qa Hôpital Européen Georges Pompidou AP HP Paris France

qa Howard Hughes Medical Institute St Jude Children's Research Hospital Cell and Molecular Biology Memphis TN USA

qb Hôpital Kirchberg Laboratoire de Biologie Moléculaire et Cellulaire du Cancer Luxembourg

qb St Jude Children's Research Hospital Department of Immunology Memphis TN USA

qc Hôpital Paul Brousse Hôpitaux Universitaires Paris Sud Biochimie et Oncogénétique Villejuif France

qc St Jude Children's Research Hospital Department of Pathology Memphis TN USA

qd Hospital for Sick Children Toronto ON Canada

qd St Jude Children's Research Hospital Department of Structural Biology Memphis TN USA

qe Hospital Universitario Ramón y Cajal CIBERNED Neurobiology Department Madrid Spain

qe St Jude Children's Research Hospital Memphis TN USA

qf Houston Methodist Research Institute Genomic Medicine Program Houston TX USA

qf St Louis University School of Medicine Department of Biochemistry and Molecular Biology St Louis MO USA

qg Howard Hughes Medical Institute Boston MA USA

qg St Marianna University School of Medicine Department of Ophthalmology Kawasaki Kanagawa Japan

qh Howard Hughes Medical Institute Dallas TX

qh St Marianna University School of Medicine Department of Physiology Kanagawa Japan

qi Huazhong Agricultural University College of Animal Sciences and Technology Wuhan Hubei China

qi St Paul's Hospital Centre for Heart Lung Innovation Vancouver BC Canada

qj Huazhong Agricultural University Department of Aquatic Animal Medicine College of Fisheries Wuhan China

qj Stanford University Department of Microbiology and Immunology Stanford CA USA

qk Huazhong University of Science and Technology Department of Biomedical Engineering College of Life Science and Technology Wuhan Hubei China

qk Stanford University Department of Radiation Oncology Stanford CA USA

ql Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases Clayton Melbourne Victoria Australia

ql Stanford University School of Medicine Department of Pathology Stanford CA USA

qm Hungkuang University Department of Physical Therapy Taichung Taiwan

qm Stanford University School of Medicine Departments of Radiation Oncology and Genetics Stanford CA USA

qn IATA CSIC Institute of Agrochemistry and Food Technology Paterna Spain

qn Stanford University School of Medicine Stanford CA USA

qo iBET Instituto de Biologia Experimental e Tecnológica Oeiras Portugal

qo State Key Laboratory of Kidney Diseases National Clinical Research Center for Kidney Diseases Department of Nephrology Chinese PLA General Hospital Chinese PLA Institute of Nephrology Beijing China

qp Icahn School of Medicine at Mount Sinai Department of Neuroscience New York NY USA

qp State University of New York College of Medicine Departments of Medicine Microbiology and Immunology Biochemistry and Molecular Biology Syracuse NY USA

qq Icahn School of Medicine at Mount Sinai Department of Pharmacology and Systems Therapeutics New York NY USA

qq State University of New York College of Nanoscale Science and Engineering Albany NY USA

qr Icahn School of Medicine at Mount Sinai Departments of Neurology and Psychiatry Center for Cognitive Health Mount Sinai Alzheimer's Disease Research Center New York NY USA

qr Stellenbosch University Department of Physiological Sciences Stellenbosch South Africa

qs Icahn School of Medicine at Mount Sinai Friedman Brain Institute New York NY USA

qs Stephen A Wynn Institute for Vision Research Iowa City IA USA

qt Icahn School of Medicine at Mount Sinai New York NY USA

qt Stockholm University Department of Neurochemistry Stockholm Sweden

qu ICM Institut de Recherche en Cancérologie de Montpellier Montpellier France

qu Stony Brook University Department of Molecular Genetics and Microbiology Stony Brook NY USA

qv ICREA Catalan Institution for Research and Advanced Studies Catalonia Spain

qv Stony Brook University Department of Pathology Stony Brook NY USA

qw IFOM The FIRC Institute of Molecular Oncology Milan Italy

qw Swedish University of Agricultural Sciences and Linnean Center for Plant Biology Department of Chemistry and Biotechnology Uppsala BioCenter Uppsala Sweden

qx IIT University School of Biotechnology Orissa India

qx Strathclyde Institute of Pharmacy and Biomedical Sciences Glasgow UK

qy IMIM Hospital del Mar CIBERES Pompeu Fabra University Barcelona Biomedical Research Park Respiratory Medicine Department Lung Cancer and Muscle Research Group Barcelona Spain

qy Sun Yat Sen University Department of Neurology and Stroke Center The 1st Affiliated Hospital Guangzhou China

qz Imperial College London MRC Centre for Molecular Bacteriology and Infection London UK

qz Sun Yat Sen University Department of Pharmacology and Toxicology School of Pharmaceutical Sciences Guangzhou China

r Ajou University School of Medicine Department of Microbiology Gyeonggi do Korea

r Asahi University School of Dentistry Department of Oral Microbiology Division of Oral Infections and Health Sciences Mizuho Gifu Japan

r Centre for Cellular and Molecular Biology Council of Scientific and Industrial Research Hyderabad India

r Goethe University Institue of Pharmacology and Toxicology Frankfurt am Main Germany

r Masaryk University Department of Biology Faculty of Medicine Brno Czech Republic

r Nagoya University Research Institute of Environmental Medicine Nagoya Aichi Japan

r Seoul National University Hospital Department of Internal Medicine Seoul Korea

ra Imperial College London National Heart and Lung Institute London UK

ra Sun Yat Sen University Key Laboratory of Gene Engineering of the Ministry of Education School of Life Science Guangzhou China

rb Imperial College London Neurogenetics Group Division of Brain Sciences London UK

rb Sun Yat Sen University School of Chemistry and Chemical Engineering Guangzhou China

rc Imperial College London Section of Microbiology MRC Centre for Molecular Bacteriology and Infection London UK

rc Sun Yat Sen University School of Life Sciences Guangzhou China

rd Incheon National University Division of Life Siences Incheon Korea

rd Sun Yat Sen University State Key Laboratory of Biocontrol School of Life Sciences Guangzhou China

re Indian Institute of Science Department of Microbiology and Cell Biology Bangalore India

re Sun Yat Sen University State Key Laboratory of Oncology in South China Cancer Center Guangzhou China

rf Indian Institute of Science Microbiology and Cell Biology Bangalore India

rf Yonsei University College of Medicine Severans Biomedical Science Institute and Department of Internal Medicine Seoul Korea

rg Indian Institute of Technology Guwahati Department of Biosciences and Bioengineering Guwahati Assam India

rg Sunnybrook Research Institute; and University of Toronto Department of Biochemistry Toronto Ontario Canada

rh Indian Institute of Technology Kharagpur Department of Biotechnology Kharagpur India

rh Swedish University of Agricultural Sciences and Linnean Center for Plant Biology Department of Plant Biology Uppsala BioCenter Uppsala Sweden

ri Indiana University School of Medicine Biochemistry and Molecular Biology Denver CO USA

ri Taichung Veterans General Hospital Department of Medical Research Taichung City Taiwan

rj Indiana University School of Medicine Department of Biochemistry and Molecular Biology Indianapolis IN USA

rj Taipei Medical University Department of Biochemistry College of Medicine Taipei City Taiwan

rk Indiana University School of Medicine Department of Dermatology Indianapolis IN USA

rk Taipei Medical University Department of Microbiology and Immunology Institute of Medical Sciences Taipei Taiwan

rl Indiana University School of Medicine Department of Microbiology and Immunology Indianapolis IN USA

rl Taipei Medical University Graduate Institute of Cancer Biology and Drug Discovery College of Medical Science and Technology Taipei Taiwan

rm Indiana University School of Medicine Department of Ophthalmology Indianapolis IN USA

rm Tamkang University Department of Chemistry Tamsui New Taipei City Taiwan

rn Indiana University School of Medicine Department of Pathology and Laboratory Medicine Indianapolis IN USA

rn Tampere University Hospital Department of Gastroenterology and Alimentary Tract Surgery Tampere Finland

ro Indiana University School of Medicine Richard L Roudebush VA Medical Center Division of Pulmonary Critical Care Sleep and Occupational Medicine Indianapolis IN USA

ro Technical University Munich Institute of Human Genetics Munich Bavaria Germany

rp Inje University Department of Rehabilitation Science College of Biomedical Science and Engineering u Healthcare and Anti aging Research Center Gimhae Korea

rp Technion Israel Institute of Technology The Rappaport Faculty of Medicine and Research Institute Department of Biochemistry Haifa Israel

rq INMI IRCCS L Spallanzani Rome Italy

rq Technion Israel Institute of Technology Unit of Anatomy and Cell Biology The Ruth and Bruce Rappaport Faculty of Medicine Haifa Israel

rr INRA UMR 1019 Nutrition Humaine Centre de Clermont Theix Saint Genès Champanelle France

rr Technische Universität Braunschweig Biozentrum Braunschweig Germany

rs INRA UMR866 Dynamique Musculaire et Métabolisme Montpellier France

rs Technische Universität München Department of Neurology Munich Germany

rt INRA UR1067 Nutrion Métabolisme Aquaculture St Pée sur Nivelle France

rt Technische Universität München 2 Medizinische Klinik Klinikum rechts der Isar Munich Germany

ru INSERM U1065 C3M Team 2 Nice France

ru Technische Universität München Plant Systems Biology Freising Germany

rv INSERM U1081 CNRS UMR7284 Institute of Research on Cancer and Ageing of Nice Nice France

rv Tel Aviv University Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine Tel Aviv Israel

rw Centre Scientifique de Monaco Biomedical Department Monaco Principality of Monaco

rw Tel Aviv University Department of Neurobiology Tel Aviv Israel

rx Tel Aviv University Oncogenetic Laboratory Meir Medical Center Kfar Saba and Sackler Faculty of Medicine Tel Aviv Israel

rx University of Nice Sophia Antipolis Institute of Research on Cancer and Ageing of Nice CNRS UMR 7284 INSERM U1081 Nice France

ry INSERM U1118 Mécanismes Centraux et Périphétiques de la Neurodégénérescence Strasbourg France

ry Tel Aviv University Sackler Faculty of Medicine Department of Cell and Developmental Biology Tel Aviv Israel

rz INSERM U1138 Paris France

rz Tel Aviv University Sackler Faculty of Medicine Tel Aviv Israel

s Akershus University Hospital Oslo Norway

s Asahikawa Medical University Division of Gastroenterology and Hematology Oncology Department of Medicine Hokkaido Japan

s Centre for Research in Agricultural Genomics Bellaterra Catalonia Spain

s Goethe University Institute for Experimental Cancer Research in Pediatrics Frankfurt Germany

s Massachusetts General Hospital and Harvard Medical School Center for Human Genetic Research and Department of Neurology Boston MA USA

s Nanchang University Institute of Life Science Nanchang China

s Seoul National University College of Pharmacy and Research Institute of Pharmaceutical Science Seoul Korea

sa INSERM U1147 Paris France

sa Telethon Institute of Genetics and Medicine Pozzuoli Naples Italy

Sapienza University of Rome Department of Clinical and Molecular Medicine Rome Italy

Sapporo Medical University School of Medicine Department of Pharmacology Sapporo Japan

sb INSERM U830 Stress and Cancer Laboratory Institut Curie Paris France

sb Temasek Life Sciences Laboratory Singapore

sc INSERM U862 Neurocentre Magendie Bordeaux France

sc Temple University Sbarro Institute for Cancer Research and Molecular Medicine Center for Biotechnology College of Science and Technology Philadelphia PA USA

sd INSERM U896 Montpellier France

sd Temple University School of Medicine Department of Biochemistry ; and Center for Translational Medicine Philadelphia PA USA

se INSERM U916 Université de Bordeaux Institut Européen de Chimie et Biologie Pessac France

se Texas A and M Health Science Center Center for Cancer and Stem Cell Biology Institute of Biosciences and Technology Houston TX USA

Seoul National University College of Medicine Department of Advanced Education for Clinician Scientists Seoul Korea

sf INSERM U955 Faculté de Médecine de Créteil UMR S955 Créteil France

sf Texas A and M Health Science Center Institute of Biosciences and Technology Houston TX USA

sg INSERM U964 CNRS UMR7104 Université de Strasbourg Department of Translational Medecine Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France

sg Texas A and M University Health Science Center Center for Translational Cancer Research Institute of Bioscience and Technology Houston TX USA

sh INSERM UMR1037 Centre de Recherches en Cancérologie de Toulouse Toulouse France

sh Texas A and M University Health Science Center Center for Translational Cancer Research Institute of Biosciences and Technology Houston TX USA

si INSERM UMRS 1166 Unité de Recherche sur les Maladies Cardiovasculaires du Métabolisme et de la Nutrition Paris France

si Texas A and M University Department of Biochemistry and Biophysics College Station TX USA

sj INSERM Cordeliers Research Cancer Paris France

sj Texas A and M University Department of Microbial Pathogenesis and Immunology Texas A and M Health Science Center Bryan TX USA

sk INSERM U1081 UMR CNRS 7284 Nice France

sk Texas A and M University Texas A and M Health Science Center College of Medicine Institute of Biosciences and Technology Houston TX USA

sl INSERM U1104 Marseille France

sl Texas A and M University The Norman Borlaug Center College Station TX USA

sm INSERM U1127 CNRS UMR 7225 Paris France

sm The Feinstein Institute for Medical Research Laboratory of Developmental Erythropoiesis Manhasset NY

sn INSERM U1138 Paris France

sn The Feinstein Institute for Medical Research North Shore LIJ Health System Litwin Zucker Research Center for the Study of Alzheimer's Disease New York NY USA

so INSERM U970 Paris France

so The 1st Affiliated Hospital of Anhui Medical University Department of Pulmonary Anhui Geriatric Institute Anhui China

sp Institut d'Investigacions Biomèdiques August Pi 1 Sunyer Hemato oncology Department Barcelona Spain

sp The 1st Affiliated Hospital of Harbin Medical University Department of General Surgery Harbin Heilongjiang Province China

sq Institut de Cancérologie de Lorraine Vandoeuvre Lès Nancy Cedex France

sq The 1st Affiliated Hospital of Harbin Medical University Key Laboratory of Hepatosplenic Surgery Department of General Surgery Harbin China

sr Institut du Cancer de Montpellier Montpellier France

sr The 4th Military Medical University Institute of Orthopaedics Xijing Hospital Xi'an Shanxi China

ss Istituto Zooprofilattico Sperimentale del Mezzogiorno Department of Chemistry Portici Italy

ss The 4th Military Medical University School of Basic Medical Sciences Department of Physiology Xi'an China

st Institut Pasteur CNRS URA2582 Cell Biology and Infection Department Membrane Traffic and Cell Division Lab Paris France

st The 4th Military Medical University Xi'an China

su Center for Infection and Immunity of Lille Institut Pasteur de Lille CNRS INSERM Lille Regional University Hospital Centre Lille University Lille France

su The Genome Analysis Centre Institute of Food Research Gut Health and Food Safety Programme Norwich UK

sv Institut Pasteur CNRS URA2578 Unité Macrophages et Développement de l'Immunité Département de Biologie du Développement et des Cellules Souches Paris France

sv The Helen F Graham Cancer Center Newark DE USA

sw Institut Pasteur Department of Immunology Paris France

sw The Hospital for Sick Children Department of Paediatrics Toronto Ontario Canada

sx Institut Pasteur INSERM Biology of Infection Unit Paris France

sx The Institute of Cancer Research Cancer Research UK Cancer Imaging Centre Division of Radiotherapy and Imaging Sutton Surrey UK

sy Institute for Clinical and Experimental Medicine Centre for Experimental Medicine Department of Metabolism and Diabetes Prague Czech Republic

sy The Norwegian Radium Hospital Faculty of Medicine Oslo Norway

sz Institute for Integrative Biology of the Cell Université Paris Saclay Gif sur Yvette France

sz The People's Hospital of Guangxi Zhuang Autonomous Region Department of Gastroenterology Nanning Guangxi China

t Akita University Graduate School of Medicine Akita Japan

t Asan Medical Center Asan Institute for Life Sciences Seoul Korea

t Goethe University Institute for Molecular Biosciences Molecular Developmental Biology Frankfurt Hesse Germany

t Massachusetts General Hospital and Harvard Medical School Cutaneous Biology Research Center Charlestown MA

t Nanjing Medical University Center for Kidney Disease 2nd Affiliated Hospital Jiangsu China

t Seoul National University Department of Biological Sciences Seoul Korea

t UMR 1324 INRA 6265 CNRS Université de Bourgogne Franche Comté Centre des Sciences du Goût et de l'Alimentation Dijon France

ta Institute for Research in Biomedicine The Barcelona Institute of Science and Technology Barcelona Spain

ta The People's Hospital of Hainan Province Medical Care Center Haikou Hainan China

tb Institute of Advanced Chemistry of Catalonia Spanish Research Council Department of Biomedicinal Chemistry Barcelona Spain

tb The Scripps Research Institute Department of Immunology and Microbial Science La Jolla CA USA

tc Institute of Biochemistry and Biophysics Kazan Russia

tc The Scripps Research Institute Department of Metabolism and Aging Jupiter FL USA

td Institute of Biomedical Investigation Aging Inflamation and Regenerative Medicine Coruña Spain

td The Scripps Research Institute Department of Neuroscience Jupiter FL USA

te Institute of Cancer Research Divisions of Molecular Pathology and Cancer Therapeutics London UK

te The 2nd Hospital Affiliated to Guangzhou Medical University Guangzhou Institute of Cardiovascular Disease Guangzhou Guangdong Province China

tf Institute of Environmental Medicine Division of Toxicology Karolinska Institute Stockholm Sweden

tf The 3rd Affiliated Hospital of Guangzhou Medical University Department of Clinical Laboratory Medicine Guangzhou Guangdong China

tg Institute of Life Sciences Bhubaneshwar Odisa India

tg The Walter and Eliza Hall Institute of Medical Research Development and Cancer Division Parkville VIC Australia

th Institute of Microbial Technology Cell Biology and Immunology Division Chandigarh India

th The Weizmann Institute of Science Department of Plant Sciences Rehovot Israel

ti Institute of Microbiology ASCR v v i Prague Czech Republic

ti The Wistar Institute Philadelphia PA USA

tj Institute of Molecular Biotechnology of the Austrian Academy of Sciences Vienna Austria

tj The Wistar Institute Program in Molecular and Cellular Oncogenesis Philadelphia PA USA

tk 3rd Military Medical University Department of Biochemistry and Molecular Biology Chongqing China

tk Institute of Molecular Genetics National Research Council Pavia Italy

tl 3rd Military Medical University Department of Neurosurgery Southwest Hospital Shapingba District Chongqing China

tl Institute of Molecular Pathology and Biology FMHS UO Hradec Kralove Czech Republic

tm 3rd Military Medical University Department of Occupational Health Chongqing China

tm Institute of Nuclear Chemistry and Technology Centre for Radiobiology and Biological Dosimetry Dorodna Poland

tn 3rd Military Medical University Research Center for Nutrition and Food Safety Institute of Military Preventive Medicine Chongqing China

tn Instituto de Biología Molecular y Celular de Rosario Rosario Argentina

to Instituto de Investigación Biomédica de Salamanca Hospital Universitario de Salamanca Salamanca Spain

to Thomas Jefferson University Hospitals Department of Radiation Oncology Philadelphia PA USA

tp Instituto de Investigaciones Biomédicas Alberto Sols CSIC UAM Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Madrid Spain

tp Thomas Jefferson University Department of Biochemistry and Molecular Biology Philadelphia PA USA

tq Instituto de Investigaciones Biomédicas Alberto Sols CSIC UAM Madrid Spain

tq Thomas Jefferson University Department of Pathology Anatomy and Cell Biology Philadelphia PA USA

tr Instituto de Investigaciones Biomedicas de Barcelona CSIC IDIBAPS and Centro de Investigacion en Red en enfermedades hepáticas y digestivas CIBEREHD ISCIII Barcelona Spain

tr Thomas Jefferson University Department of Pathology Anatomy and Cell Biology Sydney Kimmel Medical College Philadelphia PA USA

ts Instituto de Parasitología y Biomedicina López Neyra CSIC Granada Spain

ts Thomas Jefferson University Philadelphia PA USA

tt Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal

tt Thomas Jefferson University Sidney Kimmel Medical College Philadelphia PA USA

tu Instituto Gulbenkian de Ciência Oeiras Portugal

tu Tianjin Medical University Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin China

tv Instituto de Investigaciones Biomédicas de Barcelona IIBB CSIC Liver Unit Hospital Clinic de Barcelona IDIBAPS and CIBEREHD Barcelona Spain

tv Tianjin Medical University Department of Immunology Tianjin Key Laboratory of Medical Epigenetics Tianjin China

tw Instituto Leloir Buenos Aires Argentina

tw Tianjin Medical University School of Pharmaceutical Sciences Tianjin China

tx Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Departamento de Biotecnología Madrid Spain

tx Toho University School of Medicine Department of Biochemistry Tokyo Japan

ty Instituto Nacional de Neurología y Neurocirugía Neurochemistry Unit Mexico City Mexico

ty Tohoku University Department of Developmental Biology and Neurosciences Graduate School of Life Sciences Sendai Miyagi Japan

tz Instituto Nacional de Neurología y Neurocirugía Neuroimmunology and Neuro Oncology Unit Mexico City Mexico

tz Tohoku University Department of Neurology Sendai Japan

u Al Jalila Foundation Research Centre Dubai UAE

u Asia University Department of Biotechnology Taichung Taiwan

u Centre National de la Recherche Scientifique Institut de Biologie Moléculaire des Plantes Unité Propre de Recherche Strasbourg France

u Gonçalo Moniz Research Center Oswaldo Cruz Foundation FIOCRUZ BA Laboratory of Pathology and Biointervention Salvador BA Brazil

u Massachusetts General Hospital and Harvard Medical School Department of Molecular Biology ; Department of Genetics Boston MA USA

u Nanjing Medical University Department of Neurology Nanjing 1st Hospital Nanjing China

u Seoul National University College of Pharmacy Seoul Korea

ua Instituto Oswaldo Cruz FIOCRUZ Laboratório de Biologia Celular Rio de Janeiro Brazil

ua Tohoku University Division of Biomedical Engineering for Health and Welfare Sendai Japan

ub International Center for Genetic Engineering and Biotechnology Immunology Group New Delhi India

ub Tohoku University Graduate School of Agricultural Sciences Sendai Japan

uc Iowa State University Department of Biomedical Science Iowa Center for Advanced Neurotoxiclogy Ames IA USA

uc Tohoku University Graduate School of Life Sciences Sendai Miyagi Japan

ud Iowa State University Department of Genetics Development and Cell Biology Ames IA USA

ud Tohoku University Laboratory of Bioindustrial Genomics Graduate School of Agricultural Science Miyagi Japan

ue Iowa State University Roy J Carver Department of Biochemistry Biophysics and Molecular Biology Ames IA USA

ue Tohoku University School of Medicine Department of Orthopaedic Surgery Miyagi Japan

uf IRCCS Casa Sollievo della Sofferenza Medical Genetics Unit San Giovanni Rotondo Italy

uf Tokai University School of Medicine Department of Molecular Life Sciences Kanagawa Japan

ug IRCCS Neuromed Pozzilli IS Italy

ug Tokushima Bunri University Faculty of Pharmaceutical Sciences at Kagawa Campus Sanuki City Kagawa Japan

uh IRCCS San Raffaele Pisana Laboratory of Skeletal Muscle Development and Metabolism Rome Italy

uh Tokushima University Division of Molecular Genetics Institute for Enzyme Research Tokushima Japan

ui IRCCS Santa Lucia Foundation Rome Italy

ui Tokyo Denki University Division of Life Science and Engineering Hatoyama Hiki gun Saitama Japan

uj IRCCS Santa Lucia Foundation Department of Experimental Neurosciences Rome Italy

uj Tokyo Institute of Technology Frontier Research Center Yokohama Japan

uk IRCCS Santa Lucia Foundation Rome Italy

uk Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology Tokyo Japan

ul IRCCS C Mondino National Neurological Institute Experimental Neurobiology Lab Pavia Italy

ul Tokyo Medical and Dental University Center for Brain Integration Research Bunkyo Tokyo Japan

um IRCCS Istituto Dermopatico dell'Immacolata Rome Italy

um Tokyo Medical and Dental University Department of Gastroenterology and Hepatology Tokyo Japan

un IRCCS Istituto di Ricerche Farmacologiche Mario Negri Department of Molecular Biochemistry and Pharmacology Milan Italy

un Tokyo Medical and Dental University Medical Research Institute Pathological Cell Biology Tokyo Japan

uo IRCCS Istituto di Ricerche Farmacologiche Mario Negri Department of Neuroscience Milan Italy

uo Tokyo Medical University Department of Biochemistry Tokyo Japan

up IRCCS MultiMedica Milan Italy

up Tokyo Metropolitan Institute of Medical Science Laboratory of Protein Metabolism Tokyo Japan

uq IRCE Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain

uq Tokyo University of Science Department of Applied Biological Science and Imaging Frontier Center Noda Chiba Japan

ur IRCM INSERM U896 Institut de Recherche en Cancérologie de Montpellier Montpellier France

ur Tokyo Women's Medical University Department of Endocrinology and Hypertension Tokyo Japan

us IRCM Institut de Recherche en Cancérologie de Montpellier Montpellier France

us Tongji University School of Medicine Department of Gastroenterology Shanghai Tenth People's Hospital Shanghai China

ut IRO Institute for Research in Ophthalmology Sion Switzerland

ut Tongji University School of Life Science and Technology Shanghai China

uu Istituto di Fisiologia Clinica Siena Italy

uu Toronto General Research Institute University Health Network Division of Advanced Diagnostics Toronto Ontario Canada

uv Istituto Giannina Gaslini UOC Medical Genetics Genova Italy

uv Tottori University Research Center for Bioscience and Technology Yonago Japan

uw Istituto Italiano di Tecnologia Department of Drug Discovery and Development Laboratory of Molecular Medicine Genoa Italy

uw Translational Health Science and Technology Institute Vaccine and Infectious Disease Research Centre Faridabad India

ux Cancer Pharmacology Lab AIRC Start Up Unit University of Pisa Pisa Italy

ux Trev and Joyce Deeley Research Centre; and University of Victoria BC Cancer Agency; and Department of Biochemistry and Microbiology Victoria BC Canada

uy Istituto Ortopedico Rizzoli IOR IRCCS Laboratory of Musculoskeletal Cell Biology Bologna Italy

uy Trinity College Dublin Department of Genetics The Smurfit Institute Dublin Ireland

uz Istituto Superiore di Sanità Department of Cell Biology and Neurosciences Rome Italy

uz Trinity College Dublin School of Biochemistry and Immunology Trinity Biomedical Sciences Institute Dublin Ireland

v Albany Medical College Center for Neuropharmacology and Neuroscience Albany NY USA

v Atlanta Department of Veterans Affairs Medical Center Decatur GA

v Centre National de la Recherche Scientifique Sorbonne Universités UPMC Univ Paris 06 UMR 8226 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes Institut de Biologie Physico Chimique Paris France

v Graduate School of Cancer Science and Policy Department of System Cancer Science Goyang Korea

v Massachusetts General Hospital and Harvard Medical School Experimental Therapeutics and Molecular Imaging Laboratory Neuroscience Center Charlestown MA USA

v Nanjing University School of Medicine Jinling Hospital Department of Neurology Nanjing China

v Seoul National University Department of Plant Science Seoul Korea

va Istituto Superiore di Sanità Department of Haematology Oncology and Molecular Medicine Rome Italy

va Trinity College Dublin Smurfit Institute of Genetics Dublin Ireland

vb Istituto Superiore di Sanità Department of Infectious Parasitic and Immunomediated Diseases Rome Italy

vb Tsinghua University School of Life Sciences Beijing China

vc Istituto Superiore di Sanità Department of Therapeutic Research and Medicine Evaluation Section of Cell Aging Degeneration and Gender Medicine Rome Italy

vc Tsinghua University State Key Laboratory of Biomembrane and Membrane Biotechnology Tsinghua University Peking University Joint Center for Life Sciences School of Life Science Beijing China

vd Istituto Superiore di Sanità Rome Italy

vd Tsinghua University Zhou Pei Yuan Center for Applied Mathematics Beijing China

ve Istituto Toscano Tumori Siena Italy

ve Tufts University USDA Human Nutrition Research Center on Aging Boston MA USA

vf Italian National Institute of Health Department of Technology and Health Rome Italy

vf Tulane University Health Sciences Center Department of Pathology and Laboratory Medicine New Orleans LA USA

vg IUF Leibniz Research Institute for Environmental Medicine Duesseldorf Germany

vg U S Food and Drug Administration Center for Biologics Evaluation and Research Silver Spring MD USA

vh J Stefan Institute Department of Biochemistry and Molecular and Structural Biology Ljubljana Slovenia

vh U S Food and Drug Administration Center for Drug Evaluation and Research Silver Spring MD USA

vi Jadavpur University Life Science and Biotechnology Kolkata West Bengal India

vi UAE University Cell Signaling Laboratory Department of Biochemistry College of Medicine and Health Sciences Al Ain Abu Dhabi UAE

vj James J Peters VA Medical Center Bronx NY USA

vj UCL Cancer Institute London UK

vk Jawaharlal Nehru University School of Life Sciences New Delhi India

vk UCL Cancer Institute Samantha Dickson Brain Cancer Unit London UK

vl Jesse Brown VA Medical Center Department of Medicine Chicago IL USA

vl UCL Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust London UK

vm Jewish General Hospital Bloomfield Centre for Research in Aging Lady Davis Institute for Medical Research Montreal Quebec Canada

vm UCL Institute of Neurology Department of Molecular Neuroscience London UK

vn Jewish General Hospital Department of Neurology and Neurosurgery Department of Medicine Montreal Quebec Canada

vn UCL Institute of Neurology London UK

vo Jewish General Hospital Department of Oncology Montreal Quebec Canada

vo UCL Institute of Ophthalmology London UK

vp Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China

vp UCLA David Geffen School of Medicine Brain Research Institute Los Angeles CA USA

vq Jiangsu University Department of Immunology Zhenjiang Jiangsu China

vq UFRJ Instituto de Biofisica Carlos Chagas Filho Rio de Janeiro Brazil

vr Jiangsu University School of Pharmacy Zhenjiang Jiangsu China

vr Ulm University Institute of Pharmacology of Natural Compounds and Clinical Pharmacology Ulm Germany

vs Jikei University School of Medicine Divison of Respiratory Disease Department of Internal Medicine Tokyo Japan

vs Umeå University Department of Medical Biochemistry and Biophysics Umeå Sweden

vt Jikei University School of Medicine Research Center for Medical Sciences Division of Gene Therapy Tokyo Japan

vt UMR 1280 Nantes France

vu Jilin Medical University Medical Research Laboratory Jilin City Jilin Province China

vu UMR CNRS 5286 INSERM 1052 Cancer Research Center of Lyon Lyon France

vv Jinan University Anti stress and Health Center College of Pharmacy Guangzhou China

vv UMRS 1138 Centre de Recherche des Cordeliers Paris France

vw Jinan University Department of Immunobiology College of Life Science and Technology Guangzhou China

vw Uniformed Services University of the Health Sciences Department of Anesthesiology Bethesda MD USA

vx Jinan University Medical College Division of Histology and Embryology Guangzhou Guangdong China

vx Uniformed Services University of the Health Sciences Radiation Combined Injury Program Armed Forces Radiobiology Research Institute Bethesda MD USA

vy Jining Medical University Shandong Provincial Sino US Cooperation Research Center for Translational Medicine Shandong China

vy University of Texas MD Anderson Cancer Center Department of Experimental Therapeutics Houston TX USA

vz Jinshan Hospital of Fudan University Department of Urology Shanghai China

vz Universidad Austral de Chile Department of Physiology Valdivia Chile

w Albert Einstein Cancer Center New York NY USA

w Austral University CONICET Gene and Cell Therapy Laboratory Pilar Buenos Aires Argentina

w Centro Andaluz de Biología Molecular y Medicina Regenerativa Consejo Superior de Investigaciones Científicas Sevilla Spain

w Graduate School of Hallym University Chuncheon Kangwon do Korea

w Massachusetts General Hospital Division of Infectious Disease Boston MA USA

w Nanjing University Jiangsu Key Laboratory of Molecular Medicine Medical School and the State Key Laboratory of Pharmaceutical Biotechnology Nanjing Jiangsu Province China

w Seoul National University Protein Metabolism Medical Research Center and Department of Biomedical Sciences College of Medicine Seoul Korea

wa Johannes Gutenberg University Mainz University Medical Center Department of Medical Microbiology and Hygiene Mainz Germany

wa Universidad Autónoma de Madrid Centro de Biología Molecular Severo Ochoa CIBERER Madrid Spain

wb John Wayne Cancer Institute Department of Neurosciences Santa Monica CA USA

wb Universidad Autónoma de Madrid Centro Nacional de Biotecnología Centro de Biología Molecular Severo Ochoa Departamento de Biología Molecular Madrid Spain

wc Johns Hopkins University Bloomberg School of Public Health Malaria Research Institute Department of Molecular Microbiology and Immunology Baltimore MD USA

wc Universidad Autonoma de Madrid Departamento de Biologia Molecular Madrid Spain

wd Johns Hopkins University School of Medicine Baltimore MD USA

wd Universidad Autónoma de Madrid Departamento de Biología Madrid Spain

we Johns Hopkins University School of Medicine Department of Physiology and Center for Metabolism and Obesity Research Baltimore MD USA

we Universidad Complutense School of Pharmacy Madrid Spain; and CIBER de Diabetes y Enfermedades Metab olicas Asociadas Instituto de Salud Carlos 3 Madrid Spain

wf Johns Hopkins University School of Medicine Departments of Neurology Neuroscience and Pharmacology and Molecular Sciences ; Neuroregeneration Program Institute for Cell Engineering Baltimore MD USA

wf Universidad de Buenos Aires Inmunología Facultad de Farmacia y Bioquímica Buenos Aires Argentina

wg Johns Hopkins University School of Medicine Institute for Cell Engineering and McKusick Nathans Institute of Genetic Medicine Baltimore MD USA

wg Universidad de Castilla La Mancha Albacete Spain

wh Johns Hopkins University School of Medicine Neuroregeneration and Stem Cell Programs Institute for Cell Engineering Department of Neurology Department of Physiology Baltimore MD USA

wh Universidad de Castilla La Mancha Facultad de Medicina Departamento Ciencias Medicas Albacete Spain

wi Johns Hopkins University School of Medicine Wilmer Eye Institute Baltimore MD USA

wi Universidad de Castilla La Mancha Laboratorio de Oncología Molecular Centro Regional de Investigaciones Biomédicas Albacete Spain

wj Johns Hopkins Bloomberg School of Public Health Department of Biochemistry and Molecular Biology and Johns Hopkins Malaria Research Institute Baltimore MD USA

wj Universidad de Chile Advanced Center for Chronic Diseases Facultad de Ciencias Químicas y Farmacéuticas Santiago Chile

wk Johns Hopkins School of Medicine Wilmer Eye Institute Baltimore MD USA

wk Universidad de Chile Advanced Center for Chronic Diseases Santiago Chile

wl Juntendo University Department of Research for Parkinson's Disease Tokyo Japan

wl Universidad de Chile Facultad de Ciencias Químicas y Farmacéuticas Santos Dumont Santiago de Chile

wm Juntendo University Graduate School of Medicine Department of Cell Biology and Neuroscience Tokyo Japan

wm Universidad de Chile Facultad de Ciencias Departamento de Biología Centro de Regulación del Genoma Santiago Chile

wn Juntendo University Graduate School of Medicine Department of Metabolism and Endocrinology Tokyo Japan

wn Universidad de Chile Instituto de Nutrición y Tecnología de los Alimentos Santiago Chile

wo Juntendo University Graduate School of Medicine Department of Neuroscience for Neurodegenerative Disorders Tokyo Japan

wo Universidad de Córdoba Campus de Excelencia Agroalimentario Departamento de Genética Córdoba Spain

wp Juntendo University Graduate School of Medicine Laboratory of Proteomics and Biomolecular Science Tokyo Japan

wp Universidad de Costa Rica CIET San José Costa Rica

wq Juntendo University School of Medicine Department of Cell Biology and Neuroscience Tokyo Japan

wq Universidad de Extremadura Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Departamento de Bioquímica y Biología Molecular y Genética Facultad de Enfermería y Terapia Ocupacional Cáceres Spain

wr Juntendo University School of Medicine Department of Gastroenterology Tokyo Japan

wr Universidad de León Área de Biología Celular Instituto de Biomedicina León Spain

ws Juntendo University Tokyo Japan

ws Universidad de Navarra Centro de Investigacion Medica Aplicada Pamplona Spain

wt Kagoshima University Graduate School of Medical and Dental Sciences Division of Human Pathology Department of Oncology Course of Advanced Therapeutics Kagoshima Japan

wt Universidad de Oviedo Departamento de Biología Funcional Oviedo Spain

wu Kagoshima University The Near Future Locomoter Organ Medicine Creation Course Graduate School of Medical and Dental Sciences Kagoshima Japan

wu Universidad de Oviedo Instituto Universitario de Oncología Departamento de Bioquímica y Biología Molecular Oviedo Spain

wv KAIST Department of Biological Sciences Daejon Korea

wv Universidad de Salamanca Campus Miguel de Unamuno Departamento de Microbiología y Genética Salamanca Spain

ww Kanazawa Medical University Department of Medicine Ishikawa Japan

ww Universidad de Salamanca Campus Unamuno Instituto de Biologia Molecular y Celular del Cancer Centro de Investigacion del Cancer Salamanca Spain

wx Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío Consejo Superior de Investigaciones Científicas Universidad de Sevilla Sevilla Spain

wx Kanazawa Medical University Diabetology and Endocrinology Ishikawa Japan

wy Kanazawa University Graduate School of Medical Sciences Department of Human Pathology Kanazawa Japan

wy Universidad de Sevilla Instituto de Biomedicina de Sevilla Sevilla Spain

wz Kanazawa University Cell bionomics Unit and Laboratory of Molecular and Cellular Biology Department of Biology Faculty of Natural Systems Institute of Science and Engineering Ishikawa Japan

wz Universidad de Sevilla Instituto de Bioquímica Vegetal y Fotosíntesis CSIC Sevilla Spain

x Albert Einstein College of Medicine Bronx NY USA

x Autonomous University of Barcelona Department of Biochemistry and Molecular Biology Barcelona Spain

x Centro de Biologia Molecular Severo Ochoa Madrid Spain

x Griffith University Menzies Health Institute Queensland Australia

x Massachusetts Institute of Technology Koch Institute for Integrative Cancer Research Cambridge MA USA

x Nanjing University School of Life Sciences State Key Laboratory of Pharmaceutical Biotechnology Nanjing Jiangsu China

x Seoul St Mary's Hospital Department of Internal Medicine Seoul Korea

xa Kansas State University Division of Biology Manhattan KS USA

xa Universidad de Valparaíso Instituto de Biología Facultad de Ciencias Valparaíso Chile

xb IIS Aragon Universidad de Zaragoza Araid Centro de Investigación Biomédica de Aragón Zaragoza Spain

xb Kaohsiung Medical University Hospital Department of Pathology Kaohsiung City Taiwan

xc Kaohsiung Medical University Graduate Institute of Medicine Kaohsiung Taiwan

xc Universidad Federal do Rio Grande do Sul Department of Biophysics and Center of Biotechnology Porto Alegre Brazil

xd Kaohsiung Medical University Faculty of Medicine Department of Pathology Kaohsiung City Taiwan

xd Universidad Nacional de Cuyo Facultad de Ciencias Medicas Mendoza Argentina

xe Kaohsiung Veterans General Hospital Department of Medical Education and Research Kaohsiung Taiwan

xe Universidad Pablo de Olavide Centro Andaluz de Biología del Desarrollo Consejo Superior de Investigaciones Científicas Junta de Andalucía Sevilla Spain

xf Karlsruhe Institute of Technology Institute of Toxicology and Genetics Karlsruhe Germany

xf Universidade de Brasília Departamento de Biologia Celular Brasília DF Brazil

xg Karolinska Institute Cancer Center Karolinska Department of Oncology Pathology Stockholm Sweden

xg Universidade de Lisboa Research Institute for Medicines Faculty of Pharmacy Lisboa Portugal

xh Karolinska Institute Center for Alzheimer Research Department of Neurobiology Care Sciences and Society Division for Neurogeriatrics Huddinge Sweden

xh Universidade de Santiago de Compostela Departamento Farmacoloxía Facultade de Veterinaria Lugo Spain

xi Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo São Paulo Brazil

xi Karolinska Institute Department of Microbiology Tumor and Cell Biology Stockholm Sweden

xj Karolinska Institute Department of Physiology and Pharmacology Stockholm Sweden

xj Universidade de São Paulo Departamento de Parasitología Instituto de Ciências Biomédicas São Paulo Brazil

xk Karolinska Institute Institute of Environmental Medicine Stockholm Sweden

xk Universidade de São Paulo Instituto do Cancer do Estado de São Paulo Faculdade de Medicina São Paulo SP Brazil

xl Kawasaki Medical School Department of General Internal Medicine 4 Okayama Japan

xl Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Biociencias e Biotecnologia Lab Biologia Celular e Tecidual Setor de Toxicologia Celular Campos dos Goytacazes Rio de Janeiro Brazil

xm Kawasaki Medical School Department of Hepatology and Pancreatology Kurashiki Okayama Japan

xm Universidade Federal de Minas Gerais UFMG Departamento de Morfologia Instituto de Ciências Biológicas Belo Horizonte Minas Gerais Brazil

xn Keimyung University Daegu Korea

xn Universidade Federal de São Paulo Departamento de Farmacologia Escola Paulista de Medicina São Paulo SP Brazil

xo Keimyung University School of Medicine Division of Gastroenterology and Hepatology Department of Internal Medicine Daegu Korea

xo Universidade Nova de Lisboa CEDOC NOVA Medical School Lisboa Portugal

xp Keio University Graduate School of Pharmaceutical Sciences Department of Biochemistry Tokyo Japan

xp Universidal de Salamanca Campus Miguel de Unamuno Departamento de Microbiologia y Genetica Salamanca Spain

xq Keio University School of Medicine Medical Education Center Tokyo Japan

xq Universita' degli Studi di Milano Dipartimento di Scienze Farmacologiche e Biomolecolari Milan Italy

xr KERBASQUE Basque Foundation for Sciences Bilbao Spain

xr Universita' degli Studi di Modena e Reggio Emilia Dipartimento di Scienze Biomediche Metaboliche e Neuroscienze Modena Italy

xs King Saud University College of Science Department of Zoology Riyadh Saudi Arabia

xs Università del Piemonte Orientale A Avogadro Dipartimento di Scienze della Salute Novara Italy

xt King's College London Cardiovascular Division London UK

xt Università del Piemonte Orientale Novara Italy

xu King's College London Department of Basic and Clinical Neuroscience IoPPN London UK

xu Università di Salerno Dipartimento di Medicina e Chirurgia Baronissi Salerno Italy

xv King's College Randall Division of Cell and Molecular Biophysics Muscle Signalling Section London UK

xv Università Politecnica delle Marche Department of Clinical and Molecular Sciences Ancona Italy

xw Kobe University Graduate School of Health Sciences Laboratory of Pathology Division of Medical Biophysics Hyogo Japan

xw Università Vita Salute San Raffaele Milan Italy

xx Kobe University Graduate School of Medicine Department of Orthopaedic Surgery Hyogo Japan

xx Universitat Autònoma de Barcelona Department of Cell Biology Physiology and Immunology Institut de Neurociències Barcelona Spain

xy Komarov Botanical Institute RAS Plant Ecological Physiology Laboratory Saint Petersburg Russian Federation

xy Universitat Autònoma de Barcelona Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular Bellaterra Spain

xz Konkuk University Department of Animal Biotechnology Seoul Korea

xz Universitat de Barcelona Departament de Bioquímica i Biologia Molecular Facultat de Biologia Barcelona Spain

y Albert Einstein College of Medicine Department of Developmental and Molecular Biology Bronx NY USA

y Babraham Institute Cambridge UK

y Centro de Biologia Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid Department of Cell Biology and Immunology Madrid Spain

y Guangzhou Medical University Department of Human Anatomy School of Basic Science Guangzhou Guangdong China

y Max Planck Institute for Biology of Ageing Cologne Germany

y Nankai University College of Life Sciences Tianjin China

y Shandong Agricultural University State Key Laboratory of Crop Science Tai'an China

ya Konkuk University Department of Veterinary Medicine Seoul Korea

ya Universitat de Barcelona L'Hospitalet de Llobregat Departament de Ciències Fisiol∫giques 2 Campus de Bellvitge Institut d'Investigació Biomèdica de Bellvitge Barcelona Spain

yb Konkuk University School of Medicine Department of Ophthalmology Seoul Korea

yb Universitat Politècnica de València COMAV Institute Valencia Spain

yc Konkuk University School of Medicine Department of Anatomy Seoul Korea

yc Universitätsklinikum Düsseldorf Institute for Biochemistry and Molecular Biology 1 Düsseldorf Germany

yd Korea Cancer Center Hospital Department of Internal Medicine Seoul Korea

yd Université Bordeaux Ségalen Institut de Biochimie et de Génétique Cellulaires CNRS UMR 5095 Bordeaux France

ye Korea University Department of Biotechnology BK21 PLUS Graduate School of Life Sciences and Biotechnology Seoul Korea

ye Université Bordeaux Segalen Institut de Biochimie et Génétique Cellulaires CNRS UMR 5095 Bordeaux France

yf Korea University Department of Life Science and Biotechnology Seoul Korea

yf Université Bordeaux Segalen U1035 INSERM Hématopoïèse Leucémique et Cibles Thérapeutiques Bordeaux France

yg Korea University Department of Biotechnology College of Life Sciences and Biotechnology Seoul Korea

yg Université Bordeaux CNRS Institut de Biochimie et Génétique Cellulaires UMR 5095 Bordeaux France

yh Korea University Division of Life Sciences Seoul Korea

yh Université Bourgogne Franche Comté Agrosup Dijon UMR PAM Équipe Vin Aliment Microbiologie Stress Dijon France

yi KU Leuven and VIB Vesalius Research Center Laboratory of Neurobiology Leuven Belgium

yi Université Catholique de Louvain Brussels Belgium

yj KU Leuven Clinical Division and Laboratory of Intensive Care Medicine Department Cellular and Molecular Medicine Leuven Belgium

yj Université Catholique de Louvain Institut des Sciences de la Vie Louvain la Neuve Belgium

yk KU Leuven Department of Abdominal Transplant Surgery Leuven Belgium

yk Université Catholique de Louvain Institute of Neuroscience Louvain la Neuve Belgium

yl KU Leuven Department of Cellular and Molecular Medicine Leuven Belgium

yl Université Catholique de Louvain Laboratory of Cell Physiology Brussels Belgium

ym KU Leuven Department of Imaging and Pathology Leuven Belgium

ym Université Clermont 1 UFR Médecine UMR1019 Nutrition Humaine Clermont Ferrand France

yn KU Leuven Laboratory for Cell Death Research and Therapy Department of Cellular and Molecular Medicine Campus Gasthuisberg Leuven Belgium

yn Université d'Auvergne M2iSH Microbes Intestine Inflammation Susceptibility of the Host UMR 1071 INSERM Centre Biomédical de Recherche et Valorisation Faculté de Médecine Clermont Ferrand France

yo KU Leuven Laboratory of Molecular and Cellular Signaling Department of Cellular and Molecular Medicine Leuven Belgium

yo Université de Bordeaux INSERM U916 Institut Bergonié Bordeaux cedex France

yp Kumamoto University Institute of Resource Development and Analysis Kumamoto Japan

yp Université de Bordeaux Institut des Maladies Neurodégénératives CNRS UMR 5293 Bordeaux France

yq Kunming University of Science and Technology Medical School Kunmimg Yunnan China

yq Université de Bordeaux UMR 5095 CNRS Institut de Biochimie et génétique Cellulaires Bordeaux France

yr Kyoto Prefectural University of Medicine Department of Basic Geriatrics Kyoto Japan

yr Université de Franche Comté UFR Sciences et Techniques EA3922 SFR IBCT FED 4234 Estrogènes Expression Génique et Pathologies du Système Nerveux Central Besançon France

ys Kyoto Prefectural University of Medicine Department of Cardiovascular Medicine Graduate School of Medical Science Kyoto Japan

ys Université de Franche Comté UFR Sciences et Techniques Laboratoire de Biochimie Besançon France

yt Kyoto Prefectural University of Medicine Department of Basic Geriatrics Kyoto Japan

yt Université de Limoges EA 3842 LHCP Faculté de Médecine Limoges France

yu Kyoto Sangyo University Department of Life Sciences Kyoto Japan

yu Université de Lyon Lyon France; and Centre de Génétique et de Physiologie Moléculaire et Cellulaire Université Lyon 1 Villeurbanne France

yv Kyoto Sangyo University Department of Molecular Biosciences Faculty of Life Sciences Kyoto Japan

yv Université de Lyon Faculty of Medicine Saint Etienne France

yw Kyoto University Department of Botany Kyoto Japan

yw Université de Lyon INSERM U 1111 Centre International de Recherche en Infectiologie Ecole Normale Supérieure de Lyon CNRS UMR 5308 Lyon France

yx Kyoto University Department of Cardiovascular Medicine Kyoto Japan

yx Université de Lyon UMR 5239 CNRS Laboratory of Molecular Biology of the Cell Ecole Normale Supérieure de Lyon Lyon France

yy Kyoto University Graduate School of Medicine Medical Innocation Center Kyoto Japan

yy Université de Montpellier DIMNP UMR 5235 CNRS Montpellier France

yz Kyung Hee University Graduate School of East West Medical Science Seoul Korea

yz Université de Montpellier Institut régional du Cancer de Montpellier INSERM U 1194 Montpellier France

z Albert Einstein College of Medicine Department of Developmental and Molecular Biology Institute for Aging Studies Bronx NY USA

z Babraham Institute Signalling Program Cambridge UK

z Centro de Biologia Molecular Severo Ochoa Department of Virology and Microbiology Madrid Spain

z Gunma University Graduate School of Medicine Department of Otolaryngology Head and Neck Surgery Gunma Japan

z Max Planck Institute of Biochemistry Group Maintenance of Genome Stability Martinsried Germany

z Nanyang Technological University School of Biological Sciences Singapore

z Shandong University Department of Toxicology Jinan Shandong China

za Kyungpook National University Department of Physiology School of Medicine Jung gu Daegu Korea

za Université de Montpellier Montpellier France

zb Kyushu University Department of Surgery and Science Fukuoka Japan

zb Université de Montréal Department of Medicine Montréal Quebec Canada

zc Olivia Newton John Cancer Research Institute Melbourne Victoria Australia

zc Université de Montréal Department of Pharmacology Faculty of Medicine Montreal QC Canada

zd La Trobe University Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne Victoria Australia

zd Université de Montréal Faculty of Pharmacy Montréal Québec Canada

ze La Trobe University Department of Chemistry and Physics Melbourne Victoria Australia

ze Université de Montréal Institute for Research in Immunology and Cancer Montréal Québec Canada

zf La Trobe University School of Cancer Medicine Melbourne Victoria Australia

zf Université de Nantes CRCNA UMRINSERM 892 CNRS 6299 Nantes France

zg Laboratory for Biomedical Neurosciences NSI EOC Neurodegeneration Group Torricella Taverne Switzerland

zg Université de Rennes 1 Oncogenesis stress Signaling ERL 440 INSERM Centre de Lutte Contre le Cancer Eugene Marquis Rennes France

zh Laboratory for Proteolytic Neuroscience RIKEN Brain Science Institute Wako Saitama Japan

zh Université de Sherbrooke Department of Anatomy and Cell Biology Faculty of Medicine and Health Sciences Sherbrooke QC Canada

zi Laboratory of Cellular Aging and Neurodegeneration Ilsong Institute of Life Science Anyang Gyeonggi do Korea

zi Université de Strasbourg Faculté de Médecine UMRS 1118 Strasbourg France

zj Lancaster University Faculty of Health and Medicine Division of Biomedical and Life Sciences Lancaster UK

zj Université de Strasbourg CNRS UPR3572 Immunopathologie et Chimie Thérapeutique IBMC Strasbourg France

zk Latvian Biomedical Research and Study Centre Riga Latvia

zk Université du Québec à Montréal Département des Sciences Biologiques and Centre de Recherche BioMed Montréal Québec Canada

zl Leiden University Institute of Biology Leiden The Netherlands

zl Université Grenoble Alpes CEA DSV iRTSV BGE GenandChem INSERM U1038 Grenoble France

zm Leidos Biomedical Research Inc Frederick National Laboratory for Cancer Research Nanotechnology Characterization Lab Cancer Research Technology Program Frederick MD USA

zm Université Laval Neurosciences Axis Québec Canada

zn Medical University of Silesia ENT Department School of Medicine Katowice Poland

zn Universite Libre de Bruxelles ULB Center for Diabetes Research Brussels Belgium

zo Linköping University Department of Clinical and Experimental Medicine Linköping Sweden

zo Université Lyon Ecole Normale Supérieure de Lyon Lyon France

zp Linköping University Department of Medical and Health Sciences Linköping Sweden

zp Université Montpellier 2 Institut des Sciences de l'Evolution UMR CNRS 5554 Montpellier Languedoc Roussillon France

zq Linköping University Experimental Pathology Department of Clinical and Experimental Medicine Faculty of Health Sciences Linköping Sweden

zq Université Nice Sophia Antipolis UMR E 4320TIRO MATOs CEA iBEB Faculté de Médecine Nice France

zr Liverpool School of Tropical Medicine Department of Parasitology Liverpool Merseyside UK

zr Université Paris Descartes Apoptosis Cancer and Immunity Laboratory Team 11 Equipe Labellisée Ligue contre le Cancer and Cell Biology and Metabolomics Platforms Paris France

zs Lombardi Comprehensive Cancer Center Georgetown University Medical Center Department of Oncology Washington DC USA

zs Université Paris Descartes Institut Cochin Faculté de Médecine Sorbonne Paris Cité Paris France

zt Lomonosov Moscow State University Faculty of Basic Medicine Moscow Russia

zt Université Paris Descartes Institut Necker Enfants Malades INSERM U1151 Paris France

zu London Research Institute Cancer Research UK London UK

zu Université Paris Descartes Paris France

zv Université Paris Descartes Paris 5 Paris France

zv University College London Cancer Institute London UK

zw Lorraine University CITHéFOR EA3452 Faculté de Pharmacie Nancy France

zw Université Paris Descartes Sorbonne Paris Cité Institut Necker Enfants Malades INSERM U1151 CNRS UMR 8253 Paris France

zx Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center Torrance CA

zx Université Paris Diderot Sorbonne Paris Cité Centre Epigénétique et Destin Cellulaire UMR 7216 Centre National de la Recherche Scientifique CNRS Paris France

zy Louisiana State University Health Sciences Center Department of Biochemistry and Molecular Biology Shreveport LA USA

zy Université Paris Diderot Unité Biologie Fonctionnelle et Adaptative CNRS UMR 8251 Paris France

zz Louisiana State University Health Sciences Center Neuroscience Center of Excellence New Orleans LA USA

zz Université Paris Est Créteil Créteil France

Erratum v

PubMed   Selliez, Iban [corrected to Seiliez, Iban]

Zobrazit více v PubMed

Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al.. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8:445-544; http://dx.doi.org/10.4161/auto.19496. PubMed DOI PMC

Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al.. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4:151-75; http://dx.doi.org/10.4161/auto.5338. PubMed DOI PMC

Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy 2007; 3:181-206; http://dx.doi.org/10.4161/auto.3678. PubMed DOI

Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, Shan B, Zhang Y, Norberg E, Zhang T, et al.. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol 2015; 210:705-16; http://dx.doi.org/10.1083/jcb.201503044. PubMed DOI PMC

Klionsky DJ. The autophagosome is overrated! Autophagy 2011; 7:353-4; http://dx.doi.org/10.4161/auto.7.4.14730. PubMed DOI PMC

Eskelinen E-L, Reggiori F, Baba M, Kovacs AL, Seglen PO. Seeing is believing: The impact of electron microscopy on autophagy research. Autophagy 2011; 7:935-56; http://dx.doi.org/10.4161/auto.7.9.15760. PubMed DOI

Seglen PO. Regulation of autophagic protein degradation in isolated liver cells In: Glaumann H and Ballard FJ, eds. Lysosomes: Their Role in Protein Breakdown. London: Academic Press, 1987:369-414.

de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966; 28:435-92; http://dx.doi.org/10.1146/annurev.ph.28.030166.002251. PubMed DOI

Gordon PB, Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun 1988; 151:40-7; http://dx.doi.org/10.1016/0006-291X(88)90556-6. PubMed DOI

Dice JF, Klionsky DJ. Artophagy, the art of autophagy–macroautophagy. Autophagy 2010; 6. PubMed

Lucocq JM, Hacker C. Cutting a fine figure: On the use of thin sections in electron microscopy to quantify autophagy. Autophagy 2013; 9:1443-8; http://dx.doi.org/10.4161/auto.25570. PubMed DOI

Kovács J, Fellinger E, Karpati AP, Kovács AL, Laszlo L, Réz G. Morphometric evaluation of the turnover of autophagic vacuoles after treatment with Triton X-100 and vinblastine in murine pancreatic acinar and seminal vesicle epithelial cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1987; 53:183-90; http://dx.doi.org/10.1007/BF02890242. PubMed DOI

Kovács J, Fellinger E, Karpati PA, Kovács AL, Laszlo L. The turnover of autophagic vacuoles: evaluation by quantitative electron microscopy. Biomed Biochim Acta 1986; 45:1543-7. PubMed

Kovács J, Laszlo L, Kovács AL. Regression of autophagic vacuoles in pancreatic acinar, seminal vesicle epithelial, and liver parenchymal cells: a comparative morphometric study of the effect of vinblastine and leupeptin followed by cycloheximide treatment. Exp Cell Res 1988; 174:244-51; http://dx.doi.org/10.1016/0014-4827(88)90158-9. PubMed DOI

CT Chu. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 2006; 65:423-32; http://dx.doi.org/10.1097/01.jnen.0000229233.75253.be. PubMed DOI PMC

Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 2006; 281:36303-16; http://dx.doi.org/10.1074/jbc.M607031200. PubMed DOI

Kovács AL, Reith A, Seglen PO. Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp Cell Res 1982; 137:191-201; http://dx.doi.org/10.1016/0014-4827(82)90020-9. PubMed DOI

Bestebroer J, V'Kovski P, Mauthe M, Reggiori F. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 2013; 14:1029-41; http://dx.doi.org/10.1111/tra.12091. PubMed DOI PMC

Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY. Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci USA 2013; 110:13038-43; http://dx.doi.org/10.1073/pnas.1303231110. PubMed DOI PMC

Politi Y, Gal L, Kalifa Y, Ravid L, Elazar Z, Arama E. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev Cell 2014; 29:305-20; http://dx.doi.org/10.1016/j.devcel.2014.04.005. PubMed DOI

Toth S, Nagy K, Palfia Z, Rez G. Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas. Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation. Cell Tissue Res 2002; 309:409-16; http://dx.doi.org/10.1007/s00441-001-0506-7. PubMed DOI

Loos B, Engelbrecht AM. Cell death: a dynamic response concept. Autophagy 2009; 5:590-603; http://dx.doi.org/10.4161/auto.5.5.8479. PubMed DOI

Seglen PO, Gordon PB, Grinde B, Solheim A, Kovacs AL, Poli A. Inhibitors and pathways of hepatocytic protein degradation. Acta Biol Med Ger 1981; 40:1587-98. PubMed

Ktistakis NT, Andrews S, Long J. What is the advantage of a transient precursor in autophagosome biogenesis? Autophagy 2011; 7:118-22; http://dx.doi.org/10.4161/auto.7.1.13697. PubMed DOI

Kovács AL, Réz G, Pálfia Z, Kovács J. Autophagy in the epithelial cells of murine seminal vesicle in vitro. Formation of large sheets of nascent isolation membranes, sequestration of the nucleus and inhibition by wortmannin and 3-ethyladenine. Cell Tissue Res 2000; 302:253-61; http://dx.doi.org/10.1007/s004410000275. PubMed DOI

Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3:542-5; http://dx.doi.org/10.4161/auto.4600. PubMed DOI

Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461:654-8; http://dx.doi.org/10.1038/nature08455. PubMed DOI

Kanki T, Kang D, Klionsky DJ. Monitoring mitophagy in yeast: the Om45-GFP processing assay. Autophagy 2009; 5:1186-9; http://dx.doi.org/10.4161/auto.5.8.9854. PubMed DOI PMC

Grander D, Kharaziha P, Laane E, Pokrovskaja K, Panaretakis T. Autophagy as the main means of cytotoxicity by glucocorticoids in hematological malignancies. Autophagy 2009; 5:1198-200; http://dx.doi.org/10.4161/auto.5.8.10122. PubMed DOI

Welter E, Thumm M, Krick R. Quantification of nonselective bulk autophagy in S. cerevisiae using Pgk1-GFP. Autophagy 2010; 6:794-7; http://dx.doi.org/10.4161/auto.6.6.12348. PubMed DOI

Raju D, Jones NL. Methods to monitor autophagy in H. pylori vacuolating cytotoxin A (VacA)-treated cells. Autophagy 2010; 6:138-43; http://dx.doi.org/10.4161/auto.6.1.10222. PubMed DOI

Geng J, Klionsky DJ. Determining Atg protein stoichiometry at the phagophore assembly site by fluorescence microscopy. Autophagy 2010; 6:144-7; http://dx.doi.org/10.4161/auto.6.1.10249. PubMed DOI PMC

Swanlund JM, Kregel KC, Oberley TD. Investigating autophagy: quantitative morphometric analysis using electron microscopy. Autophagy 2010; 6:270-7; http://dx.doi.org/10.4161/auto.6.2.10439. PubMed DOI PMC

Zhang J, Ney PA. Reticulocyte mitophagy: monitoring mitochondrial clearance in a mammalian model. Autophagy 2010; 6:405-8; http://dx.doi.org/10.4161/auto.6.3.11245. PubMed DOI

Seglen PO, Brinchmann MF. Purification of autophagosomes from rat hepatocytes. Autophagy 2010; 6:542-7; http://dx.doi.org/10.4161/auto.6.4.11272. PubMed DOI

He C, Klionsky DJ. Analyzing autophagy in zebrafish. Autophagy 2010; 6. PubMed PMC

Calvo-Garrido J, Carilla-Latorre S, Mesquita A, Escalante R. A proteolytic cleavage assay to monitor autophagy in Dictyostelium discoideum. Autophagy 2011; 7:1063-8; http://dx.doi.org/10.4161/auto.7.9.16629. PubMed DOI

Xu F, Liu XH, Zhuang FL, Zhu J, Lin FC. Analyzing autophagy in Magnaporthe oryzae. Autophagy 2011; 7:525-30; http://dx.doi.org/10.4161/auto.7.5.15020. PubMed DOI

Klionsky DJ. Autophagy: Lower Eukaryotes and Non-Mammalian Systems, Part A. Amsterdam: Academic Press/Elsevier, 2008.

Klionsky DJ. Autophagy in Disease and Clinical Applications, Part C. Amsterdam: Academic Press/Elsevier, 2008.

Klionsky DJ. Autophagy in Mammalian Systems, Part B. Amsterdam: Academic Press/Elsevier, 2008.

Zhu J, Dagda RK, Chu CT. Monitoring mitophagy in neuronal cell cultures. Methods Mol Biol 2011; 793:325-39; http://dx.doi.org/10.1007/978-1-61779-328-8. PubMed DOI PMC

Klionsky DJ. Protocol URL.

Chu CT, Plowey ED, Dagda RK, Hickey RW, Cherra SJ 3rd, Clark RS. Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol 2009; 453:217-49; http://dx.doi.org/10.1016/S0076-6879(08)04011-1. PubMed DOI PMC

Singh PK, Singh S. Changing shapes of glycogen-autophagy nexus in neurons: perspective from a rare epilepsy. Front Neurol 2015; 6:14; http://dx.doi.org/10.3389/fneur.2015.00014. PubMed DOI PMC

Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy. Microscopy Res Tech 2004; 64:10-20; http://dx.doi.org/10.1002/jemt.20046. PubMed DOI

Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pract 2006; 202:631-8; http://dx.doi.org/10.1016/j.prp.2006.04.001. PubMed DOI

Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452:143-64; http://dx.doi.org/10.1016/S0076-6879(08)03610-0. PubMed DOI

Eskelinen E-L. Maturation of autophagic vacuoles in mammalian cells. Autophagy 2005; 1:1-10; http://dx.doi.org/10.4161/auto.1.1.1270. PubMed DOI

Eskelinen E-L. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 2008; 4:257-60; http://dx.doi.org/10.4161/auto.5179. PubMed DOI

Eskelinen E-L, Kovacs AL. Double membranes vs. lipid bilayers, and their significance for correct identification of macroautophagic structures. Autophagy 2011; 7:931-2; http://dx.doi.org/10.4161/auto.7.9.16679. PubMed DOI

Biazik J, Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 2015; 11:439-51; http://dx.doi.org/10.1080/15548627.2015.1017178. PubMed DOI PMC

Eskelinen E-L. Fine structure of the autophagosome In: Deretic V, ed. Autophagosome and Phagosome. Totowa, NJ: Humana Press, 2008:11-28; http://dx.doi.org/10.1007/978-1-59745-157-4. DOI

Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 1998; 273:21883-92; http://dx.doi.org/10.1074/jbc.273.34.21883. PubMed DOI

Eskelinen E-L. Macroautophagy in mammalian cells In: Saftig P, ed. Lysosomes. Georgetown, TX: LandesBioscience/Eurekah.com, 2005.

Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Phys 2014; 306:C621-33; http://dx.doi.org/10.1152/ajpcell.00228.2013. PubMed DOI

Yang DS, Lee JH, Nixon RA. Monitoring autophagy in Alzheimer's disease and related neurodegenerative diseases. Methods Enzymol 2009; 453:111-44; http://dx.doi.org/10.1016/S0076-6879(08)04006-8. PubMed DOI

Yokota S, Himeno M, Kato K. Immunocytochemical localization of acid phosphatase in rat liver. Cell Struct Funct 1989; 14:163-71; http://dx.doi.org/10.1247/csf.14.163. PubMed DOI

Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 2008; 28:6926-37; http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008. PubMed DOI PMC

Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropath Exp Neuro 2005; 64:113-22. PubMed

Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, et al.. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141:1146-58; http://dx.doi.org/10.1016/j.cell.2010.05.008. PubMed DOI PMC

Lee JH, McBrayer MK, Wolfe DM, Haslett LJ, Kumar A, Sato Y, Lie PP, Mohan P, Coffey EE, Kompella U, et al.. Presenilin 1 maintains lysosomal Ca2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep 2015; 12:1430-44. PubMed PMC

Sonati T, Reimann RR, Falsig J, Baral PK, O'Connor T, Hornemann S, Yaganoglu S, Li B, Herrmann US, Wieland B, et al.. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 2013; 501:102-6; http://dx.doi.org/10.1038/nature12402. PubMed DOI

Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nature Rev Mol Cell Biol 2007; 8:622-32; http://dx.doi.org/10.1038/nrm2217. PubMed DOI

Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27:107-32; http://dx.doi.org/10.1146/annurev-cellbio-092910-154005. PubMed DOI

Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011; 31:7817-30; http://dx.doi.org/10.1523/JNEUROSCI.6412-10.2011. PubMed DOI PMC

Rabouille C, Strous GJ, Crapo JD, Geuze HJ, Slot JW. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol 1993; 120:897-908; http://dx.doi.org/10.1083/jcb.120.4.897. PubMed DOI PMC

Kovács AL, Pálfia Z, Réz G, Vellai T, Kovács J. Sequestration revisited: integrating traditional electron microscopy, de novo assembly and new results. Autophagy 2007; 3:655-62; http://dx.doi.org/10.4161/auto.4590. PubMed DOI

Gao W, Kang JH, Liao Y, Ding WX, Gambotto AA, Watkins SC, Liu YJ, Stolz DB, Yin XM. Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem 2010; 285:1371-83; http://dx.doi.org/10.1074/jbc.M109.054197. PubMed DOI PMC

Lajoie P, Guay G, Dennis JW, Nabi IR. The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. J Cell Sci 2005; 118:1991-2003; http://dx.doi.org/10.1242/jcs.02324. PubMed DOI

Mayhew TM. Quantitative immunoelectron microscopy: alternative ways of assessing subcellular patterns of gold labeling. Methods Mol Biol 2007; 369:309-29; http://dx.doi.org/10.1007/978-1-59745-294-6. PubMed DOI

Mayhew TM, Lucocq JM, Griffiths G. Relative labelling index: a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections. J Microsc 2002; 205:153-64; http://dx.doi.org/10.1046/j.0022-2720.2001.00977.x. PubMed DOI

Isidoro C, Biagioni F, Giorgi FS, Fulceri F, Paparelli A, Fornai F. The role of autophagy on the survival of dopamine neurons. Curr Top Med Chem 2009; 9:869-79. PubMed

Schmid D, Pypaert M, Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 2007; 26:79-92; http://dx.doi.org/10.1016/j.immuni.2006.10.018. PubMed DOI PMC

Subramani S, Malhotra V. Non-autophagic roles of autophagy-related proteins. EMBO Rep 2013; 14:143-51; http://dx.doi.org/10.1038/embor.2012.220. PubMed DOI PMC

Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. Secretory autophagy. Curr Opin Cell Biol 2015; 35:106-16; http://dx.doi.org/10.1016/j.ceb.2015.04.016. PubMed DOI PMC

Saito T, Asai K, Sato S, Takano H, Adach A, Sasaki Y, Namimatsu S, Mizuno K. Proof of myocardial autophagy by combining antigen retrieval and the avidin-biotin peroxidase complex method. Int J Cardiol 2013; 168:4843-4; http://dx.doi.org/10.1016/j.ijcard.2013.07.032. PubMed DOI

Kovács J. Regression of autophagic vacuoles in seminal vesicle cells following cycloheximide treatment. Exp Cell Res 1983; 144:231-4; http://dx.doi.org/10.1016/0014-4827(83)90460-3. PubMed DOI

Réz G, Csak J, Fellinger E, Laszlo L, Kovács AL, Oliva O, Kovács J. Time course of vinblastine-induced autophagocytosis and changes in the endoplasmic reticulum in murine pancreatic acinar cells: a morphometric and biochemical study. Eur J Cell Biol 1996; 71:341-50. PubMed

Kovács AL, Grinde B, Seglen PO. Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp Cell Res 1981; 133:431-6; http://dx.doi.org/10.1016/0014-4827(81)90336-0. PubMed DOI

Mortimore GE, Hutson NJ, Surmacz CA. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA 1983; 80:2179-83; http://dx.doi.org/10.1073/pnas.80.8.2179. PubMed DOI PMC

Mortimore GE, Lardeux BR, Adams CE. Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem 1988; 263:2506-12. PubMed

Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Amer J Pathol 2007; 170:75-86; http://dx.doi.org/10.2353/ajpath.2007.060524. PubMed DOI PMC

Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005; 171:603-14; http://dx.doi.org/10.1083/jcb.200507002. PubMed DOI PMC

Orvedahl A, Sumpter R Jr., Xiao G, Ng A, Zou Z, Tang Y, Narimatsu M, Gilpin C, Sun Q, Roth M, et al.. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011; 480:113-7; http://dx.doi.org/10.1038/nature10546. PubMed DOI PMC

Razi M, Tooze SA. Correlative light and electron microscopy. Methods Enzymol 2009; 452:261-75; http://dx.doi.org/10.1016/S0076-6879(08)03617-3. PubMed DOI

Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 2011; 9:e1001041. PubMed PMC

Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court F, Schuck S, Ibar C, Walter P, Sierralta J, et al.. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response. EMBO J 2011; 30:4465-78. PubMed PMC

Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009; 5:1180-5; http://dx.doi.org/10.4161/auto.5.8.10274. PubMed DOI

Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Auto-phagy 2010; 6:301-3; http://dx.doi.org/10.4161/auto.6.2.11134. PubMed DOI

Duke EM, Razi M, Weston A, Guttmann P, Werner S, Henzler K, Schneider G, Tooze SA, Collinson LM. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 2014; 143:77-87; http://dx.doi.org/10.1016/j.ultramic.2013.10.006. PubMed DOI PMC

Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA 2006; 103:5805-10; http://dx.doi.org/10.1073/pnas.0507436103. PubMed DOI PMC

Baba M, Osumi M, Ohsumi Y. Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct Funct 1995; 20:465-71; http://dx.doi.org/10.1247/csf.20.465. PubMed DOI

Rez G, Meldolesi J. Freeze-fracture of drug-induced autophagocytosis in the mouse exocrine pancreas. Lab Investig 1980; 43:269-77. PubMed

Punnonen E-L, Pihakaski K, Mattila K, Lounatmaa K, Hirsimaki P. Intramembrane particles and filipin labelling on the membranes of autophagic vacuoles and lysosomes in mouse liver. Cell Tissue Res 1989; 258:269-76; http://dx.doi.org/10.1007/BF00239447. PubMed DOI

Fengsrud M, Erichsen ES, Berg TO, Raiborg C, Seglen PO. Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol 2000; 79:871-82; http://dx.doi.org/10.1078/0171-9335-00125. PubMed DOI

Dickey JS, Gonzalez Y, Aryal B, Mog S, Nakamura AJ, Redon CE, Baxa U, Rosen E, Cheng G, Zielonka J, et al.. Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PloS One 2013; 8:e70575. PubMed PMC

Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS, Keller PW, Joseph J, Kalyanaraman B, Shacter E. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem 2010; 285:34447-59; http://dx.doi.org/10.1074/jbc.M110.133579. PubMed DOI PMC

Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Rev Mol Cell Biol 2007; 8:931-7; http://dx.doi.org/10.1038/nrm2245. PubMed DOI

Krick R, M(u)he Y, Prick T, Bredschneider M, Bremer S, Wenzel D, Eskelinen E-L, Thumm M. Piecemeal microautophagy of the nucleus: genetic and morphological traits. Autophagy 2009; 5:270-2; http://dx.doi.org/10.4161/auto.5.2.7639. PubMed DOI

Meschini S, Condello M, Calcabrini A, Marra M, Formisano G, Lista P, De Milito A, Federici E, Arancia G. The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy 2008; 4:1020-33; http://dx.doi.org/10.4161/auto.6952. PubMed DOI

Proikas-Cezanne T, Robenek H. Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. J Cell Mol Med 2011; 15:2007-10; http://dx.doi.org/10.1111/j.1582-4934.2011.01339.x. PubMed DOI PMC

Kovacs J, Rez G, Kovacs AL, Csak J, Zboray G. Autophagocytosis: freeze-fracture morphology, effects of vinblastine and influence of transcriptional and translational inhibitors. Acta Biol Med Germanica 1982; 41:131-5. PubMed

Hirsimaki Y, Hirsimaki P, Lounatmaa K. Vinblastine-induced autophagic vacuoles in mouse liver and Ehrlich ascites tumor cells as assessed by freeze-fracture electron microscopy. Eur J Cell Biol 1982; 27:298-301. PubMed

Backues SK, Chen D, Ruan J, Xie Z, Klionsky DJ. Estimating the size and number of autophagic bodies by electron microscopy. Autophagy 2014; 10:155-64; http://dx.doi.org/10.4161/auto.26856. PubMed DOI PMC

Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, Klionsky DJ. Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 2005; 16:3438-53; http://dx.doi.org/10.1091/mbc.E04-10-0894. PubMed DOI PMC

Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 2008; 19:3290-8; http://dx.doi.org/10.1091/mbc.E07-12-1292. PubMed DOI PMC

Sigmond T, Feher J, Baksa A, Pasti G, Palfia Z, Takacs-Vellai K, Kovacs J, Vellai T, Kovacs AL. Qualitative and quantitative characterization of autophagy in Caenorhabditis elegans by electron microscopy. Methods Enzymol 2008; 451:467-91; http://dx.doi.org/10.1016/S0076-6879(08)03228-X. PubMed DOI

Kovács AL, Vellai T, Müller F. Autophagy in Caenorhabditis elegans In: Klionsky DJ, ed. Autophagy. Georgetown, Texas: Landes Bioscience, 2004:217-23.

Weibel ER. Practical Methods for Biological Morphometry. Academic Press, New York, 1979.

Williams MA. Quantitative methods in biology: Practical methods in electron microscopy. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1977.

Howard V, Reed MG. Unbiased stereology; three dimensional measurement in microscopy. U Bios Scientific Publishers, 1998.

AL Kovacs. A simple method to estimate the number of autophagic elements by electron microscopic morphometry in real cellular dimensions. BioMed Res Intl 2014; 2014:578698. PubMed PMC

Xie Z, Nair U, Geng J, Szefler MB, Rothman ED, Klionsky DJ. Indirect estimation of the area density of Atg8 on the phagophore. Autophagy 2009; 5:217-20; http://dx.doi.org/10.4161/auto.5.2.7201. PubMed DOI PMC

Punnonen EL, Reunanen H. Effects of vinblastine, leucine, and histidine, and 3-methyladenine on autophagy in Ehrlich ascites cells. Exp Mol Pathol 1990; 52:87-97; http://dx.doi.org/10.1016/0014-4800(90)90061-H. PubMed DOI

Kovacs AL, Laszlo L, Fellinger E, Jakab A, Orosz A, Rez G, Kovacs J. Combined effects of fasting and vinblastine treatment on serum insulin level, the size of autophagic-lysosomal compartment, protein content and lysosomal enzyme activities of liver and exocrine pancreatic cells of the mouse. Comp Biochem Phys B Comp Biochem 1989; 94:505-10; http://dx.doi.org/10.1016/0305-0491(89)90189-2. PubMed DOI

Griffiths G. Fine structure immunocytochemistry Heidelberg, Germany: Springer-Verlag, 1993; http://dx.doi.org/10.1007/978-3-642-77095-1. DOI

Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 2011; 23:769-84; http://dx.doi.org/10.1105/tpc.110.082156. PubMed DOI PMC

Dunn WA Jr., Cregg JM, Kiel JAKW, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M. Pexophagy: the selective autophagy of peroxisomes. Autophagy 2005; 1:75-83; http://dx.doi.org/10.4161/auto.1.2.1737. PubMed DOI

Wang K, Klionsky DJ. Mitochondria removal by autophagy. Autophagy 2011; 7:297-300; http://dx.doi.org/10.4161/auto.7.3.14502. PubMed DOI PMC

Belanger M, Rodrigues PH, Dunn WA Jr., Progulske-Fox A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2006; 2:165-70; http://dx.doi.org/10.4161/auto.2828. PubMed DOI

Birmingham CL, Brumell JH. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2006; 2:156-8; http://dx.doi.org/10.4161/auto.2825. PubMed DOI

Colombo MI, Gutierrez MG, Romano PS. The two faces of autophagy: Coxiella and Mycobacterium. Autophagy 2006; 2:162-4; http://dx.doi.org/10.4161/auto.2827. PubMed DOI

Ogawa M, Sasakawa C. Shigella and autophagy. Autophagy 2006; 2:171-4; http://dx.doi.org/10.4161/auto.2829. PubMed DOI

Vergne I, Singh S, Roberts E, Kyei G, Master S, Harris J, de Haro S, Naylor J, Davis A, Delgado M, et al.. Autophagy in immune defense against Mycobacterium tuberculosis. Autophagy 2006; 2:175-8; http://dx.doi.org/10.4161/auto.2830. PubMed DOI

Yoshimori T. Autophagy vs. Group A Streptococcus. Autophagy 2006; 2:154-5; http://dx.doi.org/10.4161/auto.2822. PubMed DOI

Gorbunov NV, McDaniel DP, Zhai M, Liao PJ, Garrison BR, Kiang JG. Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with Staphylococcus epidermidis. J Cell Mol Med 2015; 19:1133-50; http://dx.doi.org/10.1111/jcmm.12518. PubMed DOI PMC

Lynch-Day MA, Klionsky DJ. The Cvt pathway as a model for selective autophagy. FEBS Lett 2010; 584:1359-66; http://dx.doi.org/10.1016/j.febslet.2010.02.013. PubMed DOI PMC

Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 2007; 3:442-51; http://dx.doi.org/10.4161/auto.4450. PubMed DOI

Klionsky DJ. Protein transport from the cytoplasm into the vacuole. J Membr Biol 1997; 157:105-15; http://dx.doi.org/10.1007/s002329900220. PubMed DOI

Baba M, Osumi M, Scott SV, Klionsky DJ, Ohsumi Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol 1997; 139:1687-95; http://dx.doi.org/10.1083/jcb.139.7.1687. PubMed DOI PMC

Dini L, Pagliara P, Carla EC. Phagocytosis of apoptotic cells by liver: a morphological study. Micros Res Tech 2002; 57:530-40; http://dx.doi.org/10.1002/jemt.10107. PubMed DOI

Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, et al.. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005; 12:1463-7; http://dx.doi.org/10.1038/sj.cdd.4401724. PubMed DOI

Rez G, Palfia Z, Fellinger E. Occurrence and inhibition by cycloheximide of apoptosis in vinblastine-treated murine pancreas. A role for autophagy? Acta Biol Hungarica 1991; 42:133-40. PubMed

Nagy P, Varga A, Kovács AL, Takáts S, Juhász G. How and why to study autophagy in Drosophila: It's more than just a garbage chute. Methods 2015; 75:151-61; http://dx.doi.org/10.1016/j.ymeth.2014.11.016. PubMed DOI PMC

Giammarioli AM, Gambardella L, Barbati C, Pietraforte D, Tinari A, Alberton M, Gnessi L, Griffin RJ, Minetti M, Malorni W. Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response. Intl J Cancer 2012; 131:E337-47. PubMed

Sou YS, Tanida I, Komatsu M, Ueno T, Kominami E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 2006; 281:3017-24; http://dx.doi.org/10.1074/jbc.M505888200. PubMed DOI

Le Grand JN, Chakrama FZ, Seguin-Py S, Fraichard A, Delage-Mourroux R, Jouvenot M, Boyer-Guittaut M. GABARAPL1 (GEC1): Original or copycat? Autophagy 2011; 7:1098-107; http://dx.doi.org/10.4161/auto.7.10.15904. PubMed DOI

Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 2003; 278:51841-50; http://dx.doi.org/10.1074/jbc.M308762200. PubMed DOI

Tanida I, Sou YS, Ezaki J, Minematsu-Ikeguchi N, Ueno T, Kominami E. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. J Biol Chem 2004; 279:36268-76; http://dx.doi.org/10.1074/jbc.M401461200. PubMed DOI

Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004; 117:2805-12; http://dx.doi.org/10.1242/jcs.01131. PubMed DOI

Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 2010; 29:1792-802; http://dx.doi.org/10.1038/emboj.2010.74. PubMed DOI PMC

Szalai P, Hagen LK, Saetre F, Luhr M, Sponheim M, Overbye A, Mills IG, Seglen PO, Engedal N. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 2015; 333:21-38; http://dx.doi.org/10.1016/j.yexcr.2015.02.003. PubMed DOI

Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 2004; 9:611-8; http://dx.doi.org/10.1111/j.1356-9597.2004.00750.x. PubMed DOI

Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, et al.. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 2013; 15:1197-205; http://dx.doi.org/10.1038/ncb2837. PubMed DOI PMC

Lystad AH, Ichimura Y, Takagi K, Yang Y, Pankiv S, Kanegae Y, Kageyama S, Suzuki M, Saito I, Mizushima T, et al.. Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep 2014; 15:557-65; http://dx.doi.org/10.1002/embr.201338003. PubMed DOI PMC

von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein A, Bloor S, Rutherford TJ, Freund SM, Komander D, Randow F. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell 2012; 48:329-42; http://dx.doi.org/10.1016/j.molcel.2012.08.024. PubMed DOI PMC

Huang W-P, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 2000; 275:5845-51; http://dx.doi.org/10.1074/jbc.275.8.5845. PubMed DOI

Cai Q, Lu L, Tian J-H, Zhu Y-B, Qiao H, Sheng Z-H. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons. Neuron 2010; 68:73-86; http://dx.doi.org/10.1016/j.neuron.2010.09.022. PubMed DOI PMC

Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C. Chelation of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicol Sci 2011:523-41; http://dx.doi.org/10.1093/toxsci/kfr179. PubMed DOI PMC

Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R, Nerini-Molteni S, Sale P, Vago R, Arena G, et al.. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 2010; 17:962-74; http://dx.doi.org/10.1038/cdd.2009.200. PubMed DOI

Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, et al.. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 2011; 134:258-77; http://dx.doi.org/10.1093/brain/awq341. PubMed DOI PMC

Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15:1101-11; http://dx.doi.org/10.1091/mbc.E03-09-0704. PubMed DOI PMC

Padman BS, Bach M, Lucarelli G, Prescott M, Ramm G. The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells. Autophagy 2013; 9:1862-75; http://dx.doi.org/10.4161/auto.26557. PubMed DOI

Jahreiss L, Menzies FM, Rubinsztein DC. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 2008; 9:574-87; http://dx.doi.org/10.1111/j.1600-0854.2008.00701.x. PubMed DOI PMC

Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008; 4:849-950; http://dx.doi.org/10.4161/auto.6845. PubMed DOI

Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 1998; 23:33-42; http://dx.doi.org/10.1247/csf.23.33. PubMed DOI

Ahlberg J, Berkenstam A, Henell F, Glaumann H. Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors. J Biol Chem 1985; 260:5847-54. PubMed

Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci 2010; 51:6030-7; http://dx.doi.org/10.1167/iovs.10-5278. PubMed DOI

Thomas G, Hall MN. TOR signalling and control of cell growth. Curr Opin Cell Biol 1997; 9:782-7; http://dx.doi.org/10.1016/S0955-0674(97)80078-6. PubMed DOI

G Juhasz. Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations. Autophagy 2012; 8:1875-6; http://dx.doi.org/10.4161/auto.21544. PubMed DOI PMC

Li M, Khambu B, Zhang H, Kang JH, Chen X, Chen D, Vollmer L, Liu PQ, Vogt A, Yin XM. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J Biol Chem 2013; 288:35769-80; http://dx.doi.org/10.1074/jbc.M113.511212. PubMed DOI PMC

Seglen PO, Grinde B, Solheim AE. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem 1979; 95:215-25; http://dx.doi.org/10.1111/j.1432-1033.1979.tb12956.x. PubMed DOI

Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 1991; 266:17707-12. PubMed

McLeland CB, Rodriguez J, Stern ST. Autophagy monitoring assay: qualitative analysis of MAP LC3-I to II conversion by immunoblot. Methods Mol Biol 2011; 697:199-206; http://dx.doi.org/10.1007/978-1-60327-198-1. PubMed DOI

Chakrama FZ, Seguin-Py S, Le Grand JN, Fraichard A, Delage-Mourroux R, Despouy G, Perez V, Jouvenot M, Boyer-Guittaut M. GABARAPL1 (GEC1) associates with autophagic vesicles. Auto-phagy 2010; 6:495-505; http://dx.doi.org/10.4161/auto.6.4.11819. PubMed DOI

Maynard S, Ghosh R, Wu Y, Yan S, Miyake T, Gagliardi M, Rethoret K, Bedard PA. GABARAP is a determinant of apoptosis in growth-arrested chicken embryo fibroblasts. J Cell Physiol 2015; 230:1475-88; http://dx.doi.org/10.1002/jcp.24889. PubMed DOI

Kim J, Huang W-P, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 2001; 152:51-64; http://dx.doi.org/10.1083/jcb.152.1.51. PubMed DOI PMC

Shu CW, Drag M, Bekes M, Zhai D, Salvesen GS, Reed JC. Synthetic substrates for measuring activity of autophagy proteases: autophagins (Atg4). Autophagy 2010; 6:936-47; http://dx.doi.org/10.4161/auto.6.7.13075. PubMed DOI PMC

Li M, Chen X, Ye Q-Z, Vogt A, Yin X-M. A High-throughput FRET-based Assay for Determination of Atg4 Activity. Autophagy 2012; 8:401-12. PubMed PMC

Ketteler R, Seed B. Quantitation of autophagy by luciferase release assay. Autophagy 2008; 4:801-6; http://dx.doi.org/10.4161/auto.6401. PubMed DOI PMC

Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin X-M. Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 2011; 286:7327-38; http://dx.doi.org/10.1074/jbc.M110.199059. PubMed DOI PMC

Klionsky DJ. For the last time, it is GFP-Atg8, not Atg8-GFP (and the same goes for LC3). Autophagy 2011; 7:1093-4; http://dx.doi.org/10.4161/auto.7.10.15492. PubMed DOI PMC

Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 2005; 1:84-91; http://dx.doi.org/10.4161/auto.1.2.1697. PubMed DOI

Castino R, Lazzeri G, Lenzi P, Bellio N, Follo C, Ferrucci M, Fornai F, Isidoro C. Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 2008; 106:1426-39; http://dx.doi.org/10.1111/j.1471-4159.2008.05488.x. PubMed DOI

Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007; 100:914-22; http://dx.doi.org/10.1161/01.RES.0000261924.76669.36. PubMed DOI

Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 2001; 20:5971-81; http://dx.doi.org/10.1093/emboj/20.21.5971. PubMed DOI PMC

Hanson HH, Kang S, Fernandez-Monreal M, Oung T, Yildirim M, Lee R, Suyama K, Hazan RB, Phillips GR. LC3-dependent intracellular membrane tubules induced by gamma-protocadherins A3 and B2: a role for intraluminal interactions. J Biol Chem 2010; 285:20982-92; http://dx.doi.org/10.1074/jbc.M109.092031. PubMed DOI PMC

Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 2011; 13:1335-43; http://dx.doi.org/10.1038/ncb2363. PubMed DOI PMC

Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, Hengartner MO, Green DR. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 2011; 108:17396-401; http://dx.doi.org/10.1073/pnas.1113421108. PubMed DOI PMC

Choi J, Park S, Biering SB, Selleck E, Liu CY, Zhang X, Fujita N, Saitoh T, Akira S, Yoshimori T, et al.. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 2014; 40:924-35; http://dx.doi.org/10.1016/j.immuni.2014.05.006. PubMed DOI PMC

Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, et al.. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007; 450:1253-7; http://dx.doi.org/10.1038/nature06421. PubMed DOI

Sanjuan MA, Milasta S, Green DR. Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 2009; 227:203-20; http://dx.doi.org/10.1111/j.1600-065X.2008.00732.x. PubMed DOI

Ushio H, Ueno T, Kojima Y, Komatsu M, Tanaka S, Yamamoto A, Ichimura Y, Ezaki J, Nishida K, Komazawa-Sakon S, et al.. Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol 2011; 127:1267-76 e6; http://dx.doi.org/10.1016/j.jaci.2010.12.1078. PubMed DOI

Ishibashi K, Uemura T, Waguri S, Fukuda M. Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol Biol Cell 2012; 23:3193-202; http://dx.doi.org/10.1091/mbc.E12-01-0010. PubMed DOI PMC

DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 2011; 21:966-74; http://dx.doi.org/10.1016/j.devcel.2011.08.016. PubMed DOI PMC

Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell K, Guan JL, Saitoh T, Akira S, Seglen PO, et al.. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J 2013; 32:3130-44; http://dx.doi.org/10.1038/emboj.2013.233. PubMed DOI PMC

Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009; 6:137-49; http://dx.doi.org/10.1016/j.chom.2009.07.005. PubMed DOI

Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, Britton P, Ktistakis NT, Wileman T. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 2011; 7:1335-47; http://dx.doi.org/10.4161/auto.7.11.16642. PubMed DOI PMC

Reggiori F, Monastyrska I, Verheije MH, Cali T, Ulasli M, Bianchi S, Bernasconi R, de Haan CA, Molinari M. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 2010; 7:500-8; http://dx.doi.org/10.1016/j.chom.2010.05.013. PubMed DOI PMC

Sharma M, Bhattacharyya S, Nain M, Kaur M, Sood V, Gupta V, Khasa R, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes. Autophagy 2014; 10:1637-51; http://dx.doi.org/10.4161/auto.29455. PubMed DOI PMC

English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, Alexander D, Leib D, Norbury C, Lippe R, et al.. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 2009; 10:480-7; http://dx.doi.org/10.1038/ni.1720. PubMed DOI PMC

Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe 2014; 15:239-47; http://dx.doi.org/10.1016/j.chom.2014.01.006. PubMed DOI PMC

Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB, Whitton JL. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol 2010; 84:12110-24; http://dx.doi.org/10.1128/JVI.01417-10. PubMed DOI PMC

Alirezaei M, Flynn CT, Wood MR, Whitton JL. Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host Microbe 2012; 11:298-305; http://dx.doi.org/10.1016/j.chom.2012.01.014. PubMed DOI PMC

Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 2008; 105:1048-56; http://dx.doi.org/10.1111/j.1471-4159.2008.05217.x. PubMed DOI PMC

Nicotra G, Mercalli F, Peracchio C, Castino R, Follo C, Valente G, Isidoro C. Autophagy-active beclin-1 correlates with favourable clinical outcome in non-Hodgkin lymphomas. Modern pathology: Pathol 2010; 23:937-50; http://dx.doi.org/10.1038/modpathol.2010.80. PubMed DOI

Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol 2008; 445:77-88; http://dx.doi.org/10.1007/978-1-59745-157-4. PubMed DOI

Gros F, Arnold J, Page N, Decossas M, Korganow AS, Martin T, Muller S. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy 2012; 8:1113-23; http://dx.doi.org/10.4161/auto.20275. PubMed DOI PMC

Welinder C, Ekblad L. Coomassie staining as loading control in Western blot analysis. J Proteome Res 2011; 10:1416-9; http://dx.doi.org/10.1021/pr1011476. PubMed DOI

Colella AD, Chegenii N, Tea MN, Gibbins IL, Williams KA, Chataway TK. Comparison of Stain-Free gels with traditional immunoblot loading control methodology. Anal Biochem 2012; 430:108-10; http://dx.doi.org/10.1016/j.ab.2012.08.015. PubMed DOI

Ghosh R, Gilda JE, Gomes AV. The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteomics 2014; 11:549-60; http://dx.doi.org/10.1586/14789450.2014.939635. PubMed DOI PMC

Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 2005; 102:13807-12; http://dx.doi.org/10.1073/pnas.0506843102. PubMed DOI PMC

Russ DW, Boyd IM, McCoy KM, McCorkle KW. Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism. Biogerontology 2015; 16:747-59. PubMed

Russ DW, Krause J, Wills A, Arreguin R. “SR stress” in mixed hindlimb muscles of aging male rats. Biogerontology 2012; 13:547-55; http://dx.doi.org/10.1007/s10522-012-9399-y. PubMed DOI

He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, et al.. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278:29278-87; http://dx.doi.org/10.1074/jbc.M303800200. PubMed DOI

Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 2011; 12:226; http://dx.doi.org/10.1186/gb-2011-12-7-226. PubMed DOI PMC

Zois CE, Koukourakis MI. Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies? Autophagy 2009; 5:442-50; http://dx.doi.org/10.4161/auto.5.4.7667. PubMed DOI

Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S. Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 2001; 74:408-13; http://dx.doi.org/10.1006/geno.2001.6555. PubMed DOI

Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A, et al.. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010; 11:45-51; http://dx.doi.org/10.1038/embor.2009.256. PubMed DOI PMC

Schwarten M, Mohrluder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold D. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 2009; 5:690-8; http://dx.doi.org/10.4161/auto.5.5.8494. PubMed DOI

Gassmann M, Grenacher B, Rohde B, Vogel J. Quantifying Western blots: pitfalls of densitometry. Electrophoresis 2009; 30:1845-55; http://dx.doi.org/10.1002/elps.200800720. PubMed DOI

Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151:263-76; http://dx.doi.org/10.1083/jcb.151.2.263. PubMed DOI PMC

Chung T, Phillips AR, Vierstra RD. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J 2010; 62:483-93; http://dx.doi.org/10.1111/j.1365-313X.2010.04166.x. PubMed DOI

Chung T, Suttangkakul A, Vierstra RD. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 2009; 149:220-34; http://dx.doi.org/10.1104/pp.108.126714. PubMed DOI PMC

Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Saetre F, Hagen LK, Patterson JB, Proikas-Cezanne T, Seglen PO, et al.. Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 2013; 9:1475-90; http://dx.doi.org/10.4161/auto.25900. PubMed DOI

Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L, Shai I, Golan R, Harman-Boehm I, Schon MR, et al.. Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 2011; 96:E268-77; http://dx.doi.org/10.1210/jc.2010-1681. PubMed DOI

Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X. Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 2010; 6:126-37; http://dx.doi.org/10.4161/auto.6.1.10928. PubMed DOI

King JS, Veltman DM, Insall RH. The induction of autophagy by mechanical stress. Autophagy 2011; 7:1490-9; http://dx.doi.org/10.4161/auto.7.12.17924. PubMed DOI PMC

Roberts R, Al-Jamal WT, Whelband M, Thomas P, Jefferson M, van den Bossche J, Powell PP, Kostarelos K, Wileman T. Autophagy and formation of tubulovesicular autophagosomes provide a barrier against nonviral gene delivery. Autophagy 2013; 9:667-82; http://dx.doi.org/10.4161/auto.23877. PubMed DOI PMC

Schmidt RS, Butikofer P. Autophagy in Trypanosoma brucei: amino acid requirement and regulation during different growth phases. PloS One 2014; 9:e93875; http://dx.doi.org/10.1371/journal.pone.0093875. PubMed DOI PMC

Bernard M, Dieude M, Yang B, Hamelin K, Underwood K, Hebert MJ. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. Autophagy 2014; 10:2193-207. PubMed PMC

Saetre F, Hagen LK, Engedal N, Seglen PO. Novel steps in the autophagic-lysosomal pathway. FEBS J 2015; 282:2202-14; http://dx.doi.org/10.1111/febs.13268. PubMed DOI

Ju JS, Varadhachary AS, Miller SE, Weihl CC. Quantitation of “autophagic flux” in mature skeletal muscle. Autophagy 2010; 6:929-35; http://dx.doi.org/10.4161/auto.6.7.12785. PubMed DOI PMC

Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior WW, van Dijk S, Wu H, Gray DC, et al.. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 2008; 183:101-16; http://dx.doi.org/10.1083/jcb.200801099. PubMed DOI PMC

Mauvezin C, Nagy P, Juhasz G, Neufeld TP. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun 2015; 6:7007; http://dx.doi.org/10.1038/ncomms8007. PubMed DOI PMC

Xie R, Nguyen S, McKeehan WL, Liu L. Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 2010; 11:89; http://dx.doi.org/10.1186/1471-2121-11-89. PubMed DOI PMC

Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 2005; 118: 3091-102; http://dx.doi.org/10.1242/jcs.02447. PubMed DOI

Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant {alpha}-synuclein by chaperone-mediated autophagy. Science 2004; 305:1292-5; http://dx.doi.org/10.1126/science.1101738. PubMed DOI

Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C. Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 2008; 29:381-9; http://dx.doi.org/10.1093/carcin/bgm271. PubMed DOI

Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, Klionsky DJ. In search of an “autophagomometer”. Autophagy 2009; 5:585-9; http://dx.doi.org/10.4161/auto.5.5.8823. PubMed DOI

Sarkar S, Ravikumar B, Rubinsztein DC. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol 2009; 453:83-110; http://dx.doi.org/10.1016/S0076-6879(08)04005-6. PubMed DOI

Sarkar S, Korolchuk V, Renna M, Winslow A, Rubinsztein DC. Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates. Autophagy 2009; 5:307-13; http://dx.doi.org/10.4161/auto.5.3.7664. PubMed DOI

Martins WK, Severino D, Souza C, Stolf BS, Baptista MS. Rapid screening of potential autophagic inductor agents using mammalian cell lines. Biotechnol J 2013; 8:730-7; http://dx.doi.org/10.1002/biot.201200306. PubMed DOI

Martins WK, Costa ET, Cruz MC, Stolf BS, Miotto R, Cordeiro RM, Baptista MS. Parallel damage in mitochondrial and lysosomal compartments promotes efficient cell death with autophagy: The case of the pentacyclic triterpenoids. Sci Rep 2015; 5:12425; http://dx.doi.org/10.1038/srep12425. PubMed DOI PMC

Shintani T, Klionsky DJ. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 2004; 279:29889-94; http://dx.doi.org/10.1074/jbc.M404399200. PubMed DOI PMC

Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3:553-60; http://dx.doi.org/10.4161/auto.4615. PubMed DOI

Kim CH, Kim KH, Yoo YM. Melatonin protects against apoptotic and autophagic cell death in C2C12 murine myoblast cells. J Pineal Res 2011; 50:241-9; http://dx.doi.org/10.1111/j.1600-079X.2010.00833.x. PubMed DOI

Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3:553-60. PubMed

Tsvetkov AS, Arrasate M, Barmada S, Ando DM, Sharma P, Shaby BA, Finkbeiner S. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat Chem Biol 2013; 9:586-92; http://dx.doi.org/10.1038/nchembio.1308. PubMed DOI PMC

Loos B, du Toit A, Hofmeyr JH. Defining and measuring autophagosome flux-concept and reality. Autophagy 2014:0. PubMed PMC

Farkas T, Hoyer-Hansen M, Jaattela M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy 2009; 5:1018-25; http://dx.doi.org/10.4161/auto.5.7.9443. PubMed DOI

Frankel LB, Wen J, Lees M, H(o)yer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH. microRNA-101 is a potent inhibitor of autophagy. EMBO J 2011:4628-41; http://dx.doi.org/10.1038/emboj.2011.331. PubMed DOI PMC

Farkas T, Daugaard M, Jaattela M. Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy. J Biol Chem 2011; 286:38904-12; http://dx.doi.org/10.1074/jbc.M111.269134. PubMed DOI PMC

Szyniarowski P, Corcelle-Termeau E, Farkas T, Hoyer-Hansen M, Nylandsted J, Kallunki T, Jaattela M. A comprehensive siRNA screen for kinases that suppress macroautophagy in optimal growth conditions. Autophagy 2011; 7:892-903; http://dx.doi.org/10.4161/auto.7.8.15770. PubMed DOI

Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F, Darfeuille-Michaud A. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014; 146:508-19; http://dx.doi.org/10.1053/j.gastro.2013.10.021. PubMed DOI

Frankel LB, Di Malta C, Wen J, Eskelinen EL, Ballabio A, Lund AH. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun 2014; 5:5840; http://dx.doi.org/10.1038/ncomms6840. PubMed DOI

Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis 2012; 33:2018-25; http://dx.doi.org/10.1093/carcin/bgs266. PubMed DOI

Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E. Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 2006; 281:4035-41; http://dx.doi.org/10.1074/jbc.M512283200. PubMed DOI

Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183:795-803; http://dx.doi.org/10.1083/jcb.200809125. PubMed DOI PMC

Nogalska A, Terracciano C, D'Agostino C, King Engel W, Askanas V. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol 2009; 118:407-13; http://dx.doi.org/10.1007/s00401-009-0564-6. PubMed DOI

Chahory S, Keller N, Martin E, Omri B, Crisanti P, Torriglia A. Light induced retinal degeneration activates a caspase-independent pathway involving cathepsin D. Neurochem Int 2010; 57:278-87; http://dx.doi.org/10.1016/j.neuint.2010.06.006. PubMed DOI

Padron-Barthe L, Courta J, Lepretre C, Nagbou A, Torriglia A. Leukocyte Elastase Inhibitor, the precursor of L-DNase II, inhibits apoptosis by interfering with caspase-8 activation. Biochim Biophys Acta 2008; 1783:1755-66; http://dx.doi.org/10.1016/j.bbamcr.2008.06.018. PubMed DOI

Gutierrez MG, Saka HA, Chinen I, Zoppino FC, Yoshimori T, Bocco JL, Colombo MI. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci USA 2007; 104:1829-34; http://dx.doi.org/10.1073/pnas.0601437104. PubMed DOI PMC

Hosokawa N, Hara Y, Mizushima N. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett 2006; 580:2623-9; http://dx.doi.org/10.1016/j.febslet.2006.04.008. PubMed DOI

Suttangkakul A, Li F, Chung T, Vierstra RD. The ATG1/13 protein kinase complex is both a regulator and a substrate of autophagic recycling in Arabidopsis. Plant Cell 2011; 23: 3761-79; http://dx.doi.org/10.1105/tpc.111.090993. PubMed DOI PMC

Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM, Ding WX. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 2011; 7:188-204; http://dx.doi.org/10.4161/auto.7.2.14181. PubMed DOI PMC

Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, Nabi IR, Roberge M. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PloS One 2009; 4:e7124; http://dx.doi.org/10.1371/journal.pone.0007124. PubMed DOI PMC

Patterson GH, Lippincott-Schwartz J. Selective photolabeling of proteins using photoactivatable GFP. Methods 2004; 32:445-50; http://dx.doi.org/10.1016/j.ymeth.2003.10.006. PubMed DOI

Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 2006; 281:29776-87; http://dx.doi.org/10.1074/jbc.M603783200. PubMed DOI

Noda T, Klionsky DJ. The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol 2008; 451:33-42; http://dx.doi.org/10.1016/S0076-6879(08)03203-5. PubMed DOI

DJ Klionsky. Monitoring autophagy in yeast: the Pho8Delta60 assay. Methods Mol Biol 2007; 390:363-71; http://dx.doi.org/10.1007/978-1-59745-466-7. PubMed DOI

Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 1997; 73:2782-90; http://dx.doi.org/10.1016/S0006-3495(97)78307-3. PubMed DOI PMC

Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3:452-60; http://dx.doi.org/10.4161/auto.4451. PubMed DOI

Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004; 22:1567-72; http://dx.doi.org/10.1038/nbt1037. PubMed DOI

Strack RL, Keenan RJ, Glick BS. Noncytotoxic DsRed derivatives for whole-cell labeling. Methods Mol Biol 2011; 699:355-70; http://dx.doi.org/10.1007/978-1-61737-950-5. PubMed DOI PMC

Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 2006; 24:461-5; http://dx.doi.org/10.1038/nbt1191. PubMed DOI

Rekas A, Alattia JR, Nagai T, Miyawaki A, Ikura M. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem 2002; 277:50573-8; http://dx.doi.org/10.1074/jbc.M209524200. PubMed DOI

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19:5720-8; http://dx.doi.org/10.1093/emboj/19.21.5720. PubMed DOI PMC

Badr CE, Wurdinger T, Nilsson J, Niers JM, Whalen M, Degterev A, Tannous BA. Lanatoside C sensitizes glioblastoma cells to tumor necrosis factor-related apoptosis-inducing ligand and induces an alternative cell death pathway. Neuro-oncology 2011; 13:1213-24; http://dx.doi.org/10.1093/neuonc/nor067. PubMed DOI PMC

Meléndez A, Tallóczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003; 301:1387-91; http://dx.doi.org/10.1126/science.1087782. PubMed DOI

Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 2003; 278:17636-45; http://dx.doi.org/10.1074/jbc.M212467200. PubMed DOI

Liu XH, Liu TB, Lin FC. Monitoring autophagy in Magnaporthe oryzae. Methods Enzymol 2008; 451:271-94; http://dx.doi.org/10.1016/S0076-6879(08)03219-9. PubMed DOI

Pinan-Lucarre B, Paoletti M, Dementhon K, Coulary-Salin B, Clave C. Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 2003; 47:321-33; http://dx.doi.org/10.1046/j.1365-2958.2003.03208.x. PubMed DOI

Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 2006; 312:580-3; http://dx.doi.org/10.1126/science.1124550. PubMed DOI

Kikuma T, Ohneda M, Arioka M, Kitamoto K. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot Cell 2006; 5:1328-36; http://dx.doi.org/10.1128/EC.00024-06. PubMed DOI PMC

Nolting N, Bernhards Y, Poggeler S. SmATG7 is required for viability in the homothallic ascomycete Sordaria macrospora. Fungal Genet Biol 2009; 46:531-42; http://dx.doi.org/10.1016/j.fgb.2009.03.008. PubMed DOI

Baghdiguian S, Martinand-Mari C, Mangeat P. Using Ciona to study developmental programmed cell death. Semin Cancer Biol 2007; 17:147-53; http://dx.doi.org/10.1016/j.semcancer.2006.11.005. PubMed DOI

Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 2004; 7:179-92; http://dx.doi.org/10.1016/j.devcel.2004.07.005. PubMed DOI

Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004; 7:167-78; http://dx.doi.org/10.1016/j.devcel.2004.07.009. PubMed DOI

Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 2009; 19:1741-6; http://dx.doi.org/10.1016/j.cub.2009.08.042. PubMed DOI PMC

Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 2004; 16:2967-83; http://dx.doi.org/10.1105/tpc.104.025395. PubMed DOI PMC

Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD. Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 2015; 27:1389-408; http://dx.doi.org/10.1105/tpc.15.00158. PubMed DOI PMC

Brennand A, Rico E, Rigden DJ, Van Der Smissen P, Courtoy PJ, Michels PA. ATG24 Represses Autophagy and Differentiation and Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma brucei. PloS One 2015; 10:e0130365. PubMed PMC

Li FJ, Shen Q, Wang C, Sun Y, Yuan AY, He CY. A role of autophagy in Trypanosoma brucei cell death. Cell Microbiol 2012; 14:1242-56; http://dx.doi.org/10.1111/j.1462-5822.2012.01795.x. PubMed DOI

Besteiro S, Williams RA, Morrison LS, Coombs GH, Mottram JC. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 2006; 281:11384-96; http://dx.doi.org/10.1074/jbc.M512307200. PubMed DOI

Williams RA, Tetley L, Mottram JC, Coombs GH. Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 2006; 61:655-74; http://dx.doi.org/10.1111/j.1365-2958.2006.05274.x. PubMed DOI

Williams RA, Woods KL, Juliano L, Mottram JC, Coombs GH Characterization of unusual families of ATG8-like proteins and ATG12 in the protozoan parasite Leishmania major. Autophagy 2009; 5:159-72. PubMed PMC

Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W, Bode C, Hamm C, Schaper J. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 2004; 43:2191-9; http://dx.doi.org/10.1016/j.jacc.2004.02.053. PubMed DOI

Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM. Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 2001; 51:304-12; http://dx.doi.org/10.1016/S0008-6363(01)00290-5. PubMed DOI

Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, et al.. Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003; 92:715-24; http://dx.doi.org/10.1161/01.RES.0000067471.95890.5C. PubMed DOI

Perez-Perez ME, Florencio FJ, Crespo JL. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 2010; 152:1874-88; http://dx.doi.org/10.1104/pp.109.152520. PubMed DOI PMC

Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, et al.. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Amer J Pathol 2005; 167:1713-28; http://dx.doi.org/10.1016/S0002-9440(10)61253-9. PubMed DOI PMC

O]st A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H, Sandstrom P, Kjolhede P, Stralfors P. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16:235-46; http://dx.doi.org/10.1007/s00894-009-0539-5. PubMed DOI PMC

Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, et al.. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190:881-92; http://dx.doi.org/10.1083/jcb.200911078. PubMed DOI PMC

Gniadek TJ, Warren G. WatershedCounting3D: a new method for segmenting and counting punctate structures from confocal image data. Traffic 2007; 8:339-46; http://dx.doi.org/10.1111/j.1600-0854.2007.00538.x. PubMed DOI

Decuypere J-P, Welkenhuyzen K, Luyten Y, Ponsaerts R, Dewaele M, Molgó J, Agostinis P, Missiaen L, De Smedt H, Parys JB, et al.. IP3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 2011; 7:1472-89; http://dx.doi.org/10.4161/auto.7.12.17909. PubMed DOI PMC

Xu Y, Yuan J, Lipinski MM. Live imaging and single-cell analysis reveal differential dynamics of autophagy and apoptosis. Autophagy 2013; 9:1418-30; http://dx.doi.org/10.4161/auto.25080. PubMed DOI PMC

Amer AO, Swanson MS. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 2005; 7:765-78; http://dx.doi.org/10.1111/j.1462-5822.2005.00509.x. PubMed DOI PMC

Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119:753-66; http://dx.doi.org/10.1016/j.cell.2004.11.038. PubMed DOI

Ogawa M, Sasakawa C. Intracellular survival of Shigella. Cell Microbiol 2006; 8:177-84; http://dx.doi.org/10.1111/j.1462-5822.2005.00652.x. PubMed DOI

Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM, Belanger M, Barrett AG, Alvarez S, Akin D, Dunn WA Jr., et al.. Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83 reduces gingipain activity and alters trafficking in and response by host cells. PloS One 2013; 8:e74230; http://dx.doi.org/10.1371/journal.pone.0074230. PubMed DOI PMC

Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 2011; 27:1179-80; http://dx.doi.org/10.1093/bioinformatics/btr095. PubMed DOI PMC

Wu JQ, Pollard TD. Counting cytokinesis proteins globally and locally in fission yeast. Science 2005; 310:310-4; http://dx.doi.org/10.1126/science.1113230. PubMed DOI

Geng J, Baba M, Nair U, Klionsky DJ. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J Cell Biol 2008; 182:129-40; http://dx.doi.org/10.1083/jcb.200711112. PubMed DOI PMC

Lipinski MM, Hoffman G, Ng A, Zhou W, Py BF, Hsu E, Liu X, Eisenberg J, Liu J, Blenis J, et al.. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev Cell 2010; 18:1041-52; http://dx.doi.org/10.1016/j.devcel.2010.05.005. PubMed DOI PMC

Brady NR, Hamacher-Brady A, Yuan H, Gottlieb RA  The autophagic response to nutrient deprivation in the HL-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J 2007; 274:3184-97; http://dx.doi.org/10.1111/j.1742-4658.2007.05849.x. PubMed DOI

Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, Gorski SM. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Tr 2008; 112:389-403; http://dx.doi.org/10.1007/s10549-007-9873-4. PubMed DOI

Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, Shen Y, Rameh L, Yankner B, Tsai LH, et al.. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 2010; 38:500-11; http://dx.doi.org/10.1016/j.molcel.2010.05.009. PubMed DOI PMC

Dolloff NG, Ma X, Dicker DT, Humphreys RC, Li LZ, El-Deiry WS. Spectral imaging-based methods for quantifying autophagy and apoptosis. Cancer Biol Ther 2011; 12:349-56; http://dx.doi.org/10.4161/cbt.12.4.17175. PubMed DOI PMC

Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007; 315:1398-401; http://dx.doi.org/10.1126/science.1136880. PubMed DOI

Phadwal K, Alegre-Abarrategui J, Watson AS, Pike L, Anbalagan S, Hammond EM, Wade-Martins R, McMichael A, Klenerman P, Simon AK. A novel method for autophagy detection in primary cells: Impaired levels of macroautophagy in immunosenescent T cells. Autophagy 2012; 8:677-89; http://dx.doi.org/10.4161/auto.18935. PubMed DOI PMC

Davey HM, Hexley P. Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 2011; 13:163-71; http://dx.doi.org/10.1111/j.1462-2920.2010.02317.x. PubMed DOI

Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 2007; 3:323-8; http://dx.doi.org/10.4161/auto.4012. PubMed DOI

Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N, Yoshimori T, Bazett-Jones DP, Brumell JH. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2006; 2:189-99; http://dx.doi.org/10.4161/auto.2731. PubMed DOI

Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH. Ubiquitinated-protein aggregates form in pancreatic [beta]-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 2007; 56:930-9. PubMed

Fujita K, Maeda D, Xiao Q, Srinivasula SM. Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proc Natl Acad Sci USA 2011; 108:1427-32; http://dx.doi.org/10.1073/pnas.1014156108. PubMed DOI PMC

Pierre P. Dendritic cells, DRiPs, and DALIS in the control of antigen processing. Immunol Rev 2005; 207:184-90; http://dx.doi.org/10.1111/j.0105-2896.2005.00300.x. PubMed DOI

Pankiv S, Høyvarde Clausen T, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282:24131-45; http://dx.doi.org/10.1074/jbc.M702824200. PubMed DOI

Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, et al.. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441:885-9; http://dx.doi.org/10.1038/nature04724. PubMed DOI

Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, et al.. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441:880-4; http://dx.doi.org/10.1038/nature04723. PubMed DOI

Calvo-Garrido J, Escalante R. Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy 2010; 6:100-9; http://dx.doi.org/10.4161/auto.6.1.10697. PubMed DOI

Bjorkoy G, Lamark T, Johansen T. p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Auto-phagy 2006; 2:138-9; http://dx.doi.org/10.4161/auto.2.2.2405. PubMed DOI

Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine 403 Phosphorylation of p62/SQSTM1 Regulates Selective Autophagic Clearance of Ubiquitinated Proteins. Mol Cell 2011; 44:279-89; http://dx.doi.org/10.1016/j.molcel.2011.07.039. PubMed DOI

Lerner C, Bitto A, Pulliam D, Nacarelli T, Konigsberg M, Van Remmen H, Torres C, Sell C. Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell 2013; 12:966-77; http://dx.doi.org/10.1111/acel.12122. PubMed DOI PMC

Köchl R, Hu XW, EYW Chan, Tooze SA. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 2006; 7:129-45; http://dx.doi.org/10.1111/j.1600-0854.2005.00368.x. PubMed DOI

Eng KE, Panas MD, Karlsson Hedestam GB, McInerney GM. A novel quantitative flow cytometry-based assay for autophagy. Autophagy 2010; 6:634-41; http://dx.doi.org/10.4161/auto.6.5.12112. PubMed DOI

Ciechomska IA, Tolkovsky AM. Non-autophagic GFP-LC3 puncta induced by saponin and other detergents. Autophagy 2007; 3:586-90; http://dx.doi.org/10.4161/auto.4843. PubMed DOI

Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 1982; 79:1889-92; http://dx.doi.org/10.1073/pnas.79.6.1889. PubMed DOI PMC

Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen H-M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 2010; 285:10850-61; http://dx.doi.org/10.1074/jbc.M109.080796. PubMed DOI PMC

Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 2005; 1:23-36; http://dx.doi.org/10.4161/auto.1.1.1495. PubMed DOI

Tormo D, Checinska A, Alonso-Curbelo D, Perez-Guijarro E, Canon E, Riveiro-Falkenbach E, Calvo TG, Larribere L, Megias D, Mulero F, et al.. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 2009; 16:103-14; http://dx.doi.org/10.1016/j.ccr.2009.07.004. PubMed DOI PMC

Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 2010; 32:227-39; http://dx.doi.org/10.1016/j.immuni.2009.12.006. PubMed DOI PMC

Tamura N, Oku M, Sakai Y. Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. J Cell Sci 2010; 123:4107-16; http://dx.doi.org/10.1242/jcs.070045. PubMed DOI

Stromhaug PE, Reggiori F, Guan J, Wang C-W, Klionsky DJ. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 2004; 15:3553-66; http://dx.doi.org/10.1091/mbc.E04-02-0147. PubMed DOI PMC

Baens M, Noels H, Broeckx V, Hagens S, Fevery S, Billiau AD, Vankelecom H, Marynen P. The dark side of EGFP: defective polyubiquitination. PloS One 2006; 1:e54; http://dx.doi.org/10.1371/journal.pone.0000054. PubMed DOI PMC

Cali T, Galli C, Olivari S, Molinari M. Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun 2008; 371:405-10; http://dx.doi.org/10.1016/j.bbrc.2008.04.098. PubMed DOI

Al-Younes HM, Al-Zeer MA, Khalil H, Gussmann J, Karlas A, Machuy N, Brinkmann V, Braun PR, Meyer TF. Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis. Autophagy 2011; 7:814-28; http://dx.doi.org/10.4161/auto.7.8.15597. PubMed DOI

Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 2007; 104:20308-13; http://dx.doi.org/10.1073/pnas.0710517105. PubMed DOI PMC

Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al.. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136:521-34; http://dx.doi.org/10.1016/j.cell.2008.11.044. PubMed DOI PMC

Nyfeler B, Bergman P, Triantafellow E, Wilson CJ, Zhu Y, Radetich B, Finan PM, Klionsky DJ, Murphy LO. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol Cell Biol 2011; 31:2867-76; http://dx.doi.org/10.1128/MCB.05430-11. PubMed DOI PMC

Singh K, Sharma A, Mir MC, Drazba JA, Heston WD, Magi-Galluzzi C, Hansel D, Rubin BP, Klein EA, Almasan A. Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin). Mol Cancer 2014; 13:70; http://dx.doi.org/10.1186/1476-4598-13-70. PubMed DOI PMC

Cherra SJ III, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW, Chu CT. Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 2010; 190:533-9; http://dx.doi.org/10.1083/jcb.201002108. PubMed DOI PMC

Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR, et al.. Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 2011; 43:19-32; http://dx.doi.org/10.1016/j.molcel.2011.04.029. PubMed DOI PMC

Nazarko TY, Ozeki K, Till A, Ramakrishnan G, Lotfi P, Yan M, Subramani S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol 2014; 204:541-57; http://dx.doi.org/10.1083/jcb.201307050. PubMed DOI PMC

Kim SJ, Syed GH, Khan M, Chiu WW, Sohail MA, Gish RG, Siddiqui A. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci USA 2014; 111:6413-8; http://dx.doi.org/10.1073/pnas.1321114111. PubMed DOI PMC

Allen GF, Toth R, James J, Ganley IG. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 2013; 14:1127-35; http://dx.doi.org/10.1038/embor.2013.168. PubMed DOI PMC

Rosado CJ, Mijaljica D, Hatzinisiriou I, Prescott M, Devenish RJ. Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast. Autophagy 2008; 4:205-13; http://dx.doi.org/10.4161/auto.5331. PubMed DOI

Mijaljica D, Rosado CJ, Devenish RJ, Prescott M. Biosensors for monitoring autophagy In: Serra PA, ed. Biosensors-Emerging Materials and Applications Croatia: InTech, 2011:383-400.

Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 2007; 14:1647-56; http://dx.doi.org/10.1038/sj.cdd.4402167. PubMed DOI

Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010; 90:1103-63; http://dx.doi.org/10.1152/physrev.00038.2009. PubMed DOI

Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, Chen Y, Deng X, Xia B, Lin J. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 2012; 8:1215-26; http://dx.doi.org/10.4161/auto.20284. PubMed DOI

Zhou J, Lin J, Zhou C, Deng X, Xia B. Cytotoxicity of red fluorescent protein DsRed is associated with the suppression of Bcl-xL translation. FEBS Lett 2011; 585:821-7; http://dx.doi.org/10.1016/j.febslet.2011.02.013. PubMed DOI

Wen Y, Zand B, Ozpolat B, Szczepanski MJ, Lu C, Yuca E, Carroll AR, Alpay N, Bartholomeusz C, Tekedereli I, et al.. Antagonism of tumoral prolactin receptor promotes autophagy-related cell death. Cell Rep 2014; 7:488-500; http://dx.doi.org/10.1016/j.celrep.2014.03.009. PubMed DOI PMC

Loos B, Genade S, Ellis B, Lochner A, Engelbrecht AM. At the core of survival: autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res 2011; 317:1437-53; http://dx.doi.org/10.1016/j.yexcr.2011.03.011. PubMed DOI

Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic Control of Autophagy. Cell 2014; 159:1263-76; http://dx.doi.org/10.1016/j.cell.2014.11.006. PubMed DOI PMC

Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility: Unanswered questions. Autophagy 2013; 9:1270-85; http://dx.doi.org/10.4161/auto.25560. PubMed DOI PMC

Shvets E, Fass E, Elazar Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 2008; 4:621-8; http://dx.doi.org/10.4161/auto.5939. PubMed DOI

Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high-content screen for inducers of autophagy. BMC Biol 2011; 9:38; http://dx.doi.org/10.1186/1741-7007-9-38. PubMed DOI PMC

de la Calle C, Joubert PE, Law HK, Hasan M, Albert ML. Simultaneous assessment of autophagy and apoptosis using multispectral imaging cytometry. Autophagy 2011; 7:1045-51; http://dx.doi.org/10.4161/auto.7.9.16252. PubMed DOI

Degtyarev M, Reichelt M, Lin K. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication. PloS One 2014; 9:e87707; http://dx.doi.org/10.1371/journal.pone.0087707. PubMed DOI PMC

Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer PC, Lee M, Strowig T, Arrey F, Conenello G, et al.. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009; 6:367-80; http://dx.doi.org/10.1016/j.chom.2009.09.005. PubMed DOI PMC

Kaminskyy V, Abdi A, Zhivotovsky B. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy 2011; 7:83-90; http://dx.doi.org/10.4161/auto.7.1.13893. PubMed DOI

Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, et al.. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 2009; 33:505-16; http://dx.doi.org/10.1016/j.molcel.2009.01.020. PubMed DOI

Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjorkoy G. A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 2010; 6:784-93; http://dx.doi.org/10.4161/auto.6.6.12510. PubMed DOI

Huang JJ, Li HR, Huang Y, Jiang WQ, Xu RH, Huang HQ, Lv Y, Xia ZJ, Zhu XF, Lin TY, et al.. Beclin 1 expression: a predictor of prognosis in patients with extranodal natural killer T-cell lymphoma, nasal type. Autophagy 2010; 6:777-83; http://dx.doi.org/10.4161/auto.6.6.12784. PubMed DOI

Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris AL, Gatter KC, Giatromanolaki A. LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Amer J Pathol 2010; 176:2477-89; http://dx.doi.org/10.2353/ajpath.2010.090049. PubMed DOI PMC

Sivridis E, Giatromanolaki A, Liberis V, Koukourakis MI. Auto-phagy in endometrial carcinomas and prognostic relevance of ‘stone-like’ structures (SLS): what is destined for the atypical endometrial hyperplasia? Autophagy 2011; 7:74-82; http://dx.doi.org/10.4161/auto.7.1.13947. PubMed DOI

Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Chloropoulou P, Liberis V, Sivridis E. High Beclin 1 expression defines a poor prognosis in endometrial adenocarcinomas. Gynecol Oncol 2011; 123:147-51; http://dx.doi.org/10.1016/j.ygyno.2011.06.023. PubMed DOI

Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression. Pathol Oncol Res 2009; 15:487-93; http://dx.doi.org/10.1007/s12253-008-9143-8. PubMed DOI PMC

Wan XB, Fan XJ, Chen MY, Xiang J, Huang PY, Guo L, Wu XY, Xu J, Long ZJ, Zhao Y, et al.. Elevated Beclin 1 expression is correlated with HIF-1[a] in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy 2010; 6:395-404; http://dx.doi.org/10.4161/auto.6.3.11303. PubMed DOI

Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chikamatsu K. Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma. Cancer Sci 2015; 106:1-8; http://dx.doi.org/10.1111/cas.12559. PubMed DOI PMC

Shi YH, Ding ZB, Zhou J, Qiu SJ, Fan J. Prognostic significance of Beclin 1-dependent apoptotic activity in hepatocellular carcinoma. Autophagy 2009; 5:380-2; http://dx.doi.org/10.4161/auto.5.3.7658. PubMed DOI

Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, Shi GM, Wang XY, Ke AW, Wu B, et al.. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008; 68:9167-75; http://dx.doi.org/10.1158/0008-5472.CAN-08-1573. PubMed DOI

Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, Mourmouras V, Rubino G, Miracco C. The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 2009; 5:930-6; http://dx.doi.org/10.4161/auto.5.7.9227. PubMed DOI

Karpathiou G, Sivridis E, Koukourakis MI, Mikroulis D, Bouros D, Froudarakis ME, Giatromanolaki A. Light-chain 3A autophagic activity and prognostic significance in non-small cell lung carcinomas. Chest 2011; 140:127-34; http://dx.doi.org/10.1378/chest.10-1831. PubMed DOI

Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, Kinoshita T, Ueno T, Esumi H, Ochiai A. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 2008; 99:1813-9; http://dx.doi.org/10.1111/j.1349-7006.2008.00743.x. PubMed DOI PMC

Li BX, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, Zhu XF, Zhang XS. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009; 5:303-6; http://dx.doi.org/10.4161/auto.5.3.7491. PubMed DOI

Koukourakis MI, Giatromanolaki A, Sivridis E, Pitiakoudis M, Gatter KC, Harris AL. Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Brit J Cancer 2010; 103:1209-14; http://dx.doi.org/10.1038/sj.bjc.6605904. PubMed DOI PMC

Giatromanolaki A, Koukourakis MI, Harris AL, Polychronidis A, Gatter KC, Sivridis E. Prognostic relevance of light chain 3 (LC3A) autophagy patterns in colorectal adenocarcinomas. J Clin Pathol 2010; 63:867-72; http://dx.doi.org/10.1136/jcp.2010.079525. PubMed DOI

Sivridis E, Koukourakis MI, Mendrinos SE, Karpouzis A, Fiska A, Kouskoukis C, Giatromanolaki A. Beclin-1 and LC3A expression in cutaneous malignant melanomas: a biphasic survival pattern for beclin-1. Melanoma Res 2011; 21:188-95; http://dx.doi.org/10.1097/CMR.0b013e328346612c. PubMed DOI

Giatromanolaki AN, Charitoudis G St, Bechrakis NE, Kozobolis VP, Koukourakis MI, Foerster MH, Sivridis EL. Autophagy patterns and prognosis in uveal melanomas. Modern Pathol 2011; 24:1036-45; http://dx.doi.org/10.1038/modpathol.2011.63. PubMed DOI

McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 2005; 97:1180-4; http://dx.doi.org/10.1093/jnci/dji237. PubMed DOI

Kuwahara Y, Oikawa T, Ochiai Y, Roudkenar MH, Fukumoto M, Shimura T, Ohtake Y, Ohkubo Y, Mori S, Uchiyama Y. Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis 2011; 2:e177. PubMed PMC

Hou YJ, Dong LW, Tan YX, Yang GZ, Pan YF, Li Z, Tang L, Wang M, Wang Q, Wang HY. Inhibition of active autophagy induces apoptosis and increases chemosensitivity in cholangiocarcinoma. Lab Invest 2011; 91:1146-57; http://dx.doi.org/10.1038/labinvest.2011.97. PubMed DOI

O'Donovan TR, O'Sullivan GC, McKenna SL. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 2011; 7:509-24; http://dx.doi.org/10.4161/auto.7.5.15066. PubMed DOI PMC

Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe M, Uchiyama Y. Effects of RNA interference of Atg4B on the limited proteolysis of LC3 in PC12 cells and expression of Atg4B in various rat tissues. Autophagy 2006; 2:200-8; http://dx.doi.org/10.4161/auto.2744. PubMed DOI

Tamura H, Shibata M, Koike M, Sasaki M, Uchiyama Y. Atg9A protein, an autophagy-related membrane protein, is localized in the neurons of mouse brains. J Histochem Cytochem 2010; 58:443-53; http://dx.doi.org/10.1369/jhc.2010.955690. PubMed DOI PMC

Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X. Age-related changes in the function of autophagy in rat kidneys. Age 2011; 10.1007/s11357-011-9237-1. PubMed DOI PMC

Marinelli S, Nazio F, Tinari A, Ciarlo L, D'Amelio M, Pieroni L, Vacca V, Urbani A, Cecconi F, Malorni W, et al.. Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain 2014; 155:93-107; http://dx.doi.org/10.1016/j.pain.2013.09.013. PubMed DOI

Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, Glickman JN, Tschurtschenthaler M, Hartwig J, Hosomi S, et al.. Paneth cells as a site of origin for intestinal inflammation. Nature 2013; 503:272-6. PubMed PMC

Thachil E, Hugot JP, Arbeille B, Paris R, Grodet A, Peuchmaur M, Codogno P, Barreau F, Ogier-Denis E, Berrebi D, et al.. Abnormal activation of autophagy-induced crinophagy in Paneth cells from patients with Crohn's disease. Gastroenterology 2012; 142:1097-9 e4; http://dx.doi.org/10.1053/j.gastro.2012.01.031. PubMed DOI

Mellén MA, de la Rosa EJ, Boya P. The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ 2008; 15:1279-90; http://dx.doi.org/10.1038/cdd.2008.40. PubMed DOI

Mellén MA, de la Rosa EJ, Boya P. Autophagy is not universally required for phosphatidyl-serine exposure and apoptotic cell engulfment during neural development. Autophagy 2009; 5:964-72; http://dx.doi.org/10.4161/auto.5.7.9292. PubMed DOI

Aburto MR, Sanchez-Calderon H, Hurle JM, Varela-Nieto I, Magarinos M. Early otic development depends on autophagy for apoptotic cell clearance and neural differentiation. Cell Death Dis 2012; 3:e394; http://dx.doi.org/10.1038/cddis.2012.132. PubMed DOI PMC

Morais RD, Thome RG, Lemos FS, Bazzoli N, Rizzo E. Autophagy and apoptosis interplay during follicular atresia in fish ovary: a morphological and immunocytochemical study. Cell Tissue Res 2012; 347:467-78; http://dx.doi.org/10.1007/s00441-012-1327-6. PubMed DOI

Shibata M, Yoshimura K, Furuya N, Koike M, Ueno T, Komatsu M, Arai H, Tanaka K, Kominami E, Uchiyama Y. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun 2009; 382:419-23; http://dx.doi.org/10.1016/j.bbrc.2009.03.039. PubMed DOI

Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, Mizushima N, Iwata J-I Ezaki J, Murata S, et al.. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131:1149-63; http://dx.doi.org/10.1016/j.cell.2007.10.035. PubMed DOI

Germain M, Nguyen AP, Le Grand JN, Arbour N, Vanderluit JL, Park DS, Opferman JT, Slack RS. MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. EMBO J 2011; 30:395-407; http://dx.doi.org/10.1038/emboj.2010.327. PubMed DOI PMC

Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr., Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 2007; 104:14489-94; http://dx.doi.org/10.1073/pnas.0701311104. PubMed DOI PMC

Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 2006; 26:8057-68; http://dx.doi.org/10.1523/JNEUROSCI.2261-06.2006. PubMed DOI PMC

Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE, Stenmark H, Brech A. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 2008; 180:1065-71; http://dx.doi.org/10.1083/jcb.200711108. PubMed DOI PMC

Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, et al.. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 2011; 7:572-83; http://dx.doi.org/10.4161/auto.7.6.14943. PubMed DOI PMC

Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10:507-15; http://dx.doi.org/10.1016/j.cmet.2009.10.008. PubMed DOI

El-Khoury V, Pierson S, Szwarcbart E, Brons NH, Roland O, Cherrier-De Wilde S, Plawny L, Van Dyck E, Berchem G. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia 2014; 28:1636-46; http://dx.doi.org/10.1038/leu.2014.19. PubMed DOI PMC

Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y, Yasui K, Araga S, Yanagawa T, Ishii T, Nakashima K. Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson's disease. Brain Res 2004; 1012:42-51; http://dx.doi.org/10.1016/j.brainres.2004.03.029. PubMed DOI

Trocoli A, Bensadoun P, Richard E, Labrunie G, Merhi F, Schlafli AM, Brigger D, Souquere S, Pierron G, Pasquet JM, et al.. p62/SQSTM1 upregulation constitutes a survival mechanism that occurs during granulocytic differentiation of acute myeloid leukemia cells. Cell Death Differ 2014; 21:1852-61. PubMed PMC

B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 2013; 41:7683-99; http://dx.doi.org/10.1093/nar/gkt563. PubMed DOI PMC

Cnop M, Abdulkarim B, Bottu G, Cunha DA, Igoillo-Esteve M, Masini M, Turatsinze JV, Griebel T, Villate O, Santin I, et al.. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 2014; 63:1978-93; http://dx.doi.org/10.2337/db13-1383. PubMed DOI

Colosetti P, Puissant A, Robert G, Luciano F, Jacquel A, Gounon P, Cassuto JP, Auberger P. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 2009; 5:1092-8; http://dx.doi.org/10.4161/auto.5.8.9889. PubMed DOI

Toepfer N, Childress C, Parikh A, Rukstalis D, Yang W. Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biol Ther 2011; 12:691-9; http://dx.doi.org/10.4161/cbt.12.8.15978. PubMed DOI

Zheng Q, Su H, Ranek MJ, Wang X. Autophagy and p62 in cardiac proteinopathy. Circ Res 2011; 109:296-308; http://dx.doi.org/10.1161/CIRCRESAHA.111.244707. PubMed DOI PMC

Trocoli A, Mathieu J, Priault M, Reiffers J, Souquere S, Pierron G, Besancon F, Djavaheri-Mergny M. ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells. Autophagy 2011; 7:1108-14; http://dx.doi.org/10.4161/auto.7.10.16623. PubMed DOI PMC

Kim JH, Hong SK, Wu PK, Richards AL, Jackson WT, Park JI. Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels. Exp Cell Res 2014; 327:340-52; http://dx.doi.org/10.1016/j.yexcr.2014.08.001. PubMed DOI PMC

Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 2014; 10:431-41; http://dx.doi.org/10.4161/auto.27344. PubMed DOI PMC

B'Chir W, Chaveroux C, Carraro V, Averous J, Maurin AC, Jousse C, Muranishi Y, Parry L, Fafournoux P, Bruhat A. Dual role for CHOP in the crosstalk between autophagy and apoptosis to determine cell fate in response to amino acid deprivation. Cell Signal 2014; 26:1385-91; http://dx.doi.org/10.1016/j.cellsig.2014.03.009. PubMed DOI

Jamart C, Naslain D, Gilson H, Francaux M. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol Endocrinol Metab 2013; 305:E964-74; http://dx.doi.org/10.1152/ajpendo.00270.2013. PubMed DOI

Sanchez AM, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014; 307:R956-69; http://dx.doi.org/10.1152/ajpregu.00187.2014. PubMed DOI

Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol 2012; 8:608; http://dx.doi.org/10.1038/msb.2012.40. PubMed DOI PMC

Tang YC, Williams BR, Siegel JJ, Amon A. Identification of aneuploidy-selective antiproliferation compounds. Cell 2011; 144:499-512; http://dx.doi.org/10.1016/j.cell.2011.01.017. PubMed DOI PMC

Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P. Autophagic degradation contributes to muscle wasting in cancer cachexia. Amer J Pathol 2013; 182:1367-78; http://dx.doi.org/10.1016/j.ajpath.2012.12.023. PubMed DOI

BenYounes A, Tajeddine N, Tailler M, Malik SA, Shen S, Metivier D, Kepp O, Vitale I, Maiuri MC, Kroemer G. A fluorescence-microscopic and cytofluorometric system for monitoring the turnover of the autophagic substrate p62/SQSTM1. Autophagy 2011; 7:883-91; http://dx.doi.org/10.4161/auto.7.8.15538. PubMed DOI

Chang Y-Y, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 2009; 20:2004-14; http://dx.doi.org/10.1091/mbc.E08-12-1250. PubMed DOI PMC

Jiang Y, Zhu J, Wu L, Xu G, Dai J, Liu X. Tetracycline inhibits local inflammation induced by cerebral ischemia via modulating autophagy. PloS One 2012; 7:e48672; http://dx.doi.org/10.1371/journal.pone.0048672. PubMed DOI PMC

Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452:181-97; http://dx.doi.org/10.1016/S0076-6879(08)03612-4. PubMed DOI

Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 2009; 137:1001-4; http://dx.doi.org/10.1016/j.cell.2009.05.023. PubMed DOI PMC

Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 2011; 44:134-46; http://dx.doi.org/10.1016/j.molcel.2011.06.038. PubMed DOI PMC

Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et al.. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12:213-23. PubMed

Gonzalez Y, Aryal B, Chehab L, Rao VA. Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress. Oncotarget 2014; 5:1526-37; http://dx.doi.org/10.18632/oncotarget.1715. PubMed DOI PMC

Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 2010; 285:22576-91; http://dx.doi.org/10.1074/jbc.M110.118976. PubMed DOI PMC

Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 2010; 584:1393-8; http://dx.doi.org/10.1016/j.febslet.2009.12.047. PubMed DOI

Bardag-Gorce F, Francis T, Nan L, Li J, He Lue Y, French BA, French SW. Modifications in p62 occur due to proteasome inhibition in alcoholic liver disease. Life Sci 2005; 77:2594-602; http://dx.doi.org/10.1016/j.lfs.2005.04.020. PubMed DOI

Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 2011; 286:22426-40; http://dx.doi.org/10.1074/jbc.M110.149252. PubMed DOI PMC

Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 2009; 33:517-27; http://dx.doi.org/10.1016/j.molcel.2009.01.021. PubMed DOI PMC

Monick MM, Powers LS, Walters K, Lovan N, Zhang M, Gerke A, Hansdottir S, Hunninghake GW. Identification of an autophagy defect in smokers' alveolar macrophages. J Immunol 2010; 185:5425-35; http://dx.doi.org/10.4049/jimmunol.1001603. PubMed DOI PMC

Vallelian F, Deuel JW, Opitz L, Schaer CA, Puglia M, Lonn M, Engelsberger W, Schauer S, Karnaukhova E, Spahn DR, et al.. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death Differ 2015; 22:597-611; http://dx.doi.org/10.1038/cdd.2014.154. PubMed DOI PMC

Long J, Garner TP, Pandya MJ, Craven CJ, Chen P, Shaw B, Williamson MP, Layfield R, Searle MS. Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling. J Mol Biol 2010; 396:178-94; http://dx.doi.org/10.1016/j.jmb.2009.11.032. PubMed DOI

Norman JM, Cohen GM, Bampton ET. The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 2010; 6:1042-56; http://dx.doi.org/10.4161/auto.6.8.13337. PubMed DOI

Lelouard H, Schmidt EK, Camosseto V, Clavarino G, Ceppi M, Hsu HT, Pierre P. Regulation of translation is required for dendritic cell function and survival during activation. J Cell Biol 2007; 179:1427-39; http://dx.doi.org/10.1083/jcb.200707166. PubMed DOI PMC

Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 2009; 6:275-7; http://dx.doi.org/10.1038/nmeth.1314. PubMed DOI

Lim J, Kim HW, Youdim MB, Rhyu IJ, Choe KM, Oh YJ. Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy 2011; 7:51-60; http://dx.doi.org/10.4161/auto.7.1.13909. PubMed DOI

Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M, Touret M, Nataf S, et al.. ER stress inhibits neuronal death by promoting autophagy. Autophagy 2012; 8:915-26; http://dx.doi.org/10.4161/auto.19716. PubMed DOI PMC

Waguri S, Komatsu M. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice. Methods Enzymol 2009; 453:181-96; http://dx.doi.org/10.1016/S0076-6879(08)04009-3. PubMed DOI

Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson GC, Ward L, Bennett ST, Wuyts W, et al.. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet 2002; 11:2735-9; http://dx.doi.org/10.1093/hmg/11.22.2735. PubMed DOI

Kara NZ, Toker L, Agam G, Anderson GW, Belmaker RH, Einat H. Trehalose induced antidepressant-like effects and autophagy enhancement in mice. Psychopharmacology 2013; 229:367-75; http://dx.doi.org/10.1007/s00213-013-3119-4. PubMed DOI

Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 2006; 6:3414-25; http://dx.doi.org/10.1002/pmic.200500069. PubMed DOI

Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatr 2009; 14:601-13; http://dx.doi.org/10.1038/mp.2008.7. PubMed DOI

Chetcuti A, Adams LJ, Mitchell PB, Schofield PR. Microarray gene expression profiling of mouse brain mRNA in a model of lithium treatment. Psychiat Genet 2008; 18:64-72; http://dx.doi.org/10.1097/YPG.0b013e3282fb0051. PubMed DOI

Focking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR. Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiat 2011; 68:477-88; http://dx.doi.org/10.1001/archgenpsychiatry.2011.43. PubMed DOI

Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA. Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 2008; 105:3634-9; http://dx.doi.org/10.1073/pnas.0800001105. PubMed DOI PMC

Lu K, Psakhye I, Jentsch S. Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. Cell 2014; 158:549-63; http://dx.doi.org/10.1016/j.cell.2014.05.048. PubMed DOI

Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol 2010; 12:823-30; http://dx.doi.org/10.1038/ncb0910-823. PubMed DOI PMC

Maloverjan A, Piirsoo M, Michelson P, Kogerman P, Osterlund T. Identification of a novel serine/threonine kinase ULK3 as a positive regulator of Hedgehog pathway. Exp Cell Res 2010; 316:627-37; http://dx.doi.org/10.1016/j.yexcr.2009.10.018. PubMed DOI

Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavaré S, Arakawa S, Shimizu S, Watt FM. Autophagy mediates the mitotic senescence transition. Genes Dev 2009; 23:798-803; http://dx.doi.org/10.1101/gad.519709. PubMed DOI PMC

Chan EY, Tooze SA. Evolution of Atg1 function and regulation. Autophagy 2009; 5:758-65; http://dx.doi.org/10.4161/auto.8709. PubMed DOI

Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 2007; 282:25464-74; http://dx.doi.org/10.1074/jbc.M703663200. PubMed DOI

Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, Saxty B, Ganley IG. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem 2015; 290:11376-83; http://dx.doi.org/10.1074/jbc.C114.627778. PubMed DOI PMC

Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, et al.. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 2011; 43:572-85; http://dx.doi.org/10.1016/j.molcel.2011.06.018. PubMed DOI PMC

Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25:1895-908; http://dx.doi.org/10.1101/gad.17420111. PubMed DOI PMC

Carling D, Mayer FV, Sanders MJ, Gamblin SJ. AMP-activated protein kinase: nature's energy sensor. Nat Chem Biol 2011; 7:512-8; http://dx.doi.org/10.1038/nchembio.610. PubMed DOI

Samari HR, Moller MT, Holden L, Asmyhr T, Seglen PO. Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. Biochem J 2005; 386:237-44; http://dx.doi.org/10.1042/BJ20040609. PubMed DOI PMC

Dando I, Donadelli M, Costanzo C, Dalla Pozza E, D'Alessandro A, Zolla L, Palmieri M. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis 2013; 4:e664. PubMed PMC

Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, et al.. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 2010; 11:554-65; http://dx.doi.org/10.1016/j.cmet.2010.04.001. PubMed DOI PMC

Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466:68-76; http://dx.doi.org/10.1038/nature09204. PubMed DOI PMC

Chiacchiera F, Matrone A, Ferrari E, Ingravallo G, Lo Sasso G, Murzilli S, Petruzzelli M, Salvatore L, Moschetta A, Simone C. p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription. Cell Death Differ 2009; 16:1203-14; http://dx.doi.org/10.1038/cdd.2009.36. PubMed DOI

Kovács AL, Seglen PO. Inhibition of hepatocytic protein degradation by methylaminopurines and inhibitors of protein synthesis. Biochim Biophys Acta 1981; 676:213-20; http://dx.doi.org/10.1016/0304-4165(81)90189-6. PubMed DOI

Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z, Cao W. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 2009; 284:31484-92; http://dx.doi.org/10.1074/jbc.M109.033936. PubMed DOI PMC

Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al.. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6:458-71; http://dx.doi.org/10.1016/j.cmet.2007.11.001. PubMed DOI

Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011; 145:607-21; http://dx.doi.org/10.1016/j.cell.2011.03.043. PubMed DOI PMC

Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 2011; 80: 1066-75; http://dx.doi.org/10.1124/mol.111.071761. PubMed DOI

Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 2008; 582:46-53; http://dx.doi.org/10.1016/j.febslet.2007.11.034. PubMed DOI PMC

Samari HR, Seglen PO. Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J Biol Chem 1998; 273:23758-63; http://dx.doi.org/10.1074/jbc.273.37.23758. PubMed DOI

Sanchez AM, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H, Candau R. AMPK promotes skeletal muscle autophagy through activation of Forkhead FoxO3a and interaction with Ulk1. J Cell Biochem 2011. PubMed

Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115:577-90; http://dx.doi.org/10.1016/S0092-8674(03)00929-2. PubMed DOI

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30:214-26; http://dx.doi.org/10.1016/j.molcel.2008.03.003. PubMed DOI PMC

Egan D, Kim J, Shaw RJ, Guan K-L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011; 7:643-4; http://dx.doi.org/10.4161/auto.7.6.15123. PubMed DOI PMC

Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al.. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011; 331:456-61; http://dx.doi.org/10.1126/science.1196371. PubMed DOI PMC

Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132-41; http://dx.doi.org/10.1038/ncb2152. PubMed DOI PMC

Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al.. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167-74; http://dx.doi.org/10.1172/JCI13505. PubMed DOI PMC

Sharma A, Singh K, Mazumder S, Hill BT, Kalaycio M, Almasan A. BECN1 and BIM interactions with MCL-1 determine fludarabine resistance in leukemic B cells. Cell Death Dis 2013; 4:e628; http://dx.doi.org/10.1038/cddis.2013.155. PubMed DOI PMC

Emerling BM, Viollet B, Tormos KV, Chandel NS. Compound C inhibits hypoxic activation of HIF-1 independent of AMPK. FEBS Lett 2007; 581:5727-31; http://dx.doi.org/10.1016/j.febslet.2007.11.038. PubMed DOI PMC

Vucicevic L, Misirkic M, Janjetovic K, Vilimanovich U, Sudar E, Isenovic E, Prica M, Harhaji-Trajkovic L, Kravic-Stevovic T, Bumbasirevic V, et al.. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 2011; 7:40-50; http://dx.doi.org/10.4161/auto.7.1.13883. PubMed DOI

Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 2006; 281:34870-9; http://dx.doi.org/10.1074/jbc.M605488200. PubMed DOI

Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S, Proikas-Cezanne T, Stork B. AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 2010; 22:914-25; http://dx.doi.org/10.1016/j.cellsig.2010.01.015. PubMed DOI

Williams T, Forsberg LJ, Viollet B, Brenman JE. Basal autophagy induction without AMP-activated protein kinase under low glucose conditions. Autophagy 2009; 5:1155-65; http://dx.doi.org/10.4161/auto.5.8.10090. PubMed DOI PMC

Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci USA 2011; 108:4788-93; http://dx.doi.org/10.1073/pnas.1100844108. PubMed DOI PMC

Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science 2011; 334:678-83; http://dx.doi.org/10.1126/science.1207056. PubMed DOI PMC

Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, et al.. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 2010; 191:155-68; http://dx.doi.org/10.1083/jcb.201002100. PubMed DOI PMC

Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J 2011; 30:636-51; http://dx.doi.org/10.1038/emboj.2010.338. PubMed DOI PMC

Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, Kundu M, Kim D-H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20:1992-2003; http://dx.doi.org/10.1091/mbc.E08-12-1249. PubMed DOI PMC

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al.. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20:1981-91; http://dx.doi.org/10.1091/mbc.E08-12-1248. PubMed DOI PMC

Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 2009; 29:157-71; http://dx.doi.org/10.1128/MCB.01082-08. PubMed DOI PMC

Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes CA, Maiolica A, Hansmann I, Pfaffenwimmer T, Kijanska M, Stoffel I, et al.. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol Cell 2014; 53:471-83; http://dx.doi.org/10.1016/j.molcel.2013.12.011. PubMed DOI PMC

Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013; 15:741-50; http://dx.doi.org/10.1038/ncb2757. PubMed DOI PMC

Jung CH, Seo M, Otto NM, Kim DH. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 2011; 7:1212-21; http://dx.doi.org/10.4161/auto.7.10.16660. PubMed DOI PMC

Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, Campbell DG, Wesselborg S, Alessi DR, Stork B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 2011; 7:696-706; http://dx.doi.org/10.4161/auto.7.7.15451. PubMed DOI

Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neuobiol Dis 2007; 26:86-93; http://dx.doi.org/10.1016/j.nbd.2006.12.003. PubMed DOI

Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J, Codogno P. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 2006; 281:8518-27; http://dx.doi.org/10.1074/jbc.M506182200. PubMed DOI

Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr., Abraham RT. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277:99-101; http://dx.doi.org/10.1126/science.277.5322.99. PubMed DOI

Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 2010; 38:768-74; http://dx.doi.org/10.1016/j.molcel.2010.05.017. PubMed DOI PMC

Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM, et al.. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013; 15:406-16; http://dx.doi.org/10.1038/ncb2708. PubMed DOI

Cheong H, Nair U, Geng J, Klionsky DJ. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:668-81; http://dx.doi.org/10.1091/mbc.E07-08-0826. PubMed DOI PMC

Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 2005; 16:2544-53; http://dx.doi.org/10.1091/mbc.E04-08-0669. PubMed DOI PMC

Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000; 150:1507-13; http://dx.doi.org/10.1083/jcb.150.6.1507. PubMed DOI PMC

Scott SV, Nice DC III, Nau JJ, Weisman LS, Kamada Y, Keizer-Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 2000; 275:25840-9; http://dx.doi.org/10.1074/jbc.M002813200. PubMed DOI

Miller-Fleming L, Cheong H, Antas P, Klionsky DJ. Detection of Saccharomyces cerevisiae Atg13 by western blot. Autophagy 2014; 10:514-7; http://dx.doi.org/10.4161/auto.27707. PubMed DOI PMC

Yeh YY, Wrasman K, Herman PK. Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 2010; 185:871-82; http://dx.doi.org/10.1534/genetics.110.116566. PubMed DOI PMC

Mao K, Wang K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 2011; 193:755-67; http://dx.doi.org/10.1083/jcb.201102092. PubMed DOI PMC

Kim M, Park HL, Park HW, Ro SH, Nam SG, Reed JM, Guan JL, Lee JH. Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging. Autophagy 2013; 9:1201-13; http://dx.doi.org/10.4161/auto.24811. PubMed DOI PMC

Nagy P, Karpati M, Varga A, Pircs K, Venkei Z, Takats S, Varga K, Erdi B, Hegedus K, Juhasz G. Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. Autophagy 2014; 10:453-67; http://dx.doi.org/10.4161/auto.27442. PubMed DOI PMC

Singh K, Matsuyama S, Drazba JA, Almasan A. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy 2012; 8:236-51. PubMed PMC

Shang L, Wang X. AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy 2011; 7:924-6; http://dx.doi.org/10.4161/auto.7.8.15860. PubMed DOI

Ruck A, Attonito J, Garces KT, Nunez L, Palmisano NJ, Rubel Z, Bai Z, Nguyen KC, Sun L, Grant BD, et al.. The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 2011; 7:386-400; http://dx.doi.org/10.4161/auto.7.4.14391. PubMed DOI PMC

Li W, Zou W, Yang Y, Chai Y, Chen B, Cheng S, Tian D, Wang X, Vale RD, Ou G. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell. J Cell Biol 2012; 197:27-35; http://dx.doi.org/10.1083/jcb.201111053. PubMed DOI PMC

Abnave P, Mottola G, Gimenez G, Boucherit N, Trouplin V, Torre C, Conti F, Ben Amara A, Lepolard C, Djian B, et al.. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2014; 16:338-50; http://dx.doi.org/10.1016/j.chom.2014.08.002. PubMed DOI

Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P. NF- [kappa]B activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 2006; 281:30373-82. PubMed

Liu Z, Lenardo MJ. Reactive oxygen species regulate autophagy through redox-sensitive proteases. Dev Cell 2007; 12:484-5; http://dx.doi.org/10.1016/j.devcel.2007.03.016. PubMed DOI

Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R, Codogno P. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 2004; 279:18384-91; http://dx.doi.org/10.1074/jbc.M313561200. PubMed DOI

Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26:1749-60; http://dx.doi.org/10.1038/sj.emboj.7601623. PubMed DOI PMC

Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell 2012; 46:436-48; http://dx.doi.org/10.1016/j.molcel.2012.04.001. PubMed DOI

Zeng X, Kinsella TJ. Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer Res 2008; 68:2384-90; http://dx.doi.org/10.1158/0008-5472.CAN-07-6163. PubMed DOI

Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012; 338:956-9; http://dx.doi.org/10.1126/science.1225967. PubMed DOI PMC

Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, et al.. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013; 154:1269-84; http://dx.doi.org/10.1016/j.cell.2013.08.015. PubMed DOI PMC

Yasugi M, Takigawa N, Ochi N, Ohashi K, Harada D, Ninomiya T, Murakami T, Honda Y, Ichihara E, Tanimoto M, et al.. Everolimus prolonged survival in transgenic mice with EGFR-driven lung tumors. Exp Cell Res 2014; 326:201-9; http://dx.doi.org/10.1016/j.yexcr.2014.04.012. PubMed DOI

Castets P, Lin S, Rion N, Di Fulvio S, Romanino K, Guridi M, Frank S, Tintignac LA, Sinnreich M, Ruegg MA. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab 2013; 17:731-44; http://dx.doi.org/10.1016/j.cmet.2013.03.015. PubMed DOI

Castets P, Ruegg MA. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. Autophagy 2013; 9:1435-7; http://dx.doi.org/10.4161/auto.25722. PubMed DOI

Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, et al.. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010; 465:942-6; http://dx.doi.org/10.1038/nature09076. PubMed DOI PMC

Holla S, Kurowska-Stolarska M, Bayry J, Balaji KN. Selective inhibition of IFNG-induced autophagy by Mir155- and Mir31-responsive WNT5A and SHH signaling. Autophagy 2014; 10:311-30; http://dx.doi.org/10.4161/auto.27225. PubMed DOI PMC

Mochizuki H, Toda H, Ando M, Kurusu M, Tomoda T, Furukubo-Tokunaga K. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain. PloS One 2011; 6:e19632; http://dx.doi.org/10.1371/journal.pone.0019632. PubMed DOI PMC

Wairkar YP, Toda H, Mochizuki H, Furukubo-Tokunaga K, Tomoda T, Diantonio A. Unc-51 controls active zone density and protein composition by downregulating ERK signaling. J Neurosci 2009; 29:517-28; http://dx.doi.org/10.1523/JNEUROSCI.3848-08.2009. PubMed DOI PMC

Loh SH, Francescut L, Lingor P, Bahr M, Nicotera P. Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen. Cell Death Differ 2008; 15:283-98; http://dx.doi.org/10.1038/sj.cdd.4402258. PubMed DOI

Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, Wang F. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci USA 2007; 104:5842-7; http://dx.doi.org/10.1073/pnas.0701402104. PubMed DOI PMC

Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 2004; 18:541-58; http://dx.doi.org/10.1101/gad.1151204. PubMed DOI PMC

Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga H, Muramatsu M. Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Mol Brain Res 2000; 85:1-12; http://dx.doi.org/10.1016/S0169-328X(00)00218-7. PubMed DOI

Young ARJ, EYW Chan, Hu XW, Köchl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 2006; 119:3888-900; http://dx.doi.org/10.1242/jcs.03172. PubMed DOI

Reggiori F, Shintani T, Nair U, Klionsky DJ. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 2005; 1:101-9; http://dx.doi.org/10.4161/auto.1.2.1840. PubMed DOI PMC

Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 2010; 190:1005-22; http://dx.doi.org/10.1083/jcb.200912089. PubMed DOI PMC

Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 2004; 6:79-90; http://dx.doi.org/10.1016/S1534-5807(03)00402-7. PubMed DOI

Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116:1679-88; http://dx.doi.org/10.1242/jcs.00381. PubMed DOI

Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152:657-68; http://dx.doi.org/10.1083/jcb.152.4.657. PubMed DOI PMC

Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, et al.. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 2012; 21:532-46; http://dx.doi.org/10.1016/j.ccr.2012.02.019. PubMed DOI PMC

Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Phys 2005; 138:2097-110; http://dx.doi.org/10.1104/pp.105.060673. PubMed DOI PMC

Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006; 8:1124-32; http://dx.doi.org/10.1038/ncb1482. PubMed DOI

Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon HU. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 2013; 4:2130; http://dx.doi.org/10.1038/ncomms3130. PubMed DOI PMC

Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 2001; 152:519-30; http://dx.doi.org/10.1083/jcb.152.3.519. PubMed DOI PMC

Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, et al.. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009; 11:385-96; http://dx.doi.org/10.1038/ncb1846. PubMed DOI

Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009; 11:468-76; http://dx.doi.org/10.1038/ncb1854. PubMed DOI PMC

Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 2008; 105:19211-6; http://dx.doi.org/10.1073/pnas.0810452105. PubMed DOI PMC

Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008; 19:5360-72; http://dx.doi.org/10.1091/mbc.E08-01-0080. PubMed DOI PMC

Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA 2011; 108:7769-74; http://dx.doi.org/10.1073/pnas.1016472108. PubMed DOI PMC

Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 2010; 190:511-21; http://dx.doi.org/10.1083/jcb.200911141. PubMed DOI PMC

Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 2010; 12:747-57; http://dx.doi.org/10.1038/ncb2078. PubMed DOI PMC

Guan J, Stromhaug PE, George MD, Habibzadegah-Tari P, Bevan A, Dunn WA Jr., Klionsky DJ. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 2001; 12:3821-38; http://dx.doi.org/10.1091/mbc.12.12.3821. PubMed DOI PMC

Barth H, Meiling-Wesse K, Epple UD, Thumm M. Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett 2001; 508:23-8; http://dx.doi.org/10.1016/S0014-5793(01)03016-2. PubMed DOI

Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 2004; 23:9314-25; http://dx.doi.org/10.1038/sj.onc.1208331. PubMed DOI

Monastyrska I, Klionsky DJ. Autophagy in organelle homeostasis: peroxisome turnover. Mol Aspects Med 2006; 27:483-94; http://dx.doi.org/10.1016/j.mam.2006.08.004. PubMed DOI PMC

Nair U, Klionsky DJ. Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem 2005; 280:41785-8; http://dx.doi.org/10.1074/jbc.R500016200. PubMed DOI

Tallóczy Z, Virgin HW IV, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2006; 2:24-9; http://dx.doi.org/10.4161/auto.2176. PubMed DOI

Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, Tooze SA. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010; 6:506-22; http://dx.doi.org/10.4161/auto.6.4.11863. PubMed DOI

Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, Nordheim A. Human WIPI-1 puncta-formation: A novel assay to assess mammalian autophagy. FEBS Lett 2007; 581:3396-404; http://dx.doi.org/10.1016/j.febslet.2007.06.040. PubMed DOI

Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010; 6:764-76; http://dx.doi.org/10.4161/auto.6.6.12709. PubMed DOI PMC

Mauthe M, Jacob A, Freiberger S, Hentschel K, Stierhof YD, Codogno P, Proikas-Cezanne T. Resveratrol-mediated autophagy requires WIPI-1 regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy 2011; 7:1448-61; http://dx.doi.org/10.4161/auto.7.12.17802. PubMed DOI PMC

Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, Lin L, Kovacs AL, Yu L, Zhang H. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 2011; 21:343-57; http://dx.doi.org/10.1016/j.devcel.2011.06.024. PubMed DOI

Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22:124-31; http://dx.doi.org/10.1016/j.ceb.2009.11.014. PubMed DOI PMC

Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 2007; 17: 839-49; http://dx.doi.org/10.1038/cr.2007.78. PubMed DOI

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122:927-39; http://dx.doi.org/10.1016/j.cell.2005.07.002. PubMed DOI

Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 2009; 10:285-92; http://dx.doi.org/10.1038/embor.2008.246. PubMed DOI PMC

Wei Y, Sinha S, Levine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 2008; 4:949-51; http://dx.doi.org/10.4161/auto.6788. PubMed DOI PMC

Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30:678-88; http://dx.doi.org/10.1016/j.molcel.2008.06.001. PubMed DOI PMC

Lossi L, Gambino G, Ferrini F, Alasia S, Merighi A. Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival. Dev Neurobiol 2009; 69:855-70; http://dx.doi.org/10.1002/dneu.20744. PubMed DOI

Lossi L, Gambino G, Salio C, Merighi A. Autophagy regulates the post-translational cleavage of BCL-2 and promotes neuronal survival. Sci World J 2010; 10:924-9; http://dx.doi.org/10.1100/tsw.2010.82. PubMed DOI PMC

Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 2008; 15:1318-29; http://dx.doi.org/10.1038/cdd.2008.51. PubMed DOI

Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18:571-80; http://dx.doi.org/10.1038/cdd.2010.191. PubMed DOI PMC

Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2:330-5; http://dx.doi.org/10.1093/embo-reports/kve061. PubMed DOI PMC

Amritraj A, Peake K, Kodam A, Salio C, Merighi A, Vance JE, Kar S. Increased activity and altered subcellular distribution of lysosomal enzymes determine neuronal vulnerability in Niemann-Pick type C1-deficient mice. Am J Pathol 2009; 175:2540-56; http://dx.doi.org/10.2353/ajpath.2009.081096. PubMed DOI PMC

Castino R, Bellio N, Follo C, Murphy D, Isidoro C. Inhibition of PI3k class III-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicol Sci 2010; 117:152-62; http://dx.doi.org/10.1093/toxsci/kfq170. PubMed DOI

Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 2002; 35:921-33; http://dx.doi.org/10.1016/S0896-6273(02)00861-9. PubMed DOI

Luo S, Rubinsztein DC. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 2010; 17:268-77; http://dx.doi.org/10.1038/cdd.2009.121. PubMed DOI PMC

Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 2005; 1:46-52; http://dx.doi.org/10.4161/auto.1.1.1542. PubMed DOI

Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126:121-34; http://dx.doi.org/10.1016/j.cell.2006.05.034. PubMed DOI

Valbuena A, Castro-Obregon S, Lazo PA. Downregulation of VRK1 by p53 in response to DNA damage is mediated by the autophagic pathway. PloS One 2011; 6:e17320; http://dx.doi.org/10.1371/journal.pone.0017320. PubMed DOI PMC

Lorin S, Pierron G, Ryan KM, Codogno P, Djavaheri-Mergny M. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy 2010; 6:153-4; http://dx.doi.org/10.4161/auto.6.1.10537. PubMed DOI

Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182:685-701; http://dx.doi.org/10.1083/jcb.200803137. PubMed DOI PMC

Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012; 151:1256-69; http://dx.doi.org/10.1016/j.cell.2012.11.001. PubMed DOI

Takats S, Nagy P, Varga A, Pircs K, Karpati M, Varga K, Kovacs AL, Hegedus K, Juhasz G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol 2013; 201:531-9; http://dx.doi.org/10.1083/jcb.201211160. PubMed DOI PMC

Chen D, Zhong Q. A tethering coherent protein in autophagosome maturation. Autophagy 2012; 8:985-6; http://dx.doi.org/10.4161/auto.20255. PubMed DOI PMC

Taniguchi M, Kitatani K, Kondo T, Hashimoto-Nishimura M, Asano S, Hayashi A, Mitsutake S, Igarashi Y, Umehara H, Takeya H, et al.. Regulation of autophagy and its associated cell death by “sphingolipid rheostat”: reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J Biol Chem 2012; 287:39898-910; http://dx.doi.org/10.1074/jbc.M112.416552. PubMed DOI PMC

Justice MJ, Petrusca DN, Rogozea AL, Williams JA, Schweitzer KS, Petrache I, Wassall SR, Petrache HI. Effects of lipid interactions on model vesicle engulfment by alveolar macrophages. Biophys J 2014; 106:598-609; http://dx.doi.org/10.1016/j.bpj.2013.12.036. PubMed DOI PMC

Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL. Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 2008; 105:17402-7; http://dx.doi.org/10.1073/pnas.0802781105. PubMed DOI PMC

Pattingre S, Bauvy C, Levade T, Levine B, Codogno P. Ceramide-induced autophagy: to junk or to protect cells? Autophagy 2009; 5:558-60; http://dx.doi.org/10.4161/auto.5.4.8390. PubMed DOI PMC

Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, et al.. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 2012; 8:831-8; http://dx.doi.org/10.1038/nchembio.1059. PubMed DOI PMC

Jiang W, Ogretmen B. Ceramide stress in survival versus lethal autophagy paradox: ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Autophagy 2013; 9:258-9; http://dx.doi.org/10.4161/auto.22739. PubMed DOI PMC

Jiang W, Ogretmen B. Autophagy paradox and ceramide. Biochim Biophys Acta 2014; 1841:783-92; http://dx.doi.org/10.1016/j.bbalip.2013.09.005. PubMed DOI PMC

Lepine S, Allegood JC, Park M, Dent P, Milstien S, Spiegel S. Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death Differ 2011; 18:350-61; http://dx.doi.org/10.1038/cdd.2010.104. PubMed DOI PMC

Matarrese P, Garofalo T, Manganelli V, Gambardella L, Marconi M, Grasso M, Tinari A, Misasi R, Malorni W, Sorice M. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 2014; 10:750-65; http://dx.doi.org/10.4161/auto.27959. PubMed DOI PMC

Russ DW, Wills AM, Boyd IM, Krause J. Weakness, SR function and stress in gastrocnemius muscles of aged male rats. Exp Gastroenterol 2014; 50:40-4; http://dx.doi.org/10.1016/j.exger.2013.11.018. PubMed DOI

Bernard A, Jin M, Gonzalez-Rodriguez P, Fullgrabe J, Delorme-Axford E, Backues SK, Joseph B, Klionsky DJ. Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Curr Biol 2015; 25:546-55; http://dx.doi.org/10.1016/j.cub.2014.12.049. PubMed DOI PMC

Bernard A, Klionsky DJ. Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy. Autophagy 2015; 11:718-9; http://dx.doi.org/10.1080/15548627.2015.1018503. PubMed DOI PMC

Nara A, Mizushima N, Yamamoto A, Kabeya Y, Ohsumi Y, Yoshimori T. SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct 2002; 27:29-37; http://dx.doi.org/10.1247/csf.27.29. PubMed DOI

Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 1999; 147:435-46; http://dx.doi.org/10.1083/jcb.147.2.435. PubMed DOI PMC

Jin M, He D, Backues SK, Freeberg MA, Liu X, Kim JK, Klionsky DJ. Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr Biol 2014; 24:1314-22; http://dx.doi.org/10.1016/j.cub.2014.04.048. PubMed DOI PMC

Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2[alpha] phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007; 14:230-9; http://dx.doi.org/10.1038/sj.cdd.4401984. PubMed DOI

Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 2012; 287:39107-14; http://dx.doi.org/10.1074/jbc.M112.412569. PubMed DOI PMC

Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G, et al.. The acquisition of resistance to TNFalpha in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy 2011; 7:760-70; http://dx.doi.org/10.4161/auto.7.7.15454. PubMed DOI

Mitroulis I, Kourtzelis I, Kambas K, Rafail S, Chrysanthopoulou A, Speletas M, Ritis K. Regulation of the autophagic machinery in human neutrophils. Eur J Immunol 2010; 40:1461-72; http://dx.doi.org/10.1002/eji.200940025. PubMed DOI

Rodriguez-Muela N, Germain F, Marino G, Fitze PS, Boya P. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ 2012; 19:162-9; http://dx.doi.org/10.1038/cdd.2011.88. PubMed DOI PMC

Vázquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, De Pablo F. Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 2012; 8:187-99. PubMed

Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al.. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120:127-41; http://dx.doi.org/10.1172/JCI40027. PubMed DOI PMC

Haim Y, Blüher M, Slutsky N, Goldstein N, Klöting N, Harman-Boehm I, Kirshtein B, Ginsberg D, Gericke M, Jurado EG, et al.. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy 2015; 11:2074-88. PubMed PMC

Las G, Serada SB, Wikstrom JD, Twig G, Shirihai OS. Fatty acids suppress autophagic turnover in beta-cells. J Biol Chem 2011; 286:42534-44; http://dx.doi.org/10.1074/jbc.M111.242412. PubMed DOI PMC

Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MK, Paquet C, Delhaye S, Shin Y, et al.. Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 2013; 19:1039-46; http://dx.doi.org/10.1038/nm.3213. PubMed DOI PMC

Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore DD. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014; 516:112-5. PubMed PMC

Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, et al.. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014; 516:108-11. PubMed PMC

Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008; 27:4860-4; http://dx.doi.org/10.1038/onc.2008.117. PubMed DOI

Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J. The RB-E2F1 pathway regulates autophagy. Cancer Res 2010; 70:7882-93; http://dx.doi.org/10.1158/0008-5472.CAN-10-1604. PubMed DOI PMC

Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 2003; 13:358-63; http://dx.doi.org/10.1016/S0960-9822(03)00082-4. PubMed DOI

Lee C-Y, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 2003; 13:350-7; http://dx.doi.org/10.1016/S0960-9822(03)00085-X. PubMed DOI

Denton D, Shravage B, Simin R, Baehrecke EH, Kumar S. Larval midgut destruction in Drosophila: not dependent on caspases but suppressed by the loss of autophagy. Autophagy 2010; 6:163-5; http://dx.doi.org/10.4161/auto.6.1.10601. PubMed DOI PMC

Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, et al.. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 2012; 17:305-24; http://dx.doi.org/10.1007/s10495-011-0675-0. PubMed DOI

Tian L, Ma L, Guo E, Deng X, Ma S, Xia Q, Cao Y, Li S. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 2013; 9:1172-87; http://dx.doi.org/10.4161/auto.24731. PubMed DOI PMC

Juhasz G, Puskas LG, Komonyi O, Erdi B, Maroy P, Neufeld TP, Sass M. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 2007; 14:1181-90; http://dx.doi.org/10.1038/sj.cdd.4402123. PubMed DOI PMC

Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Menesi D, Puskas LG, Juhasz G. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy 2012; 8:1124-35; http://dx.doi.org/10.4161/auto.20069. PubMed DOI PMC

Barth JM, Szabad J, Hafen E, Kohler K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ 2011; 18:915-24; http://dx.doi.org/10.1038/cdd.2010.157. PubMed DOI PMC

O'Rourke EJ, Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 2013; 15:668-76; http://dx.doi.org/10.1038/ncb2741. PubMed DOI PMC

Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al.. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332:1429-33; http://dx.doi.org/10.1126/science.1204592. PubMed DOI PMC

Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. The FASEB J 2004; 18:39-51; http://dx.doi.org/10.1096/fj.03-0610com. PubMed DOI

Phillips AR, Suttangkakul A, Vierstra RD. The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 2008; 178:1339-53; http://dx.doi.org/10.1534/genetics.107.086199. PubMed DOI PMC

Seiliez I, Gutierrez J, Salmeron C, Skiba-Cassy S, Chauvin C, Dias K, Kaushik S, Tesseraud S, Panserat S. An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 2010; 157:258-66; http://dx.doi.org/10.1016/j.cbpb.2010.06.011. PubMed DOI

Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, et al.. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 2013; 4:2267. PubMed PMC

M Sandri. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 2010; 298:C1291-7; http://dx.doi.org/10.1152/ajpcell.00531.2009. PubMed DOI

Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, et al.. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 2009; 11:1305-14; http://dx.doi.org/10.1038/ncb1975. PubMed DOI

Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A, Seux M, Nowak J, Gonzalez CD, Iovanna JL, et al.. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 2007; 282:37124-33; http://dx.doi.org/10.1074/jbc.M706956200. PubMed DOI

Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X, et al.. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 2010; 141:1042-55; http://dx.doi.org/10.1016/j.cell.2010.04.034. PubMed DOI

Lo Re AE, Fernandez-Barrena MG, Almada LL, Mills LD, Elsawa SF, Lund G, Ropolo A, Molejon MI, Vaccaro MI, Fernandez-Zapico ME. Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. J Biol Chem 2012; 287:25325-34; http://dx.doi.org/10.1074/jbc.M112.370809. PubMed DOI PMC

Sardiello M, Palmieri M, Di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, et al.. A gene network regulating lysosomal biogenesis and function. Science 2009; 325:473-7. PubMed

Palmieri M, Impey S, Kang H, Di Ronza A, Pelz C, Sardiello M, Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011; 20:3852-66; http://dx.doi.org/10.1093/hmg/ddr306. PubMed DOI

Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012; 8:903-14; http://dx.doi.org/10.4161/auto.19653. PubMed DOI PMC

Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, et al.. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31:1095-108; http://dx.doi.org/10.1038/emboj.2012.32. PubMed DOI PMC

Nezich CL, Wang C, Fogel AI, Youle RJ. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. J Cell Biol 2015; 210:435-50; http://dx.doi.org/10.1083/jcb.201501002. PubMed DOI PMC

Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR, et al.. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015; 524:361-5; http://dx.doi.org/10.1038/nature14587. PubMed DOI PMC

Kang YA, Sanalkumar R, O'Geen H, Linnemann AK, Chang CJ, Bouhassira EE, Farnham PJ, Keles S, Bresnick EH. Autophagy driven by a master regulator of hematopoiesis. Mol Cell Biol 2012; 32:226-39; http://dx.doi.org/10.1128/MCB.06166-11. PubMed DOI PMC

Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007; 6:472-83; http://dx.doi.org/10.1016/j.cmet.2007.11.004. PubMed DOI

Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, Boyd DD. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 2013; 50:16-28; http://dx.doi.org/10.1016/j.molcel.2013.01.024. PubMed DOI PMC

Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J 2011; 30:4642-51. PubMed PMC

Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, Mari B, Barbry P, Mosnier JF, Hebuterne X, et al.. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet 2011; 43:242-5; http://dx.doi.org/10.1038/ng.762. PubMed DOI

Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM, Taskesen E, Stern P, de Ru AH, van Adrichem AJ, et al.. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 2011; 118:916-25; http://dx.doi.org/10.1182/blood-2011-02-336487. PubMed DOI PMC

Roccaro AM, Sacco A, Jia X, Azab AK, Maiso P, Ngo HT, Azab F, Runnels J, Quang P, Ghobrial IM. microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 2010; 116:1506-14; http://dx.doi.org/10.1182/blood-2010-01-265686. PubMed DOI PMC

Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM. In situ detection of starvation-induced autophagy. J Histochem Cytochem 2006; 54:85-96; http://dx.doi.org/10.1369/jhc.5A6743.2005. PubMed DOI

Banreti A, Sass M, Graba Y. The emerging role of acetylation in the regulation of autophagy. Autophagy 2013; 9:819-29; http://dx.doi.org/10.4161/auto.23908. PubMed DOI PMC

Jin M, Klionsky DJ. Regulation of autophagy: Modulation of the size and number of autophagosomes. FEBS Lett 2014; 588:2457-63; http://dx.doi.org/10.1016/j.febslet.2014.06.015. PubMed DOI PMC

Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biology 2015; 25:354-63; http://dx.doi.org/10.1016/j.tcb.2015.02.002. PubMed DOI PMC

Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 2015; 11:28-45; http://dx.doi.org/10.4161/15548627.2014.984267. PubMed DOI PMC

Pietrocola F, Marino G, Lissa D, Vacchelli E, Malik SA, Niso-Santano M, Zamzami N, Galluzzi L, Maiuri MC, Kroemer G. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 2012; 11:3851-60; http://dx.doi.org/10.4161/cc.22027. PubMed DOI PMC

Mariño G, Pietrocola F, Madeo F, Kroemer G. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy. 2014;10:1879-82. doi: 10.4161/auto.36413. PubMed DOI PMC

Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 2014; 13:727-40; http://dx.doi.org/10.1038/nrd4391. PubMed DOI

Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 2009; 284:6322-8; http://dx.doi.org/10.1074/jbc.M807135200. PubMed DOI PMC

Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J, et al.. Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Mol Cell 2015. PubMed

Pattingre S, Petiot A, Codogno P. Analyses of G[a]-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods Enzymol 2004; 390:17-31; http://dx.doi.org/10.1016/S0076-6879(04)90002-X. PubMed DOI

Bauvy C, Meijer AJ, Codogno P. Assaying of autophagic protein degradation. Methods Enzymol 2009; 452:47-61; http://dx.doi.org/10.1016/S0076-6879(08)03604-5. PubMed DOI

Zhang J, Wang J, Ng S, Lin Q, Shen HM. Development of a novel method for quantification of autophagic protein degradation by AHA labeling. Autophagy 2014; 10:901-12; http://dx.doi.org/10.4161/auto.28267. PubMed DOI PMC

Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008; 283:22847-57; http://dx.doi.org/10.1074/jbc.M802182200. PubMed DOI

Kabuta T, Furuta A, Aoki S, Furuta K, Wada K. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 2008; 283:23731-8; http://dx.doi.org/10.1074/jbc.M801918200. PubMed DOI PMC

Saitoh Y, Fujikake N, Okamoto Y, Popiel HA, Hatanaka Y, Ueyama M, Suzuki M, Gaumer S, Murata M, Wada K, et al.. p62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies. J Biol Chem 2015; 290:1442-53; http://dx.doi.org/10.1074/jbc.M114.590281. PubMed DOI PMC

Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 2007; 171:513-24; http://dx.doi.org/10.2353/ajpath.2007.070188. PubMed DOI PMC

Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 2005; 280:40282-92; http://dx.doi.org/10.1074/jbc.M508786200. PubMed DOI

Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, et al.. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007; 447:859-63; http://dx.doi.org/10.1038/nature05853. PubMed DOI

Tomek K, Wagner R, Varga F, Singer CF, Karlic H, Grunt TW. Blockade of fatty acid synthase induces ubiquitination and degradation of phosphoinositide-3-kinase signaling proteins in ovarian cancer. Mol Cancer Res 2011:1767-79; http://dx.doi.org/10.1158/1541-7786.MCR-10-0467. PubMed DOI

Zimmermann AC, Zarei M, Eiselein S, Dengjel J. Quantitative proteomics for the analysis of spatio-temporal protein dynamics during autophagy. Autophagy 2010; 6:1009-16; http://dx.doi.org/10.4161/auto.6.8.12786. PubMed DOI

Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaattela M, Dengjel J, Andersen JS. Ordered organelle degradation during starvation-induced autophagy. Mol Cell Proteomics: MCP 2008; 7:2419-28; http://dx.doi.org/10.1074/mcp.M800184-MCP200. PubMed DOI

Furuya N, Kanazawa T, Fujimura S, Ueno T, Kominami E, Kadowaki M. Leupeptin-induced appearance of partial fragment of betaine homocysteine methyltransferase during autophagic maturation in rat hepatocytes. J Biochem (Tokyo) 2001; 129:313-20; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002859. PubMed DOI

Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, Kominami E. Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 1999; 274:15222-9; http://dx.doi.org/10.1074/jbc.274.21.15222. PubMed DOI

Overbye A, Saetre F, Hagen LK, Johansen HT, Seglen PO. Autophagic activity measured in whole rat hepatocytes as the accumulation of a novel BHMT fragment (p10), generated in amphisomes by the asparaginyl proteinase, legumain. Autophagy 2011; 7:1011-27; http://dx.doi.org/10.4161/auto.7.9.16436. PubMed DOI PMC

Seglen PO, Overbye A, Saetre F. Sequestration assays for mammalian autophagy. Methods Enzymol 2009; 452:63-83; http://dx.doi.org/10.1016/S0076-6879(08)03605-7. PubMed DOI

Mercer CA, Kaliappan A, Dennis PB. Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization. Autophagy 2008; 4:185-94; http://dx.doi.org/10.4161/auto.5275. PubMed DOI

Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, Mautner J. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 2003; 33:1250-9; http://dx.doi.org/10.1002/eji.200323730. PubMed DOI

Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB. A role for intercellular antigen transfer in the recognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+ T cells. J Immunol 2006; 177:3746-56; http://dx.doi.org/10.4049/jimmunol.177.6.3746. PubMed DOI

Klionsky DJ, Emr SD. Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 1989; 8:2241-50. PubMed PMC

Venerando R, Miotto G, Kadowaki M, Siliprandi N, Mortimore GE. Multiphasic control of proteolysis by leucine and alanine in the isolated rat hepatocyte. Am J Physiol 1994; 266:C455-61. PubMed

Häussinger D, Hallbrucker C, vom Dahl S, Lang F, Gerok W. Cell swelling inhibits proteolysis in perfused rat liver. Biochem J 1990; 272:239-42; http://dx.doi.org/10.1042/bj2720239. PubMed DOI PMC

vom Dahl S, Häussinger D. Cell hydration and proteolysis control in liver. Biochem J 1995; 312:988-9; http://dx.doi.org/10.1042/bj3120988. PubMed DOI PMC

Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci USA 2013; 110:6400-5; http://dx.doi.org/10.1073/pnas.1221132110. PubMed DOI PMC

Reggiori F, Monastyrska I, Shintani T, Klionsky DJ. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:5843-56; http://dx.doi.org/10.1091/mbc.E05-07-0629. PubMed DOI PMC

Manjithaya R, Jain S, Farre JC, Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 2010; 189:303-10; http://dx.doi.org/10.1083/jcb.200909154. PubMed DOI PMC

Journo D, Mor A, Abeliovich H. Aup1-mediated regulation of Rtg3 during mitophagy. J Biol Chem 2009; 284:35885-95; http://dx.doi.org/10.1074/jbc.M109.048140. PubMed DOI PMC

Kanki T, Klionsky DJ. Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 2008; 283:32386-93; http://dx.doi.org/10.1074/jbc.M802403200. PubMed DOI PMC

Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng J, Mao K, Yang Z, Yen WL, et al.. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 2009; 20:4730-8; http://dx.doi.org/10.1091/mbc.E09-03-0225. PubMed DOI PMC

Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 2009; 17:98-109; http://dx.doi.org/10.1016/j.devcel.2009.06.014. PubMed DOI PMC

Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 2009; 17:87-97; http://dx.doi.org/10.1016/j.devcel.2009.06.013. PubMed DOI

Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 1998; 141:625-36; http://dx.doi.org/10.1083/jcb.141.3.625. PubMed DOI PMC

Nazarko TY, Nicaud JM, Sibirny AA. Observation of the Yarrowia lipolytica peroxisome-vacuole dynamics by fluorescence microscopy with a single filter set. Cell Biol Int 2005; 29:65-70; http://dx.doi.org/10.1016/j.cellbi.2004.11.014. PubMed DOI

Roetzer A, Gratz N, Kovarik P, Schuller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 2010; 12:199-216; http://dx.doi.org/10.1111/j.1462-5822.2009.01391.x. PubMed DOI PMC

Bormann C, Sahm H. Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii. Arch Microbiol 1978; 117:67-72; http://dx.doi.org/10.1007/BF00689353. PubMed DOI

Clare DA, Duong MN, Darr D, Archibald F, Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 1984; 140:532-7; http://dx.doi.org/10.1016/0003-2697(84)90204-5. PubMed DOI

Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 2009; 11:494-504; http://dx.doi.org/10.1111/j.1462-2920.2008.01789.x. PubMed DOI

Stasyk OV, Nazarko TY, Sibirny AA. Methods of plate pexophagy monitoring and positive selection for ATG gene cloning in yeasts. Methods Enzymol 2008; 451:229-39; http://dx.doi.org/10.1016/S0076-6879(08)03216-3. PubMed DOI

Hutchins MU, Veenhuis M, Klionsky DJ. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 1999; 112:4079-87. PubMed

Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 2002; 7:75-90; http://dx.doi.org/10.1046/j.1356-9597.2001.00499.x. PubMed DOI

Tuttle DL, Dunn WA Jr.. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 1995; 108 (Pt 1):25-35. PubMed

Nazarko TY, Huang J, Nicaud JM, Klionsky DJ, Sibirny AA. Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 2005; 1:37-45; http://dx.doi.org/10.4161/auto.1.1.1512. PubMed DOI PMC

Veenhuis M, Douma A, Harder W, Osumi M. Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol 1983; 134:193-203; http://dx.doi.org/10.1007/BF00407757. PubMed DOI

Monosov EZ, Wenzel TJ, Luers GH, Heyman JA, Subramani S. Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells. J Histochem Cytochem 1996; 44:581-9; http://dx.doi.org/10.1177/44.6.8666743. PubMed DOI

Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J Cell Biol 1997; 136:71-80; http://dx.doi.org/10.1083/jcb.136.1.71. PubMed DOI PMC

Monastyrska I, van der Heide M, Krikken AM, JAKW Kiel, van der Klei IJ, Veenhuis M. Atg8 is essential for macropexophagy in Hansenula polymorpha. Traffic 2005; 6:66-74; http://dx.doi.org/10.1111/j.1600-0854.2004.00252.x. PubMed DOI

Devenish RJ, Prescott M, Turcic K, Mijaljica D. Monitoring organelle turnover in yeast using fluorescent protein tags. Methods Enzymol 2008; 451:109-31; http://dx.doi.org/10.1016/S0076-6879(08)03209-6. PubMed DOI

Mao K, Wang K, Liu X, Klionsky DJ. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 2013; 26:9-18; http://dx.doi.org/10.1016/j.devcel.2013.05.024. PubMed DOI PMC

TK Kerppola. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nature Protocols 2006; 1:1278-86; http://dx.doi.org/10.1038/nprot.2006.201. PubMed DOI PMC

Shyu YJ, Liu H, Deng X, Hu CD. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 2006; 40:61-6; http://dx.doi.org/10.2144/000112036. PubMed DOI

Farre JC, Manjithaya R, Mathewson RD, Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 2008; 14:365-76; http://dx.doi.org/10.1016/j.devcel.2007.12.011. PubMed DOI PMC

He Y, Deng YZ, Naqvi NI. Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation in Magnaporthe oryzae. Autophagy 2013; 9:1818-27; http://dx.doi.org/10.4161/auto.26057. PubMed DOI

Kanki T, Klionsky DJ. The molecular mechanism of mitochondria autophagy in yeast. Mol Microbiol 2010; 75:795-800; http://dx.doi.org/10.1111/j.1365-2958.2009.07035.x. PubMed DOI PMC

Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 2007; 282:5617-24; http://dx.doi.org/10.1074/jbc.M605940200. PubMed DOI

H Abeliovich. Stationary-phase mitophagy in respiring Saccharomyces cerevisiae. Antioxid Redox Sign 2011; 14:2003-11; http://dx.doi.org/10.1089/ars.2010.3807. PubMed DOI

East DA, Fagiani F, Crosby J, Georgakopoulos ND, Bertrand H, Schaap M, Fowkes A, Wells G, Campanella M. PMI: a DeltaPsim independent pharmacological regulator of mitophagy. Chem Biol 2014; 21:1585-96; http://dx.doi.org/10.1016/j.chembiol.2014.09.019. PubMed DOI PMC

Aksam EB, Koek A, JAKW Kiel, Jourdan S, Veenhuis M, van der Klei IJ. A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 2007; 3:96-105; http://dx.doi.org/10.4161/auto.3534. PubMed DOI

Roberts P, Moshitch-Moshkovitz S, Kvam E, O'Toole E, Winey M, Goldfarb DS. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:129-41; http://dx.doi.org/10.1091/mbc.E02-08-0483. PubMed DOI PMC

Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 2008; 19:4492-505; http://dx.doi.org/10.1091/mbc.E08-04-0363. PubMed DOI PMC

Farre JC, Krick R, Subramani S, Thumm M. Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 2009; 21:522-30; http://dx.doi.org/10.1016/j.ceb.2009.04.015. PubMed DOI PMC

Kvam E, Goldfarb DS. Structure and function of nucleus-vacuole junctions: outer-nuclear-membrane targeting of Nvj1p and a role in tryptophan uptake. J Cell Sci 2006; 119:3622-33; http://dx.doi.org/10.1242/jcs.03093. PubMed DOI

Millen JI, Krick R, Prick T, Thumm M, Goldfarb DS. Measuring piecemeal microautophagy of the nucleus in Saccharomyces cerevisiae. Autophagy 2009; 5:75-81; http://dx.doi.org/10.4161/auto.5.1.7181. PubMed DOI

Mijaljica D, Prescott M, Devenish RJ. A late form of nucleophagy in Saccharomyces cerevisiae. PloS One 2012; 7:e40013. PubMed PMC

Shoji JY, Kikuma T, Arioka M, Kitamoto K. Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae. PloS One 2010; 5:e15650; http://dx.doi.org/10.1371/journal.pone.0015650. PubMed DOI PMC

Shoji J-Y, Kikuma T, Arioka M, Kitamoto K. Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae. PloS One 2010; 5:e15650; http://dx.doi.org/10.1371/journal.pone.0015650. PubMed DOI PMC

He M, Kershaw MJ, Soanes DM, Xia Y, Talbot NJ. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy. PloS One 2012; 7:e33270; http://dx.doi.org/10.1371/journal.pone.0033270. PubMed DOI PMC

Maheshwari R. Nuclear behavior in fungal hyphae. FEMS Microbiol Lett 2005; 249:7-14; http://dx.doi.org/10.1016/j.femsle.2005.06.031. PubMed DOI

Shoji J-Y, Craven KD. Autophagy in basal hyphal compartments: A green strategy of great recyclers. Fungal Biol Rev 2011; 25:79-83; http://dx.doi.org/10.1016/j.fbr.2011.04.001. DOI

Voigt O, Poggeler S. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora. Autophagy 2013; 9:33-49; http://dx.doi.org/10.4161/auto.22398. PubMed DOI PMC

Yorimitsu T, Klionsky DJ. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 2005; 16:1593-605; http://dx.doi.org/10.1091/mbc.E04-11-1035. PubMed DOI PMC

Shintani T, Huang W-P, Stromhaug PE, Klionsky DJ. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 2002; 3:825-37; http://dx.doi.org/10.1016/S1534-5807(02)00373-8. PubMed DOI PMC

Abeliovich H, Darsow T, Emr SD. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J 1999; 18:6005-16; http://dx.doi.org/10.1093/emboj/18.21.6005. PubMed DOI PMC

Abeliovich H, Zarei M, Rigbolt KT, Youle RJ, Dengjel J. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat Commun 2013; 4:2789; http://dx.doi.org/10.1038/ncomms3789. PubMed DOI PMC

Overbye A, Fengsrud M, Seglen PO. Proteomic analysis of membrane-associated proteins from rat liver autophagosomes. Autophagy 2007; 3:300-22; http://dx.doi.org/10.4161/auto.3910. PubMed DOI

Petroi D, Popova B, Taheri-Talesh N, Irniger S, Shahpasandzadeh H, Zweckstetter M, Outeiro TF, Braus GH. Aggregate clearance of alpha-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome. J Biol Chem 2012; 287:27567-79; http://dx.doi.org/10.1074/jbc.M112.361865. PubMed DOI PMC

Shahpasandzadeh H, Popova B, Kleinknecht A, Fraser PE, Outeiro TF, Braus GH. Interplay between sumoylation and phosphorylation for protection against alpha-synuclein inclusions. J Biol Chem 2014; 289:31224-40; http://dx.doi.org/10.1074/jbc.M114.559237. PubMed DOI PMC

Wafa K, MacLean J, Zhang F, Pasumarthi KB. Characterization of growth suppressive functions of a splice variant of cyclin D2. PloS One 2013; 8:e53503; http://dx.doi.org/10.1371/journal.pone.0053503. PubMed DOI PMC

Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, Weihl CC. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 2009; 5:511-9; http://dx.doi.org/10.4161/auto.5.4.7761. PubMed DOI PMC

Hohn A, Sittig A, Jung T, Grimm S, Grune T. Lipofuscin is formed independently of macroautophagy and lysosomal activity in stress-induced prematurely senescent human fibroblasts. Free Radical Bio Med 2012; 53:1760-9; http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.591. PubMed DOI

Jung T, Hohn A, Catalgol B, Grune T. Age-related differences in oxidative protein-damage in young and senescent fibroblasts. Arch Biochem Biophys 2009; 483:127-35; http://dx.doi.org/10.1016/j.abb.2008.12.007. PubMed DOI

Fuentealba RA, Marasa J, Diamond MI, Piwnica-Worms D, Weihl CC. An aggregation sensing reporter identifies leflunomide and teriflunomide as polyglutamine aggregate inhibitors. Hum Mol Genet 2012; 21:664-80. PubMed PMC

Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Allophagy: A macroautophagic process degrading spermatozoid-inherited organelles. Autophagy 2012; 8:421-3. PubMed PMC

Sato M, Sato K. Maternal inheritance of mitochondrial DNA: Degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy. Autophagy 2012; 8:424-5. PubMed

Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011; 334:1144-7. PubMed

Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 2011; 334:1141-4; http://dx.doi.org/10.1126/science.1210333. PubMed DOI

Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 2012; 393:547-64. PubMed PMC

Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR, Moussaud-Lamodiere EL, Stankowski JN, Bauer PO, Lorenzo-Betancor O, et al.. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 2015. PubMed PMC

Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Rep 2015. PubMed PMC

Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, et al.. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014; 510:162-6. PubMed

Ding WX, Li M, Chen X, Ni HM, Lin CW, Gao W, Lu B, Stolz DB, Clemens DL, Yin XM. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 2010; 139:1740-52; http://dx.doi.org/10.1053/j.gastro.2010.07.041. PubMed DOI PMC

Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462:245-53; http://dx.doi.org/10.1016/j.abb.2007.03.034. PubMed DOI PMC

Dong H, Cheung SH, Liang Y, Wang B, Ramalingam R, Wang P, Sun H, Cheng SH, Lam YW. “Stainomics”: identification of mitotracker labeled proteins in mammalian cells. Electrophoresis 2013; 34:1957-64; http://dx.doi.org/10.1002/elps.201200557. PubMed DOI

Mauro-Lizcano M, Esteban-Martinez L, Seco E, Serrano-Puebla A, Garcia-Ledo L, Figueiredo-Pereira C, Vieira HL, Boya P. New method to assess mitophagy flux by flow cytometry. Autophagy 2015; 11:833-43; http://dx.doi.org/10.1080/15548627.2015.1034403. PubMed DOI PMC

Presley AD, Fuller KM, Arriaga EA. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B, Analytical technologies in the biomedical and life sciences 2003; 793:141-50; http://dx.doi.org/10.1016/S1570-0232(03)00371-4. PubMed DOI

Keij JF, Bell-Prince C, Steinkamp JA. Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 2000; 39:203-10; http://dx.doi.org/10.1002/(SICI)1097-0320(20000301)39:3<203::AID-CYTO5>3.0.CO;2-Z. PubMed DOI

Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 1996; 44:1363-72; http://dx.doi.org/10.1177/44.12.8985128. PubMed DOI

Geisler S, Holmstrom KM, Treis A, Skujat D, Weber SS, Fiesel FC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 2010; 6:871-8; http://dx.doi.org/10.4161/auto.6.7.13286. PubMed DOI

Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-31; http://dx.doi.org/10.1038/ncb2012. PubMed DOI

Diot A, Hinks-Roberts A, Lodge T, Liao C, Dombi E, Morten K, Brady S, Fratter C, Carver J, Muir R, et al.. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA. Pharmacol Res 2015; 100:24-35; http://dx.doi.org/10.1016/j.phrs.2015.07.014. PubMed DOI

Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 2009; 284:13843-55; http://dx.doi.org/10.1074/jbc.M808515200. PubMed DOI PMC

Dagda RK, Zhu J, Kulich SM, Chu CT. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 2008; 4:770-82; http://dx.doi.org/10.4161/auto.6458. PubMed DOI PMC

Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, et al.. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25:1025-40; http://dx.doi.org/10.1128/MCB.25.3.1025-1040.2005. PubMed DOI PMC

Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 2011; 18:1042-52; http://dx.doi.org/10.1016/j.chembiol.2011.05.013. PubMed DOI

Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010; 191:1367-80; http://dx.doi.org/10.1083/jcb.201007013. PubMed DOI PMC

Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 2011; 286:19630-40; http://dx.doi.org/10.1074/jbc.M110.209338. PubMed DOI PMC

Amadoro G, Corsetti V, Florenzano F, Atlante A, Ciotti MT, Mongiardi MP, Bussani R, Nicolin V, Nori SL, Campanella M, et al.. AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons. Neuobiol Dis 2014; 62:489-507; http://dx.doi.org/10.1016/j.nbd.2013.10.018. PubMed DOI

Chang TK, Shravage BV, Hayes SD, Powers CM, Simin RT, WaDe Harper J, Baehrecke EH. Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol 2013; 15:1067-78; http://dx.doi.org/10.1038/ncb2804. PubMed DOI PMC

Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85:257-73; http://dx.doi.org/10.1016/j.neuron.2014.12.007. PubMed DOI PMC

Yang JY, Yang WY. Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy 2011; 7:1230-8; http://dx.doi.org/10.4161/auto.7.10.16626. PubMed DOI

Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy 2012; 8:1462-76; http://dx.doi.org/10.4161/auto.21211. PubMed DOI

Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, Campello S, Nardacci R, Piacentini M, Campanella M, et al.. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 2014. PubMed PMC

JJ Lemasters. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2014; 2:749-54; http://dx.doi.org/10.1016/j.redox.2014.06.004. PubMed DOI PMC

Manjithaya R, Nazarko TY, Farre JC, Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett 2010; 584:1367-73; http://dx.doi.org/10.1016/j.febslet.2010.01.019. PubMed DOI PMC

Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012; 2012:512721; http://dx.doi.org/10.1155/2012/512721. PubMed DOI PMC

Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, et al.. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006; 58:726-41; http://dx.doi.org/10.1124/pr.58.4.5. PubMed DOI

Walter KM, Schonenberger MJ, Trotzmuller M, Horn M, Elsasser HP, Moser AB, Lucas MS, Schwarz T, Gerber PA, Faust PL, et al.. Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab 2014; 20:882-97; http://dx.doi.org/10.1016/j.cmet.2014.09.017. PubMed DOI

Alexander A, Cai SL, Kim J, Nanez A, Sahin M, Maclean KH, Inoki K, Guan K-L, Shen J, Person MD, et al.. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010; 107:4153-8; http://dx.doi.org/10.1073/pnas.0913860107. PubMed DOI PMC

Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, Wogan GN. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci USA 2013; 110:E2950-7; http://dx.doi.org/10.1073/pnas.1307736110. PubMed DOI PMC

Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, Tee AR, Tait-Mulder J, Di Nardo A, Han JM, et al.. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 2013; 15:1186-96; http://dx.doi.org/10.1038/ncb2822. PubMed DOI PMC

Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, et al.. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 2015. PubMed PMC

Luiken JJ, van den Berg M, Heikoop JC, Meijer AJ. Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett 1992; 304:93-7; http://dx.doi.org/10.1016/0014-5793(92)80596-9. PubMed DOI

Yokota S. Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate. Eur J Cell Biol 1993; 61:67-80. PubMed

D'Eletto M, Farrace MG, Rossin F, Strappazzon F, Giacomo GD, Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, et al.. Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 2012; 19:1228-38; http://dx.doi.org/10.1038/cdd.2012.2. PubMed DOI PMC

Nardacci R, Sartori C, Stefanini S. Selective autophagy of clofibrate-induced rat liver peroxisomes. Cytochemistry and immunocytochemistry on tissue specimens and on fractions obtained by Nycodenz density gradient centrifugation. Cell Mol Biol 2000; 46:1277-90. PubMed

Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M. Peroxisome dynamics in cultured mammalian cells. Traffic 2009; 10:1722-33; http://dx.doi.org/10.1111/j.1600-0854.2009.00970.x. PubMed DOI

Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, Lamark T, Jauregui M, Law K, Lippincott-Schwartz J, et al.. NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 2013; 126:939-52; http://dx.doi.org/10.1242/jcs.114819. PubMed DOI

Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 2010; 189:671-9; http://dx.doi.org/10.1083/jcb.201001039. PubMed DOI PMC

Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, et al.. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2012; 2:120080; http://dx.doi.org/10.1098/rsob.120080. PubMed DOI PMC

Yang KC, Ma X, Liu H, Murphy J, Barger PM, Mann DL, Diwan A. TNF-Receptor Associated Factor-2 Mediates Mitochondrial Autophagy. Circ Heart Fail 2014; 8:175-87. PubMed PMC

Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20:1726-37; http://dx.doi.org/10.1093/hmg/ddr048. PubMed DOI PMC

Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, Kimura M, Sato S, Hattori N, Komatsu M, et al.. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 2010; 15:887-900. PubMed PMC

Mauro-Lizcano  . New method to assess mitophagy flux by flow cytometry. Autophagy 2015; 11:in press. PubMed PMC

McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 2014; 33:282-95. PubMed PMC

Ivatt RM, Sanchez-Martinez A, Godena VK, Brown S, Ziviani E, Whitworth AJ. Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus SREBF1 as a regulator of mitophagy. Proc Natl Acad Sci USA 2014; 111:8494-9; http://dx.doi.org/10.1073/pnas.1321207111. PubMed DOI PMC

Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, Noguchi A, Springer D, Bocharov AV, Eggerman TL, et al.. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 2011; 121:3701-12; http://dx.doi.org/10.1172/JCI44736. PubMed DOI PMC

Klinkenberg M, Gispert S, Dominguez-Bautista JA, Braun I, Auburger G, Jendrach M. Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 2012; 13:9-21; http://dx.doi.org/10.1007/s10048-011-0303-8. PubMed DOI PMC

Parganlija D, Klinkenberg M, Dominguez-Bautista J, Hetzel M, Gispert S, Chimi MA, Drose S, Mai S, Brandt U, Auburger G, et al.. Loss of PINK1 Impairs Stress-Induced Autophagy and Cell Survival. PloS One 2014; 9:e95288; http://dx.doi.org/10.1371/journal.pone.0095288. PubMed DOI PMC

Lyamzaev KG, Nepryakhina OK, Saprunova VB, Bakeeva LE, Pletjushkina OY, Chernyak BV, Skulachev VP. Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. Biochim Biophys Acta 2008; 1777:817-25; http://dx.doi.org/10.1016/j.bbabio.2008.03.027. PubMed DOI

Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, Bihlmeyer NA, et al.. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci USA 2014; 111:9633-8; http://dx.doi.org/10.1073/pnas.1404651111. PubMed DOI PMC

Hara-Kuge S, Fujiki Y. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Exp Cell Res 2008; 314:3531-41; http://dx.doi.org/10.1016/j.yexcr.2008.09.015. PubMed DOI

Ezaki J, Kominami E, Ueno T. Peroxisome degradation in mammals. IUBMB Life 2011; 63:1001-8; http://dx.doi.org/10.1002/iub.537. PubMed DOI

Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Phys 2008; 148:142-55; http://dx.doi.org/10.1104/pp.108.122770. PubMed DOI PMC

Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Phys 2009; 149:885-93; http://dx.doi.org/10.1104/pp.108.130013. PubMed DOI PMC

Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell 2014; 26:4084-101; http://dx.doi.org/10.1105/tpc.114.129999. PubMed DOI PMC

Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, Otegui MS. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell 2015; 27:391-402. PubMed PMC

Changou CA, Chen YR, Xing L, Yen Y, Chuang FY, Cheng RH, Bold RJ, Ann DK, Kung HJ. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci USA 2014; 111:14147-52; http://dx.doi.org/10.1073/pnas.1404171111. PubMed DOI PMC

Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014. PubMed PMC

Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 2011; 43:1686-97; http://dx.doi.org/10.1016/j.biocel.2011.08.016. PubMed DOI

Terman A, Kurz T. Lysosomal iron, iron chelation, and cell death. Antioxid Redox Sign 2013; 18:888-98; http://dx.doi.org/10.1089/ars.2012.4885. PubMed DOI

Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima N, Iwai K. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol 2011; 31:2040-52; http://dx.doi.org/10.1128/MCB.01437-10. PubMed DOI PMC

Bauckman KA, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis 2013; 4:e592; http://dx.doi.org/10.1038/cddis.2013.87. PubMed DOI PMC

De Domenico I, Ward DM, Kaplan J. Autophagy, ferritin and iron chelation. Autophagy 2010; 6:157; http://dx.doi.org/10.4161/auto.6.1.10587. PubMed DOI

Sturm B, Goldenberg H, Scheiber-Mojdehkar B. Transient increase of the labile iron pool in HepG2 cells by intravenous iron preparations. Eur J Biochem 2003; 270:3731-8; http://dx.doi.org/10.1046/j.1432-1033.2003.03759.x. PubMed DOI

Nagl W. ‘'Plastolysomes' - Plastids involved in the autolysis of the embryo-suspensor in Phaseolus. Zeitschrift Pflanzenphysiol 1977; 85:45-51; http://dx.doi.org/10.1016/S0044-328X(77)80263-8. DOI

Gartner PJ, Nagl W. Acid phosphatase activity in plastids (plastolysomes) of senescing embryo-suspensor cells. Planta 1980; 149:341-9; http://dx.doi.org/10.1007/BF00571168. PubMed DOI

van Doorn WG, Kirasak K, Sonong A, Srihiran Y, van Lent J, Ketsa S. Do plastids in Dendrobium cv. Lucky Duan petals function similar to autophagosomes and autolysosomes? Autophagy 2011; 7:584-97; http://dx.doi.org/10.4161/auto.7.6.15099. PubMed DOI

Parra-Vega V, Corral-Martínez P, Rivas-Sendra A, Segui-Simarro JM. Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores. Front Plant Sci 2015; 6:94. PubMed PMC

Gonzalez-Melendi P, Uyttewaal M, Morcillo CN, Hernandez Mora JR, Fajardo S, Budar F, Lucas MM. A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J Exp Bot 2008; 59:827-38; http://dx.doi.org/10.1093/jxb/erm365. PubMed DOI

Newcomb EH. Fine structure of protein-storing plastids in bean root tips. J Cell Biol 1967; 33:143-63; http://dx.doi.org/10.1083/jcb.33.1.143. PubMed DOI PMC

Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458:1131-5; http://dx.doi.org/10.1038/nature07976. PubMed DOI PMC

Koenig U, Fobker M, Lengauer B, Brandstetter M, Resch GP, Groger M, Plenz G, Pammer J, Barresi C, Hartmann C, et al.. Autophagy facilitates secretion and protects against degeneration of the Harderian gland. Autophagy 2015; 11:298-313; http://dx.doi.org/10.4161/15548627.2014.978221. PubMed DOI PMC

Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR, Howe MK, McDonnell DP, Frigo DE. Androgens promote prostate cancer cell growth through induction of autophagy. Mol Endocrinol 2013; 27:280-95; http://dx.doi.org/10.1210/me.2012-1260. PubMed DOI PMC

O'Rourke EJ, Soukas AA, Carr CE, Ruvkun G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 2009; 10:430-5; http://dx.doi.org/10.1016/j.cmet.2009.10.002. PubMed DOI PMC

Inokuchi-Shimizu S, Park EJ, Roh YS, Yang L, Zhang B, Song J, Liang S, Pimienta M, Taniguchi K, Wu X, et al.. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest 2014; 124:3566-78; http://dx.doi.org/10.1172/JCI74068. PubMed DOI PMC

Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, Bandyopadhyay G, Li N, Aghajan M, Jang I, et al.. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab 2012; 16:311-21; http://dx.doi.org/10.1016/j.cmet.2012.08.004. PubMed DOI PMC

Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, et al.. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15:647-58; http://dx.doi.org/10.1038/ncb2718. PubMed DOI PMC

AM Cuervo. Preventing lysosomal fat indigestion. Nat Cell Biol 2013; 15:565-7; http://dx.doi.org/10.1038/ncb2778. PubMed DOI

Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nature Rev Mol Cell Biol 2013; 14:283-96; http://dx.doi.org/10.1038/nrm3565. PubMed DOI PMC

Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci USA 2010; 107:16320-4; http://dx.doi.org/10.1073/pnas.1002176107. PubMed DOI PMC

Heck MV, Azizov M, Stehning T, Walter M, Kedersha N, Auburger G. Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics 2014; 15:135-44; http://dx.doi.org/10.1007/s10048-014-0397-x. PubMed DOI PMC

Popovic D, Akutsu M, Novak I, Harper JW, Behrends C, Dikic I. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 2012; 32:1733-44; http://dx.doi.org/10.1128/MCB.06717-11. PubMed DOI PMC

Hung YH, Chen LM, Yang JY, Yang WY. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun 2013; 4:2111; http://dx.doi.org/10.1038/ncomms3111. PubMed DOI

Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, et al.. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 2013; 32:2336-47; http://dx.doi.org/10.1038/emboj.2013.171. PubMed DOI PMC

De Meyer GR, Grootaert MO, Michiels CF, Kurdi A, Schrijvers DM, Martinet W. Autophagy in vascular disease. Circ Res 2015; 116:468-79; http://dx.doi.org/10.1161/CIRCRESAHA.116.303804. PubMed DOI

Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis 1999; 142:1-28; http://dx.doi.org/10.1016/S0021-9150(98)00196-8. PubMed DOI

He C, Zhu H, Zhang W, Okon I, Wang Q, Li H, Le YZ, Xie Z. 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol 2013; 183:626-37; http://dx.doi.org/10.1016/j.ajpath.2013.04.028. PubMed DOI PMC

Martinet W, Schrijvers DM, Timmermans JP, Bult H. Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol 2008; 154:1236-46; http://dx.doi.org/10.1038/bjp.2008.181. PubMed DOI PMC

Zarrouk A, Vejux A, Mackrill J, O'Callaghan Y, Hammami M, O'Brien N, Lizard G. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 2014; 18:148-62; http://dx.doi.org/10.1016/j.arr.2014.09.006. PubMed DOI

Monier S, Samadi M, Prunet C, Denance M, Laubriet A, Athias A, Berthier A, Steinmetz E, Jurgens G, Negre-Salvayre A, et al.. Impairment of the cytotoxic and oxidative activities of 7 beta-hydroxycholesterol and 7-ketocholesterol by esterification with oleate. Biochem Biophys Res Commun 2003; 303:814-24; http://dx.doi.org/10.1016/S0006-291X(03)00412-1. PubMed DOI

Nury T, Zarrouk A, Mackrill JJ, Samadi M, Durand P, Riedinger JM, Doria M, Vejux A, Limagne E, Delmas D, et al.. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7beta-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of alpha-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). Steroids 2015; 99:194-203; http://dx.doi.org/10.1016/j.steroids.2015.02.003. PubMed DOI

Nury T, Zarrouk A, Vejux A, Doria M, Riedinger JM, Delage-Mourroux R, Lizard G. Induction of oxiapoptophagy, a mixed mode of cell death associated with oxidative stress, apoptosis and autophagy, on 7-ketocholesterol-treated 158N murine oligodendrocytes: impairment by alpha-tocopherol. Biochem Biophys Res Commun 2014; 446:714-9; http://dx.doi.org/10.1016/j.bbrc.2013.11.081. PubMed DOI

Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015; 522:359-62; http://dx.doi.org/10.1038/nature14506. PubMed DOI

Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 2006; 281:30299-304; http://dx.doi.org/10.1074/jbc.M607007200. PubMed DOI PMC

Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 2014; 127:4078-88; http://dx.doi.org/10.1242/jcs.154716. PubMed DOI PMC

Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 2007; 3:285-7; http://dx.doi.org/10.4161/auto.3930. PubMed DOI

Klionsky DJ, Cuervo AM, Dunn WA Jr., Levine B, van der Klei I, Seglen PO. How shall I eat thee? Autophagy 2007; 3:413-6; http://dx.doi.org/10.4161/auto.4377. PubMed DOI

Bolender RP, Weibel ER. A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of threatment. J Cell Biol 1973; 56:746-61; http://dx.doi.org/10.1083/jcb.56.3.746. PubMed DOI PMC

Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, et al.. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015; 522:354-8; http://dx.doi.org/10.1038/nature14498. PubMed DOI

Lipatova Z, Segev N. A Role for Macro-ER-Phagy in ER Quality Control. PLoS Genet 2015; 11:e1005390. PubMed PMC

Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 2008; 10:602-10; http://dx.doi.org/10.1038/ncb1723. PubMed DOI

Ossareh-Nazari B, Nino CA, Bengtson MH, Lee JW, Joazeiro CA, Dargemont C. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol 2014; 204:909-17; http://dx.doi.org/10.1083/jcb.201308139. PubMed DOI PMC

Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci USA 2012; 109:15942-6; http://dx.doi.org/10.1073/pnas.1209487109. PubMed DOI PMC

Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 2012; 14:1314-21; http://dx.doi.org/10.1038/ncb2611. PubMed DOI PMC

Zhang P, Zhang H. Autophagy modulates miRNA-mediated gene silencing and selectively degrades AIN-1/GW182 in C. elegans. EMBO Rep 2013; 14:568-76; http://dx.doi.org/10.1038/embor.2013.53. PubMed DOI PMC

Brown CR, Chiang H-L. A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2009; 2:177-83; http://dx.doi.org/10.4161/cib.7711. PubMed DOI PMC

Schule T, Rose M, Entian KD, Thumm M, Wolf DH. Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphatase in yeast. EMBO J 2000; 19:2161-7; http://dx.doi.org/10.1093/emboj/19.10.2161. PubMed DOI PMC

Schork SM, Thumm M, Wolf DH. Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. J Biol Chem 1995; 270:26446-50; http://dx.doi.org/10.1074/jbc.270.44.26446. PubMed DOI

Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD, Thumm M, Wolf DH. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 2003; 14:1652-63; http://dx.doi.org/10.1091/mbc.E02-08-0456. PubMed DOI PMC

Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004; 279:49138-50; http://dx.doi.org/10.1074/jbc.M404544200. PubMed DOI

Chiang H-L, Schekman R, Hamamoto S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem 1996; 271:9934-41; http://dx.doi.org/10.1074/jbc.271.50.32359. PubMed DOI

Huang PH, Chiang H-L. Identification of novel vesicles in the cytosol to vacuole protein degradation pathway. J Cell Biol 1997; 136:803-10; http://dx.doi.org/10.1083/jcb.136.4.803. PubMed DOI PMC

Alibhoy AA, Giardina BJ, Dunton DD, Chiang H-L. Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway. Autophagy 2012; 8:29-46. PubMed PMC

Brown CR, Wolfe AB, Cui D, Chiang H-L. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008; 283:26116-27; http://dx.doi.org/10.1074/jbc.M709922200. PubMed DOI PMC

Chiang MC, Chiang H-L. Vid24p, a novel protein localized to the fructose-1, 6-bisphosphatase-containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation. J Cell Biol 1998; 140:1347-56; http://dx.doi.org/10.1083/jcb.140.6.1347. PubMed DOI PMC

Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 1995; 128:779-92; http://dx.doi.org/10.1083/jcb.128.5.779. PubMed DOI PMC

Brown CR, Hung GC, Dunton D, Chiang H-L. The TOR complex 1 is distributed in endosomes and in retrograde vesicles that form from the vacuole membrane and plays an important role in the vacuole import and degradation pathway. J Biol Chem 2010; 285:23359-70; http://dx.doi.org/10.1074/jbc.M109.075143. PubMed DOI PMC

Brown CR, Dunton D, Chiang H-L. The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation. J Biol Chem 2010; 285:1516-28; http://dx.doi.org/10.1074/jbc.M109.028241. PubMed DOI PMC

Webster P. Cytoplasmic bacteria and the autophagic pathway. Autophagy 2006; 2:159-61; http://dx.doi.org/10.4161/auto.2826. PubMed DOI

Dubuisson JF, Swanson MS. Mouse infection by Legionella, a model to analyze autophagy. Autophagy 2006; 2:179-82; http://dx.doi.org/10.4161/auto.2831. PubMed DOI PMC

Jordan TX, Randall G. Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 2011. PubMed PMC

Knodler LA, Celli J. Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell Microbiol 2011; 13:1319-27; http://dx.doi.org/10.1111/j.1462-5822.2011.01632.x. PubMed DOI PMC

Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469:323-35; http://dx.doi.org/10.1038/nature09782. PubMed DOI PMC

Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 2011; 240:92-104; http://dx.doi.org/10.1111/j.1600-065X.2010.00995.x. PubMed DOI PMC

Dong X, Levine B. Autophagy and viruses: adversaries or allies? J Innate Immun 2013; 5:480-93; http://dx.doi.org/10.1159/000346388. PubMed DOI PMC

Wang C, Symington JW, Mysorekar IU. ATG16L1 and pathogenesis of urinary tract infections. Autophagy 2012; 8:1693-4; http://dx.doi.org/10.4161/auto.21600. PubMed DOI PMC

Choy A, Roy CR. Autophagy and bacterial infection: an evolving arms race. Trends Microbiol 2013; 21:451-6; http://dx.doi.org/10.1016/j.tim.2013.06.009. PubMed DOI PMC

Mostowy S, Cossart P. Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol 2012; 22:283-91; http://dx.doi.org/10.1016/j.tcb.2012.03.006. PubMed DOI

Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S, Imamoto F, Noda T, Yoshimori T. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 2011; 22:2290-300; http://dx.doi.org/10.1091/mbc.E10-11-0893. PubMed DOI PMC

Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012; 482:414-8; http://dx.doi.org/10.1038/nature10744. PubMed DOI PMC

Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 2009; 183:5909-16; http://dx.doi.org/10.4049/jimmunol.0900441. PubMed DOI

Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10:1215-21; http://dx.doi.org/10.1038/ni.1800. PubMed DOI

Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, Buss F. The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella Typhimurium by autophagy. PLoS Pathog 2015;11:e1005174. PubMed PMC

Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, et al.. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011; 333:228-33; http://dx.doi.org/10.1126/science.1205405. PubMed DOI PMC

Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA 2009; 106:6226-31; http://dx.doi.org/10.1073/pnas.0811045106. PubMed DOI PMC

Rich KA, Burkett C, Webster P. Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 2003; 5:455-68; http://dx.doi.org/10.1046/j.1462-5822.2003.00292.x. PubMed DOI

Shahnazari S, Brumell JH. Mechanisms and consequences of bacterial targeting by the autophagy pathway. Current opinion in microbiology 2011; 14:68-75; http://dx.doi.org/10.1016/j.mib.2010.11.001. PubMed DOI

Klionsky DJ, Eskelinen EL, Deretic V. Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes… wait, I'm confused. Autophagy 2014; 10:549-51; http://dx.doi.org/10.4161/auto.28448. PubMed DOI PMC

Li X, Ye Y, Zhou X, Huang C, Wu M. Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. J Immunol 2015; 194:1112-21; http://dx.doi.org/10.4049/jimmunol.1401958. PubMed DOI PMC

Ye Y, Tan S, Zhou X, Li X, Jundt MC, Lichter N, Hidebrand A, Dhasarathy A, Wu M. Inhibition of p-IkappaBalpha Ubiquitylation by Autophagy-Related Gene 7 to Regulate Inflammatory Responses to Bacterial Infection. J Infect Dis 2015; 212:1816-26. PubMed PMC

Yuan K, Huang C, Fox J, Laturnus D, Carlson E, Zhang B, Yin Q, Gao H, Wu M. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J Cell Sci 2012; 125:507-15; http://dx.doi.org/10.1242/jcs.094573. PubMed DOI PMC

Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, Thomas BJ, Malosse C, Gantier MP, Casillas LN, et al.. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 2014; 15:623-35; http://dx.doi.org/10.1016/j.chom.2014.04.001. PubMed DOI

Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nature reviews Immunology 2015; 15:375-87; http://dx.doi.org/10.1038/nri3837. PubMed DOI

McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem 2011; 286:22147-59; http://dx.doi.org/10.1074/jbc.M110.192500. PubMed DOI PMC

Mao Y, Da L, Tang H, Yang J, Lei Y, Tiollais P, Li T, Zhao M. Hepatitis B virus X protein reduces starvation-induced cell death through activation of autophagy and inhibition of mitochondrial apoptotic pathway. Biochem Biophys Res Commun 2011; 415:68-74; http://dx.doi.org/10.1016/j.bbrc.2011.10.013. PubMed DOI

Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007; 1:23-35; http://dx.doi.org/10.1016/j.chom.2006.12.001. PubMed DOI

Alexander DE, Ward SL, Mizushima N, Levine B, Leib DA. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol 2007; 81:12128-34; http://dx.doi.org/10.1128/JVI.01356-07. PubMed DOI PMC

Leib DA, Alexander DE, Cox D, Yin J, Ferguson TA. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J Virol 2009; 83:12164-71; http://dx.doi.org/10.1128/JVI.01676-09. PubMed DOI PMC

Yordy B, Iijima N, Huttner A, Leib D, Iwasaki A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 2012; 12:334-45; http://dx.doi.org/10.1016/j.chom.2012.07.013. PubMed DOI PMC

Liang CEX, Jung JU. Downregulation of autophagy by herpesvirus Bcl-2 homologs. Autophagy 2008; 4:268-72; http://dx.doi.org/10.4161/auto.5210. PubMed DOI

Hernaez B, Cabezas M, Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med 2013; 13:305-16; http://dx.doi.org/10.2174/156652413804810736. PubMed DOI

Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Munoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res 2013; 173:42-57; http://dx.doi.org/10.1016/j.virusres.2012.12.006. PubMed DOI PMC

Galindo I, Hernaez B, Diaz-Gil G, Escribano JM, Alonso C. A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 2008; 375:561-72; http://dx.doi.org/10.1016/j.virol.2008.01.050. PubMed DOI PMC

Gannage M, Ramer PC, Munz C. Targeting Beclin 1 for viral subversion of macroautophagy. Autophagy 2010; 6:166-7; http://dx.doi.org/10.4161/auto.6.1.10624. PubMed DOI

MS Killian. Dual role of autophagy in HIV-1 replication and pathogenesis. AIDS Res Ther 2012; 9:16; http://dx.doi.org/10.1186/1742-6405-9-16. PubMed DOI PMC

Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, et al.. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 2009; 186:255-68; http://dx.doi.org/10.1083/jcb.200903070. PubMed DOI PMC

Nardacci R, Amendola A, Ciccosanti F, Corazzari M, Esposito V, Vlassi C, Taibi C, Fimia GM, Del Nonno F, Ippolito G, et al.. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients. Autophagy 2014; 10:1167-78; http://dx.doi.org/10.4161/auto.28678. PubMed DOI PMC

Zhang H, Monken CE, Zhang Y, Lenard J, Mizushima N, Lattime EC, Jin S. Cellular autophagy machinery is not required for vaccinia virus replication and maturation. Autophagy 2006; 2:91-5; http://dx.doi.org/10.4161/auto.2.2.2297. PubMed DOI PMC

Heaton NS, Randall G. Dengue virus and autophagy. Viruses 2011; 3:1332-41; http://dx.doi.org/10.3390/v3081332. PubMed DOI PMC

Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA 2009; 106:14046-51; http://dx.doi.org/10.1073/pnas.0907344106. PubMed DOI PMC

Collins CA, De Maziere A, van Dijk S, Carlsson F, Klumperman J, Brown EJ. Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathog 2009; 5:e1000430; http://dx.doi.org/10.1371/journal.ppat.1000430. PubMed DOI PMC

Moreau K, Lacas-Gervais S, Fujita N, Sebbane F, Yoshimori T, Simonet M, Lafont F. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell Microbiol 2010; 12:1108-23; http://dx.doi.org/10.1111/j.1462-5822.2010.01456.x. PubMed DOI

Grasso D, Ropolo A, Lo Re A, Boggio V, Molejon MI, Iovanna JL, Gonzalez CD, Urrutia R, Vaccaro MI. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 2011; 286:8308-24; http://dx.doi.org/10.1074/jbc.M110.197301. PubMed DOI PMC

Gorbunov NV, Kiang JG. Autophagy-Mediated Innate Defense Mechanism in Crypt Paneth Cells Responding to Impairment of Small Intestine Barrier after Total-Body Gamma-Photon Irradiation In: Gorbunov NV, ed. Autophagy: Principles, Regulation and Roles in Disease. Hauppauge, NY: NOVA SCIENCE PUBLISHERS, INC., 2011:61-84.

Seglen PO, Gordon PB, Tolleshaug H, Høyvik H. Use of [3H]raffinose as a specific probe of autophagic sequestration. Exp Cell Res 1986; 162:273-7. PubMed

Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990; 111:941-53; http://dx.doi.org/10.1083/jcb.111.3.941. PubMed DOI PMC

Gordon PB, Seglen PO. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Exp Cell Res 1982; 142:1-14; http://dx.doi.org/10.1016/0014-4827(82)90402-5. PubMed DOI

Seglen PO, Luhr M, Mills IG, Saetre F, Szalai P, Engedal N. Macroautophagic cargo sequestration assays. Methods 2015; 75:25-36; http://dx.doi.org/10.1016/j.ymeth.2014.12.021. PubMed DOI

Boland B, Smith DA, Mooney D, Jung SS, Walsh DM, Platt FM. Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. J Biol Chem 2010; 285:37415-26; http://dx.doi.org/10.1074/jbc.M110.186411. PubMed DOI PMC

Nair U, Thumm M, Klionsky DJ, Krick R. GFP-Atg8 protease protection as a tool to monitor autophagosome biogenesis. Autophagy 2011; 7:1546-50; http://dx.doi.org/10.4161/auto.7.12.18424. PubMed DOI PMC

Plomp PJ, Gordon PB, Meijer AJ, Høyvik H, Seglen PO. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem 1989; 264:6699-704. PubMed

Høyvik H, Gordon PB, Berg TO, Strømhaug PE, Seglen PO. Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine. J Cell Biol 1991; 113:1305-12; http://dx.doi.org/10.1083/jcb.113.6.1305. PubMed DOI PMC

Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2006; 2:39-46; http://dx.doi.org/10.4161/auto.2229. PubMed DOI PMC

Lorenz H, Hailey DW, Lippincott-Schwartz J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 2006; 3:205-10; http://dx.doi.org/10.1038/nmeth857. PubMed DOI

McNeil PL, Murphy RF, Lanni F, Taylor DL. A method for incorporating macromolecules into adherent cells. J Cell Biol 1984; 98:1556-64; http://dx.doi.org/10.1083/jcb.98.4.1556. PubMed DOI PMC

Kim J, Huang WP, Stromhaug PE, Klionsky DJ. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 2002; 277:763-73; http://dx.doi.org/10.1074/jbc.M109134200. PubMed DOI PMC

Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell 2012; 23:896-909; http://dx.doi.org/10.1091/mbc.E11-09-0785. PubMed DOI PMC

Kovács AL, Laszlo L, Kovács J. Effect of amino acids and cycloheximide on changes caused by vinblastine, leupeptin and methylamine in the autophagic/lysosomal system of mouse hepatocytes in vivo. Exp Cell Res 1985; 157:83-94; http://dx.doi.org/10.1016/0014-4827(85)90154-5. PubMed DOI

Swanson MS, Byrne BG, Dubuisson JF. Kinetic analysis of autophagosome formation and turnover in primary mouse macrophages. Methods Enzymol 2009; 452:383-402; http://dx.doi.org/10.1016/S0076-6879(08)03623-9. PubMed DOI

Beugnet A, Tee AR, Taylor PM, Proud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 2003; 372:555-66; http://dx.doi.org/10.1042/bj20021266. PubMed DOI PMC

Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, et al.. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 2007; 26:663-74; http://dx.doi.org/10.1016/j.molcel.2007.04.020. PubMed DOI

Jomain-Baum M, Garber AJ, Farber E, Hanson RW. The effect of cycloheximide on the interaction between mitochondrial respiration and gluconeogenesis in guinea pig and rat liver. J Biol Chem 1973; 248:1536-43. PubMed

Garber AJ, Jomain-Baum M, Salganicoff L, Farber E, Hanson RW. The effects of cycloheximide on energy transfer in rat and guinea pig liver mitochondria. J Biol Chem 1973; 248:1530-5. PubMed

Mora R, Dokic I, Kees T, Huber CM, Keitel D, Geibig R, Brugge B, Zentgraf H, Brady NR, Regnier-Vigouroux A. Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma. Glia 2010; 58:1364-83. PubMed

Bright NA, Lindsay MR, Stewart A, Luzio JP. The relationship between lumenal and limiting membranes in swollen late endocytic compartments formed after wortmannin treatment or sucrose accumulation. Traffic 2001; 2:631-42; http://dx.doi.org/10.1034/j.1600-0854.2001.20906.x. PubMed DOI

Deter RL. Quantitative characterization of dense body, autophagic vacuole, and acid phosphatase-bearing particle populations during the early phases of glucagon-induced autophagy in rat liver. J Cell Biol 1971; 48:473-89; http://dx.doi.org/10.1083/jcb.48.3.473. PubMed DOI PMC

Deter RL. Analog modeling of glucagon-induced autophagy in rat liver. I. Conceptual and mathematical model of telolysosome-autophagosome-autolysosome interaction. Exp Cell Res 1975; 94:122-6; http://dx.doi.org/10.1016/0014-4827(75)90538-8. PubMed DOI

Deter RL. Analog modeling of glucagon-induced autophagy in rat liver. II. Evaluation of iron labeling as a means for identifying telolysosome, autophagosome and autolysosome populations. Exp Cell Res 1975; 94:127-39; http://dx.doi.org/10.1016/0014-4827(75)90539-X. PubMed DOI

Deter RL, Baudhuin P, de Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 1967; 35:C11-6; http://dx.doi.org/10.1083/jcb.35.2.C11. PubMed DOI PMC

Deter RL, de Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33:437-49; http://dx.doi.org/10.1083/jcb.33.2.437. PubMed DOI PMC

Stromhaug PE, Berg TO, Fengsrud M, Seglen PO. Purification and characterization of autophagosomes from rat hepatocytes. Biochem J 1998; 335 (Pt 2):217-24; http://dx.doi.org/10.1042/bj3350217. PubMed DOI PMC

Deter RL. Electron microscopic evaluation of subcellular fractions obtained by ultracentrifugation In: Hayat MA, ed. Principles and Techniques of Electron Microscopy. New York: Van Nostrand Reinhold Co, 1973:199-235.

Marzella L, Ahlberg J, Glaumann H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol 1982; 93:144-54; http://dx.doi.org/10.1083/jcb.93.1.144. PubMed DOI PMC

Wattiaux R, Wattiaux-De Coninck S, Ronveaux-Dupal M-F, Dubois F. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol 1978; 78:349-68; http://dx.doi.org/10.1083/jcb.78.2.349. PubMed DOI PMC

Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neuobiol Dis 2010; 39:423-38; http://dx.doi.org/10.1016/j.nbd.2010.05.014. PubMed DOI

Weibel ER, Bolender RP. Stereological techniques for electron microscopic morphometry In: Hayat MA, ed. Principles and Techniques of Electron Microscopy. New York: Van Nostrand Reinhold Co, 1973:237-96.

Baudhuin P, Evrard P, Berthet J. Electron microscopic examination of subcellular fractions. I. The preparation of representative samples from suspensions of particles. J Cell Biol 1967; 32:181-91; http://dx.doi.org/10.1083/jcb.32.1.181. PubMed DOI PMC

Baudhuin P, Berthet J. Electron microscopic examination of subcellular fractions. II. Quantitative analysis of the mitochondrial population isolated from rat liver. J Cell Biol 1967; 35:631-48; http://dx.doi.org/10.1083/jcb.35.3.631. PubMed DOI PMC

Storrie B, Madden EA. Isolation of subcellular organelles. Methods Enzymol 1990; 182:203-25; http://dx.doi.org/10.1016/0076-6879(90)82018-W. PubMed DOI

Balch WE, Rothman JE. Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys 1985; 240:413-25; http://dx.doi.org/10.1016/0003-9861(85)90046-3. PubMed DOI

Graham JM. Isolation of lysosomes from tissues and cells by differential and density gradient centrifugation In: Bonifacino JS, Dasso M, Harfod JB, Lippincott-Schwartz J and Yamada KM, eds. Current Protocols in Cell Biology: John Wiley & Sons, Inc, 2000:Unit 3.6. PubMed

Cuervo AM, Dice JF, Knecht E. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 1997; 272:5606-15; http://dx.doi.org/10.1074/jbc.272.9.5606. PubMed DOI

He C, Sumpter R Jr., Levine B. Exercise induces autophagy in peripheral tissues and in the brain. Autophagy 2012; 8:1548-51; http://dx.doi.org/10.4161/auto.21327. PubMed DOI PMC

Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 2014:0. PubMed PMC

Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA. A method to measure cardiac autophagic flux in vivo. Autophagy 2008; 4:322-9; http://dx.doi.org/10.4161/auto.5603. PubMed DOI PMC

Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007; 117:1782-93; http://dx.doi.org/10.1172/JCI27523. PubMed DOI PMC

Castillo K, Valenzuela V, Matus S, Nassif M, Onate M, Fuentealba Y, Encina G, Irrazabal T, Parsons G, Court FA, et al.. Measurement of autophagy flux in the nervous system in vivo. Cell Death Dis 2013; 4:e917. PubMed PMC

Matus S, Valenzuela V, Hetz C. A new method to measure autophagy flux in the nervous system. Autophagy 2014; 10:710-4; http://dx.doi.org/10.4161/auto.28434. PubMed DOI PMC

Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, Court FA, van Zundert B, Hetz C. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 2013; 9:1308-20; http://dx.doi.org/10.4161/auto.25188. PubMed DOI

Chiarelli R, Agnello M, Roccheri MC. Sea urchin embryos as a model system for studying autophagy induced by cadmium stress. Autophagy 2011; 7:1028-34; http://dx.doi.org/10.4161/auto.7.9.16450. PubMed DOI

Morici G, Agnello M, Spagnolo F, Roccheri MC, Di Liegro CM, Rinaldi AM. Confocal microscopy study of the distribution, content and activity of mitochondria during Paracentrotus lividus development. J Microsc 2007; 228:165-73; http://dx.doi.org/10.1111/j.1365-2818.2007.01860.x. PubMed DOI

Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM. Detection of autophagy in tissue by standard immunohistochemistry: possibilities and limitations. Autophagy 2006; 2:55-7; http://dx.doi.org/10.4161/auto.2217. PubMed DOI

Holt SV, Wyspianska B, Randall KJ, James D, Foster JR, Wilkinson RW. The development of an immunohistochemical method to detect the autophagy-associated protein LC3-II in human tumor xenografts. Toxicol Pathol 2011; 39:516-23; http://dx.doi.org/10.1177/0192623310396903. PubMed DOI

Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 2009; 452:1-12; http://dx.doi.org/10.1016/S0076-6879(08)03601-X. PubMed DOI

Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci 2010; 30:12535-44; http://dx.doi.org/10.1523/JNEUROSCI.1920-10.2010. PubMed DOI PMC

Daniels BH, McComb RD, Mobley BC, Gultekin SH, Lee HS, Margeta M. LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar cardiomyopathy: a study of 3 cases. Am J Surg Pathol 2013; 37:1014-21; http://dx.doi.org/10.1097/PAS.0b013e3182863fa8. PubMed DOI

Hiniker A, Daniels BH, Lee HS, Margeta M. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies. Acta Neuropathol Commun 2013; 1:29; http://dx.doi.org/10.1186/2051-5960-1-29. PubMed DOI PMC

Lee HS, Daniels BH, Salas E, Bollen AW, Debnath J, Margeta M. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study. PloS One 2012; 7:e36221. PubMed PMC

Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 2011; 13:655-67; http://dx.doi.org/10.1016/j.cmet.2011.03.023. PubMed DOI PMC

Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N, Matsumoto N, Hisatsune C, Nakamura T, Mikoshiba K. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 2014; 111:E3966-75; http://dx.doi.org/10.1073/pnas.1409730111. PubMed DOI PMC

Rodriguez-Muela N, Koga H, Garcia-Ledo L, de la Villa P, de la Rosa EJ, Cuervo AM, Boya P. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 2013; 12:478-88; http://dx.doi.org/10.1111/acel.12072. PubMed DOI PMC

Esteban-Martinez L, Boya P. Autophagic flux determination in vivo and ex vivo. Methods 2015; 75:79-86; http://dx.doi.org/10.1016/j.ymeth.2015.01.008. PubMed DOI

McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, Zhu X, Huang Y. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci 2012; 32:15704-14; http://dx.doi.org/10.1523/JNEUROSCI.2392-12.2012. PubMed DOI PMC

Herrando-Grabulosa M, Casas C, Aguilera J. The C-terminal domain of tetanus toxin protects motoneurons against acute excitotoxic damage on spinal cord organotypic cultures. J Neurochem 2013; 124:36-44; http://dx.doi.org/10.1111/jnc.12062. PubMed DOI

Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13:589-98; http://dx.doi.org/10.1038/ncb2220. PubMed DOI PMC

Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, et al.. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 2010; 16:1313-20; http://dx.doi.org/10.1038/nm.2247. PubMed DOI

Bloemberg D, McDonald E, Dulay D, Quadrilatero J. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats. Acta Physiol (Oxf) 2014; 210:381-91; http://dx.doi.org/10.1111/apha.12178. PubMed DOI

Ogata T, Oishi Y, Higuchi M, Muraoka I. Fasting-related autophagic response in slow- and fast-twitch skeletal muscle. Biochem Biophys Res Commun 2010; 394:136-40; http://dx.doi.org/10.1016/j.bbrc.2010.02.130. PubMed DOI

Yamada E, Bastie CC, Koga H, Wang Y, Cuervo AM, Pessin JE. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep 2012; 1:557-69; http://dx.doi.org/10.1016/j.celrep.2012.03.014. PubMed DOI PMC

He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, et al.. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012; 481:511-5; http://dx.doi.org/10.1038/nature10758. PubMed DOI PMC

Haspel J, Shaik RS, Ifedigbo E, Nakahira K, Dolinay T, Englert JA, Choi AM. Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy 2011; 7:629-42; http://dx.doi.org/10.4161/auto.7.6.15100. PubMed DOI PMC

Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011; 50:940-50; http://dx.doi.org/10.1016/j.yjmcc.2011.02.018. PubMed DOI

Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PloS One 2011; 6:e20975; http://dx.doi.org/10.1371/journal.pone.0020975. PubMed DOI PMC

Gottlieb RA, Finley KD, Mentzer RM Jr.. Cardioprotection requires taking out the trash. Basic Res Cardiol 2009; 104:169-80; http://dx.doi.org/10.1007/s00395-009-0011-9. PubMed DOI PMC

Avagliano L, Virgili E, Garo C, Quadrelli F, Doi P, Samaja M, Bulfamante GP, Marconi AM. Autophagy and human parturition: evaluation of LC3 expression in placenta from spontaneous or medically induced onset of labor. BioMed Res Intl 2013; 2013:689768; http://dx.doi.org/10.1155/2013/689768. PubMed DOI PMC

Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL. Autophagy in the human placenta throughout gestation. PloS One 2013; 8:e83475; http://dx.doi.org/10.1371/journal.pone.0083475. PubMed DOI PMC

Signorelli P, Avagliano L, Virgili E, Gagliostro V, Doi P, Braidotti P, Bulfamante GP, Ghidoni R, Marconi AM. Autophagy in term normal human placentas. Placenta 2011; 32:482-5; http://dx.doi.org/10.1016/j.placenta.2011.03.005. PubMed DOI

Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PloS One 2012; 7:e40957; http://dx.doi.org/10.1371/journal.pone.0040957. PubMed DOI PMC

Chang YL, Wang TH, Chang SD, Chao AS, Hsieh PC, Wang CN. Increased autophagy in the placental territory of selective intrauterine growth-restricted monochorionic twins. Prenatal Diag 2013; 33:187-90; http://dx.doi.org/10.1002/pd.4040. PubMed DOI

Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci 2008; 15:912-20; http://dx.doi.org/10.1177/1933719108319159. PubMed DOI

Avagliano L, Danti L, Doi P, Felis S, Guala M, Locatelli A, Maffeo I, Mecacci F, Plevani C, Simeone S, et al.. Autophagy in placentas from acidotic newborns: an immunohistochemical study of LC3 expression. Placenta 2013; 34:1091-4; http://dx.doi.org/10.1016/j.placenta.2013.09.004. PubMed DOI

Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb RA. Novel methods for measuring cardiac autophagy in vivo. Methods Enzymol 2009; 453:325-42; http://dx.doi.org/10.1016/S0076-6879(08)04016-0. PubMed DOI PMC

Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114:3619-29. PubMed

Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neuobiol Dis 2008; 32:329-39; http://dx.doi.org/10.1016/j.nbd.2008.07.022. PubMed DOI

Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 2010; 6:366-77; http://dx.doi.org/10.4161/auto.6.3.11261. PubMed DOI

Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: Role of protein synthesis and autophagic pathways. Exp Neurol 2014; 57:192-9. PubMed

Ginet V, Puyal J, Clarke PG, Truttmann AC. Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 2009; 175:1962-74; http://dx.doi.org/10.2353/ajpath.2009.090463. PubMed DOI PMC

Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Annals Neurol 2009; 66:378-89; http://dx.doi.org/10.1002/ana.21714. PubMed DOI

Penas C, Font-Nieves M, Fores J, Petegnief V, Planas A, Navarro X, Casas C. Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ 2011; 18:1617-27; http://dx.doi.org/10.1038/cdd.2011.24. PubMed DOI PMC

Y Uchiyama. Autophagic cell death and its execution by lysosomal cathepsins. Arch Histol Cytol 2001; 64:233-46; http://dx.doi.org/10.1679/aohc.64.233. PubMed DOI

Udelnow A, Kreyes A, Ellinger S, Landfester K, Walther P, Klapperstueck T, Wohlrab J, Henne-Bruns D, Knippschild U, Wurl P. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells. PloS One 2011; 6:e20143. PubMed PMC

Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol 2000; 165:1534-40; http://dx.doi.org/10.4049/jimmunol.165.3.1534. PubMed DOI

Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005; 307:593-6; http://dx.doi.org/10.1126/science.1104904. PubMed DOI

Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 2011; 30: 4642-51; http://dx.doi.org/10.1038/emboj.2011.322. PubMed DOI PMC

Akagi Y, Isaka Y, Akagi A, Ikawa M, Takenaka M, Moriyama T, Yamauchi A, Horio M, Ueda N, Okabe M, et al.. Transcriptional activation of a hybrid promoter composed of cytomegalovirus enhancer and beta-actin/beta-globin gene in glomerular epithelial cells in vivo. Kidney Int 1997; 51:1265-9; http://dx.doi.org/10.1038/ki.1997.172. PubMed DOI

Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al.. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 2011; 22:902-13; http://dx.doi.org/10.1681/ASN.2010070705. PubMed DOI PMC

Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, et al.. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2010; 120:1084-96; http://dx.doi.org/10.1172/JCI39492. PubMed DOI PMC

Vandrovcova J, Anaya F, Kay V, Lees A, Hardy J, de Silva R. Disentangling the role of the tau gene locus in sporadic tauopathies. Curr Alzheimer Res 2010; 7:726-34; http://dx.doi.org/10.2174/156720510793611619. PubMed DOI

Chen YS, Chen SD, Wu CL, Huang SS, Yang DI. Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp Neurol 2014; 253:63-71; http://dx.doi.org/10.1016/j.expneurol.2013.12.009. PubMed DOI

Tofaris GK, Spillantini MG. Physiological and pathological properties of alpha-synuclein. Cell Mol Life Sci 2007; 64:2194-201; http://dx.doi.org/10.1007/s00018-007-7217-5. PubMed DOI PMC

EE Wanker. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol Chem 2000; 381:937-42. PubMed

Sandri M, Coletto L, Grumati P, Bonaldo P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 2013; 126:5325-33; http://dx.doi.org/10.1242/jcs.114041. PubMed DOI

Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration–lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 2013; 280:4348-70; http://dx.doi.org/10.1111/febs.12287. PubMed DOI

Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends in Neurosci 2014; 37:315-24; http://dx.doi.org/10.1016/j.tins.2014.03.004. PubMed DOI PMC

Ossareh-Nazari B, Bonizec M, Cohen M, Dokudovskaya S, Delalande F, Schaeffer C, Van Dorsselaer A, Dargemont C. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 2010; 11:548-54; http://dx.doi.org/10.1038/embor.2010.74. PubMed DOI PMC

Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014; 17:17-23; http://dx.doi.org/10.1038/nn.3584. PubMed DOI PMC

Ebrahimi-Fakhari D, Wahlster L, Hoffmann GF, Kolker S. Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases. Pediatr Res 2014; 75:217-26; http://dx.doi.org/10.1038/pr.2013.185. PubMed DOI

Lee KM, Hwang SK, Lee JA. Neuronal autophagy and neurodevelopmental disorders. Exp Neurobiol 2013; 22:133-42; http://dx.doi.org/10.5607/en.2013.22.3.133. PubMed DOI PMC

Yasin SA, Ali AM, Tata M, Picker SR, Anderson GW, Latimer-Bowman E, Nicholson SL, Harkness W, Cross JH, Paine SM, et al.. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol 2013; 126:207-18; http://dx.doi.org/10.1007/s00401-013-1135-4. PubMed DOI

Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2012; 96:87-95; http://dx.doi.org/10.1016/j.pneurobio.2011.11.005. PubMed DOI

Seidel K, Brunt ER, de Vos RA, Dijk F, van der Want HJ, Rub U, den Dunnen WF. The p62 antibody reveals various cytoplasmic protein aggregates in spinocerebellar ataxia type 6. Clin Neuropathol 2009; 28:344-9; http://dx.doi.org/10.5414/NPP28344. PubMed DOI

Harada H, Warabi E, Matsuki T, Yanagawa T, Okada K, Uwayama J, Ikeda A, Nakaso K, Kirii K, Noguchi N, et al.. Deficiency of p62/Sequestosome 1 causes hyperphagia due to leptin resistance in the brain. J Neurosci 2013; 33:14767-77; http://dx.doi.org/10.1523/JNEUROSCI.2954-12.2013. PubMed DOI PMC

Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, Dean B, Levine J, Agam G, Gozes I. Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatr 2015; 20:126-32; http://dx.doi.org/10.1038/mp.2013.174. PubMed DOI PMC

Dresner E, Agam G, Gozes I. Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: deregulation in schizophrenia. Eur Neuropsychopharm 2011; 21:355-61; http://dx.doi.org/10.1016/j.euroneuro.2010.06.004. PubMed DOI

Nishino I. Autophagic vacuolar myopathy. Semin Pediatr Neurol 2006; 13:90-5; http://dx.doi.org/10.1016/j.spen.2006.06.004. PubMed DOI

Girolamo F, Lia A, Amati A, Strippoli M, Coppola C, Virgintino D, Roncali L, Toscano A, Serlenga L, Trojano M. Overexpression of autophagic proteins in the skeletal muscle of sporadic inclusion body myositis. Neuropath Appl Neuro 2013; 39:736-49; http://dx.doi.org/10.1111/nan.12040. PubMed DOI

Temiz P, Weihl CC, Pestronk A. Inflammatory myopathies with mitochondrial pathology and protein aggregates. J Neurol Sci 2009; 278:25-9; http://dx.doi.org/10.1016/j.jns.2008.11.010. PubMed DOI

Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D'Angelo A, Bianchi ME, et al.. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12:2074-88; http://dx.doi.org/10.1111/jth.12710. PubMed DOI

Screen M, Raheem O, Holmlund-Hampf J, Jonson PH, Huovinen S, Hackman P, Udd B. Gene expression profiling in tibial muscular dystrophy reveals unfolded protein response and altered autophagy. PloS One 2014; 9:e90819; http://dx.doi.org/10.1371/journal.pone.0090819. PubMed DOI PMC

Brady S, Squier W, Sewry C, Hanna M, Hilton-Jones D, Holton JL. A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis. BMJ Open 2014; 4:e004552; http://dx.doi.org/10.1136/bmjopen-2013-004552. PubMed DOI PMC

Lin NY, Beyer C, Giessl A, Kireva T, Scholtysek C, Uderhardt S, Munoz LE, Dees C, Distler A, Wirtz S, et al.. Autophagy regulates TNFalpha-mediated joint destruction in experimental arthritis. Ann Rheum Dis 2013; 72:761-8; http://dx.doi.org/10.1136/annrheumdis-2012-201671. PubMed DOI

Lin NY, Stefanica A, Distler JH. Autophagy: a key pathway of TNF-induced inflammatory bone loss. Autophagy 2013; 9:1253-5; http://dx.doi.org/10.4161/auto.25467. PubMed DOI PMC

Tchetina EV, Poole AR, Zaitseva EM, Sharapova EP, Kashevarova NG, Taskina EA, Alekseeva LI, Semyonova LA, Glukhova SI, Kuzin AN, et al.. Differences in Mammalian target of rapamycin gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity. Arthritis 2013; 2013:461486; http://dx.doi.org/10.1155/2013/461486. PubMed DOI PMC

Mitroulis I, Kourtzelis I, Kambas K, Chrysanthopoulou A, Ritis K. Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype. Hum Immunol 2011; 72:135-8; http://dx.doi.org/10.1016/j.humimm.2010.11.006. PubMed DOI

Bachetti T, Chiesa S, Castagnola P, Bani D, Di Zanni E, Omenetti A, D'Osualdo A, Fraldi A, Ballabio A, Ravazzolo R, et al.. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 2013; 72:1044-52; http://dx.doi.org/10.1136/annrheumdis-2012-201952. PubMed DOI

Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 2011; 21:290-304; http://dx.doi.org/10.1038/cr.2010.150. PubMed DOI PMC

Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K. 2011. Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One. 6, e29318. PubMed PMC

Kambas K, Mitroulis I, Apostolidou E, Girod A, Chrysanthopoulou A, Pneumatikos I, Skendros P, Kourtzelis I, Koffa M, Kotsianidis I, et al.. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PloS One 2012; 7:e45427; http://dx.doi.org/10.1371/journal.pone.0045427. PubMed DOI PMC

Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, Koffa M, Giatromanolaki A, Boumpas DT, et al.. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol 2014; 233:294-307; http://dx.doi.org/10.1002/path.4359. PubMed DOI

Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 2011; 30:4701-11; http://dx.doi.org/10.1038/emboj.2011.398. PubMed DOI PMC

Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, Girod A, Arelaki S, Froudarakis M, Nakopoulou L, Giatromanolaki A, et al.. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis 2013. PubMed

Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F, Marselli L, Masiello P, Marchetti P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009; 52:1083-6; http://dx.doi.org/10.1007/s00125-009-1347-2. PubMed DOI

Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, Yagihashi S. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of beta-cell mass in Japanese type 2 diabetic patients. Diabetes Care 2014; 37:1966-74; http://dx.doi.org/10.2337/dc13-2018. PubMed DOI

Ost A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H, Sandstrom P, Kjolhede P, Stralfors P. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16:235-46; http://dx.doi.org/10.2119/molmed.2010.00023. PubMed DOI PMC

Kosacka J, Kern M, Kloting N, Paeschke S, Rudich A, Haim Y, Gericke M, Serke H, Stumvoll M, Bechmann I, et al.. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol Cell Endocrinol 2015; 409:21-32; http://dx.doi.org/10.1016/j.mce.2015.03.015. PubMed DOI

Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G. Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 2014; 57:1505-16; http://dx.doi.org/10.1007/s00125-014-3255-3. PubMed DOI

Berton G. Editorial: Gigantism: a new way to prolong neutrophil life. J Leukocyte Biol 2014; 96:505-6; http://dx.doi.org/10.1189/jlb.3CE0214-107R. PubMed DOI

Dyugovskaya L, Berger S, Polyakov A, Lavie L. The development of giant phagocytes in long-term neutrophil cultures. J Leukocyte Biol 2014; 96:511-21; http://dx.doi.org/10.1189/jlb.0813437. PubMed DOI

Galluzzi L, Kepp O, Kroemer G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J 2012; 31:1055-7; http://dx.doi.org/10.1038/emboj.2012.2. PubMed DOI PMC

Panzarini E, Inguscio V, Fimia GM, Dini L. Rose Bengal Acetate PhotoDynamic Therapy (RBAc-PDT) induces exposure and release of damage-associated molecular patterns (DAMPs) in human HeLa cells. PloS One 2014; 9:e105778. PubMed PMC

Santin G, Bottone MG, Malatesta M, Scovassi AI, Bottiroli G, Pellicciari C, Croce AC. Regulated forms of cell death are induced by the photodynamic action of the fluorogenic substrate, Hypocrellin B-acetate. J Photochem Photobiol B 2013; 125:90-7; http://dx.doi.org/10.1016/j.jphotobiol.2013.05.006. PubMed DOI

Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 2013; 19:428-46; http://dx.doi.org/10.1016/j.molmed.2013.04.005. PubMed DOI

Garg AD, Krysko DV, Vandenabeele P, Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis. Oncoimmunology 2012; 1:786-8; http://dx.doi.org/10.4161/onci.19750. PubMed DOI PMC

Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ 2014; 21:26-38; http://dx.doi.org/10.1038/cdd.2013.48. PubMed DOI PMC

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; http://dx.doi.org/10.1146/annurev-immunol-032712-100008. PubMed DOI

Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Fact Rev 2013; 24:319-33; http://dx.doi.org/10.1016/j.cytogfr.2013.01.005. PubMed DOI

Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C, Agostinis P. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013; 9:1292-307; http://dx.doi.org/10.4161/auto.25399. PubMed DOI

Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al.. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31:1062-79; http://dx.doi.org/10.1038/emboj.2011.497. PubMed DOI PMC

Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al.. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; http://dx.doi.org/10.1126/science.1208347. PubMed DOI

Bian S, Sun X, Bai A, Zhang C, Li L, Enjyoji K, Junger WG, Robson SC, Wu Y. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PloS One 2013; 8:e60184; http://dx.doi.org/10.1371/journal.pone.0060184. PubMed DOI PMC

Di Virgilio F. Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 2007; 28:465-72; http://dx.doi.org/10.1016/j.tips.2007.07.002. PubMed DOI

Garg AD, Dudek AM, Agostinis P. Calreticulin surface exposure is abrogated in cells lacking, chaperone-mediated autophagy-essential gene, LAMP2A. Cell Death Dis 2013; 4:e826; http://dx.doi.org/10.1038/cddis.2013.372. PubMed DOI PMC

Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology 2013; 2:e26260; http://dx.doi.org/10.4161/onci.26260. PubMed DOI PMC

Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T, Derde S, Meersseman P, Derese I, Mesotten D, Wouters PJ, et al.. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Resp Med 2013; 1:621-9; http://dx.doi.org/10.1016/S2213-2600(13)70183-8. PubMed DOI

Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Guiza F, Martinet W, Timmermans JP, D'Hoore A, Wouters PJ, et al.. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab 2011; 96:E633-45; http://dx.doi.org/10.1210/jc.2010-2563. PubMed DOI

Czaja MJ, Ding WX, Donohue TM Jr., Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, et al.. Functions of autophagy in normal and diseased liver. Autophagy 2013; 9:1131-58; http://dx.doi.org/10.4161/auto.25063. PubMed DOI PMC

Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, Czaja MJ, Friedman SL. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142:938-46; http://dx.doi.org/10.1053/j.gastro.2011.12.044. PubMed DOI PMC

Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy 2012; 8:719-30; http://dx.doi.org/10.4161/auto.19469. PubMed DOI PMC

Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, et al.. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 2013; 16:394-406; http://dx.doi.org/10.1038/nn.3350. PubMed DOI PMC

Napolitano G, Johnson JL, He J, Rocca CJ, Monfregola J, Pestonjamasp K, Cherqui S, Catz SD. Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis. EMBO Mol Med 2015; 7:158-74; http://dx.doi.org/10.15252/emmm.201404223. PubMed DOI PMC

Venugopal B, Mesires NT, Kennedy JC, Curcio-Morelli C, Laplante JM, Dice JF, Slaugenhaupt SA. Chaperone-mediated autophagy is defective in mucolipidosis type IV. J Cell Physiol 2009; 219:344-53; http://dx.doi.org/10.1002/jcp.21676. PubMed DOI

Franch HA. Pathways of proteolysis affecting renal cell growth. Curr Opin Nephrol Hypertens 2002; 11:445-50; http://dx.doi.org/10.1097/00041552-200207000-00012. PubMed DOI

Sooparb S, Price SR, Shaoguang J, Franch HA. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int 2004; 65:2135-44; http://dx.doi.org/10.1111/j.1523-1755.2004.00639.x. PubMed DOI

Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, et al.. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PloS One 2008; 3:e3316. PubMed PMC

Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF, Ward MM. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA 2007; 298:187-93; http://dx.doi.org/10.1001/jama.298.2.187. PubMed DOI

Merlini L, Nishino I, Consortium for Autophagy in Muscular D. 201st ENMC International Workshop: Autophagy in muscular dystrophies–translational approach, 1-3 November 2013, Bussum, The Netherlands. Neuromuscular Disord 2014; 24:546-61; http://dx.doi.org/10.1016/j.nmd.2014.03.009. PubMed DOI

Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48; http://dx.doi.org/10.1016/j.cell.2007.10.048. PubMed DOI PMC

Aits S, Gustafsson L, Hallgren O, Brest P, Gustafsson M, Trulsson M, Mossberg AK, Simon HU, Mograbi B, Svanborg C. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death. Int J Cancer 2009; 124:1008-19; http://dx.doi.org/10.1002/ijc.24076. PubMed DOI

Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, et al.. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008; 172:454-69; http://dx.doi.org/10.2353/ajpath.2008.070876. PubMed DOI PMC

Hou YC, Hannigan AM, Gorski SM. An executioner caspase regulates autophagy. Autophagy 2009; 5:530-3; http://dx.doi.org/10.4161/auto.5.4.8061. PubMed DOI PMC

Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjorkoy G, Johansen T, Rusten TE, Brech A, Baehrecke EH, Stenmark H. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol 2010; 190:523-31; http://dx.doi.org/10.1083/jcb.201002035. PubMed DOI PMC

Piras A, Gianetto D, Conte D, Bosone A, Vercelli A. Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PloS One 2011; 6:e22514; http://dx.doi.org/10.1371/journal.pone.0022514. PubMed DOI PMC

Schwarze PE, Seglen PO. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp Cell Res 1985; 157:15-28; http://dx.doi.org/10.1016/0014-4827(85)90148-X. PubMed DOI

Liu Y, Shoji-Kawata S, Sumpter RM Jr., Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, et al.. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA 2013; 110:20364-71; http://dx.doi.org/10.1073/pnas.1319661110. PubMed DOI PMC

Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V, Nabissi M, Bonfili L, Eleuteri AM, Mozzicafreddo M, Burattini L, et al.. Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Brit J Cancer 2013; 109:1040-50; http://dx.doi.org/10.1038/bjc.2013.420. PubMed DOI PMC

Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 2011; 2:e144. PubMed PMC

Denton D, Nicolson S, Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 2012; 19:87-95. PubMed PMC

Beaulaton J, Lockshin RA. Ultrastructural study of the normal degeneration of the intersegmental muscles of Anthereae polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference of cellular autophagy. J Morphol 1977; 154:39-57; http://dx.doi.org/10.1002/jmor.1051540104. PubMed DOI

PG Clarke. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 1990; 181:195-213. PubMed

Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al.. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2011. PubMed PMC

Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nature Rev Mol Cell Biol 2008; 9:1004-10; http://dx.doi.org/10.1038/nrm2529. PubMed DOI PMC

Richard VR, Beach A, Piano A, Leonov A, Feldman R, Burstein MT, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Baptista S, et al.. Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle 2014; 13:3707-26; http://dx.doi.org/10.4161/15384101.2014.965003. PubMed DOI PMC

Sheibani S, Richard VR, Beach A, Leonov A, Feldman R, Mattie S, Khelghatybana L, Piano A, Greenwood M, Vali H, et al.. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from “liponecrosis”, a previously unknown form of programmed cell death. Cell Cycle 2014; 13:138-47; http://dx.doi.org/10.4161/cc.26885. PubMed DOI PMC

Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, et al.. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009; 16:1093-107; http://dx.doi.org/10.1038/cdd.2009.44. PubMed DOI PMC

Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, et al.. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015; 22:58-73; http://dx.doi.org/10.1038/cdd.2014.137. PubMed DOI PMC

Minina EA, Bozhkov PV, Hofius D. Autophagy as initiator or executioner of cell death. Trends Plant Sci 2014; 19:692-7. PubMed

van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, et al.. Morphological classification of plant cell deaths. Cell Death Differ 2011; 18:1241-6; http://dx.doi.org/10.1038/cdd.2011.36. PubMed DOI PMC

Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 2010; 64:151-64. PubMed

Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V, Clapham D, Sanchez-Vera V, Suarez MF, Zhivotovsky B, Daniel G, et al.. Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol 2013; 203:917-27; http://dx.doi.org/10.1083/jcb.201307082. PubMed DOI PMC

Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009; 137:773-83; http://dx.doi.org/10.1016/j.cell.2009.02.036. PubMed DOI

Giusti C, Tresse E, Luciani MF, Golstein P. Autophagic cell death: analysis in Dictyostelium. Biochim Biophys Acta 2009; 1793:1422-31; http://dx.doi.org/10.1016/j.bbamcr.2008.12.005. PubMed DOI

Luciani MF, Giusti C, Harms B, Oshima Y, Kikuchi H, Kubohara Y, Golstein P. Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy 2011; 7:501-8; http://dx.doi.org/10.4161/auto.7.5.14957. PubMed DOI

Uchikawa T, Yamamoto A, Inouye K. Origin and function of the stalk-cell vacuole in Dictyostelium. Dev Biol 2011; 352:48-57; http://dx.doi.org/10.1016/j.ydbio.2011.01.014. PubMed DOI

Guimar[a]es CA, Benchimol M, Amarante-Mendes GP, Linden R. Alternative programs of cell death in developing retinal tissue. J Biol Chem 2003; 278:41938-46; http://dx.doi.org/10.1074/jbc.M306547200. PubMed DOI

Lossi L, Gambino G, Mioletti S, Merighi A. In vivo analysis reveals different apoptotic pathways in pre- and postmigratory cerebellar granule cells of rabbit. J Neurobiol 2004; 60:437-52; http://dx.doi.org/10.1002/neu.20032. PubMed DOI

Lossi L, Alasia S, Salio C, Merighi A. Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45; http://dx.doi.org/10.1016/j.pneurobio.2009.01.002. PubMed DOI

Thorburn A. I think autophagy controls the death of my cells: what do I do to get my paper published? Autophagy 2011; 7:455-6; http://dx.doi.org/10.4161/auto.7.5.14797. PubMed DOI

Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM. Chaperone-mediated autophagy at a glance. J Cell Sci 2011; 124:495-9; http://dx.doi.org/10.1242/jcs.073874. PubMed DOI PMC

Arias E, Cuervo AM. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 2010; 23:184-9; http://dx.doi.org/10.1016/j.ceb.2010.10.009. PubMed DOI PMC

Kaushik S, Cuervo AM. Methods to monitor chaperone-mediated autophagy. Methods Enzymol 2009; 452:297-324; http://dx.doi.org/10.1016/S0076-6879(08)03619-7. PubMed DOI PMC

Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990; 15:305-9; http://dx.doi.org/10.1016/0968-0004(90)90019-8. PubMed DOI

Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501-3; http://dx.doi.org/10.1126/science.273.5274.501. PubMed DOI

Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 2000; 113:4441-50. PubMed

Finn PF, Mesires NT, Vine M, Dice JF. Effects of small molecules on chaperone-mediated autophagy. Autophagy 2005; 1:141-5; http://dx.doi.org/10.4161/auto.1.3.2000. PubMed DOI

Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 2008; 28:5747-63; http://dx.doi.org/10.1128/MCB.02070-07. PubMed DOI PMC

Aniento F, Emans N, Griffiths G, Gruenberg J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 1993; 123:1373-87; http://dx.doi.org/10.1083/jcb.123.6.1373. PubMed DOI PMC

Salvador N, Aguado C, Horst M, Knecht E. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 2000; 275:27447-56. PubMed

Koga H, Martinez-Vicente M, Macian F, Verkhusha VV, Cuervo AM. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat Commun 2011; 2:386; http://dx.doi.org/10.1038/ncomms1393. PubMed DOI PMC

Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20:131-9; http://dx.doi.org/10.1016/j.devcel.2010.12.003. PubMed DOI PMC

Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P, Saint R, Fleischmann BK, et al.. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 2010; 20:143-8; http://dx.doi.org/10.1016/j.cub.2009.11.022. PubMed DOI

Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, Tanaka Y, Lullmann-Rauch R, Hartmann D, Heeren J, et al.. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 2004; 15: 3132-45; http://dx.doi.org/10.1091/mbc.E04-02-0103. PubMed DOI PMC

Eskelinen EL, Illert AL, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002; 13:3355-68; http://dx.doi.org/10.1091/mbc.E02-02-0114. PubMed DOI PMC

Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 2007; 26:313-24; http://dx.doi.org/10.1038/sj.emboj.7601511. PubMed DOI PMC

Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, Konya C, Uchida K, Yoshimura A, Tamai Y, Wada K, et al.. Discovery of a novel type of autophagy targeting RNA. Autophagy 2013; 9:403-9; http://dx.doi.org/10.4161/auto.23002. PubMed DOI PMC

Fujiwara Y, Hase K, Wada K, Kabuta T. An RNautophagy/DNautophagy receptor, LAMP2C, possesses an arginine-rich motif that mediates RNA/DNA-binding. Biochem Biophys Res Commun 2015; 460:281-6; http://dx.doi.org/10.1016/j.bbrc.2015.03.025. PubMed DOI

Fujiwara Y, Kikuchi H, Aizawa S, Furuta A, Hatanaka Y, Konya C, Uchida K, Wada K, Kabuta T. Direct uptake and degradation of DNA by lysosomes. Autophagy 2013; 9:1167-71; http://dx.doi.org/10.4161/auto.24880. PubMed DOI PMC

Hase K, Fujiwara Y, Kikuchi H, Aizawa S, Hakuno F, Takahashi S, Wada K, Kabuta T. RNautophagy/DNautophagy possesses selectivity for RNA/DNA substrates. Nucleic Acids Res 2015; 43:6439-49; http://dx.doi.org/10.1093/nar/gkv579. PubMed DOI PMC

Furuta A, Kikuchi H, Fujita H, Yamada D, Fujiwara Y, Kabuta T, Nishino I, Wada K, Uchiyama Y. Property of lysosomal storage disease associated with midbrain pathology in the central nervous system of lamp-2-deficient mice. Am J Pathol 2015; 185:1713-23; http://dx.doi.org/10.1016/j.ajpath.2015.02.015. PubMed DOI

Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, D'Hooge R, Saftig P, Blanz J. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol Commun 2015; 3:6; http://dx.doi.org/10.1186/s40478-014-0182-y. PubMed DOI PMC

Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, et al.. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 2013; 23:430-5; http://dx.doi.org/10.1016/j.cub.2013.01.064. PubMed DOI

Carra S, Seguin SJ, Lambert H, Landry J. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 2008; 283:1437-44; http://dx.doi.org/10.1074/jbc.M706304200. PubMed DOI

Carra S, Seguin SJ, Landry J. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 2008; 4:237-9; http://dx.doi.org/10.4161/auto.5407. PubMed DOI

Niemann A, Baltes J, Elsasser HP. Fluorescence properties and staining behavior of monodansylpentane, a structural homologue of the lysosomotropic agent monodansylcadaverine. J Histochem Cytochem 2001; 49:177-85; http://dx.doi.org/10.1177/002215540104900205. PubMed DOI

Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001; 61:439-44. PubMed

Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard RJ, Le SS, Laessig TA, Heidenreich KA. The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci 2004; 24:4498-509; http://dx.doi.org/10.1523/JNEUROSCI.5744-03.2004. PubMed DOI PMC

Moriyasu Y, Hattori M, Jauh G-Y, Rogers JC. Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 2003; 44:795-802; http://dx.doi.org/10.1093/pcp/pcg100. PubMed DOI

Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci 2013; 37:1949-61; http://dx.doi.org/10.1111/ejn.12169. PubMed DOI PMC

Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 1995; 66:3-14. PubMed

Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ 2005; 12:1297-309; http://dx.doi.org/10.1038/sj.cdd.4401651. PubMed DOI

Gutierrez MG, Munafo DB, Beron W, Colombo MI. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004; 117:2687-97; http://dx.doi.org/10.1242/jcs.01114. PubMed DOI

Fogel JL, Thein TZ, Mariani FV. Use of LysoTracker to detect programmed cell death in embryos and differentiating embryonic stem cells. J Vis Exp 2012; 68; doi: 10.3791/4254 PubMed DOI PMC

Freundt EC, Czapiga M, Lenardo MJ. Photoconversion of Lysotracker Red to a green fluorescent molecule. Cell Res 2007; 17:956-8; http://dx.doi.org/10.1038/cr.2007.80. PubMed DOI

Oeste CL, Seco E, Patton WF, Boya P, Perez-Sala D. Interactions between autophagic and endo-lysosomal markers in endothelial cells. Histochem Cell Biol 2013; 139:659-70; http://dx.doi.org/10.1007/s00418-012-1057-6. PubMed DOI

Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007; 6:304-12; http://dx.doi.org/10.1038/nrd2272. PubMed DOI

Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 2010; 20:355-62; http://dx.doi.org/10.1016/j.tcb.2010.03.002. PubMed DOI PMC

Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 2008; 4:600-6; http://dx.doi.org/10.4161/auto.6260. PubMed DOI PMC

Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 2009; 186:773-82; http://dx.doi.org/10.1083/jcb.200907014. PubMed DOI PMC

Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, et al.. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005; 280:20722-9; http://dx.doi.org/10.1074/jbc.M413934200. PubMed DOI

Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275:992-8; http://dx.doi.org/10.1074/jbc.275.2.992. PubMed DOI

Harris J, Hartman M, Roche C, Zeng SG, O'Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J, et al.. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 2011; 286:9587-97; http://dx.doi.org/10.1074/jbc.M110.202911. PubMed DOI PMC

Crisan TO, Plantinga TS, van de Veerdonk FL, Farcas MF, Stoffels M, Kullberg BJ, van der Meer JW, Joosten LA, Netea MG. Inflammasome-independent modulation of cytokine response by autophagy in human cells. PloS One 2011; 6:e18666. PubMed PMC

Kleinnijenhuis J, Oosting M, Plantinga TS, van der Meer JW, Joosten LA, Crevel RV, Netea MG. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology 2011; 134:341-8; http://dx.doi.org/10.1111/j.1365-2567.2011.03494.x. PubMed DOI PMC

Peral de Castro C, Jones SA, Ni Cheallaigh C, Hearnden CA, Williams L, Winter J, Lavelle EC, Mills KH, Harris J. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion. J Immunol 2012; 189:4144-53; http://dx.doi.org/10.4049/jimmunol.1201946. PubMed DOI

Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al.. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 2014; 16:1069-79; http://dx.doi.org/10.1038/ncb3053. PubMed DOI

Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, Bachelot MF, Lamberton A, Mathieu M, Bertrand T, et al.. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 2014; 10:1013-9; http://dx.doi.org/10.1038/nchembio.1681. PubMed DOI

Chen J, Chen MX, Fogo AB, Harris RC, Chen JK. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 2013; 24:198-207; http://dx.doi.org/10.1681/ASN.2012010101. PubMed DOI PMC

Cantino D, Mosso R, Baccino FM. Changes induced by fasting and cycloheximide in the vacuolar apparatus of rat hepatocytes. A morphometric investigation. Boll Soc Ital Biol Sper 1979; 55:1884-9. PubMed

Kovács J. Morphometric study of the effect of leupeptin, vinblastine, estron acetate and cycloheximide on the autophagic vacuole-lysosomal compartments in mouse seminal vesicle cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1983; 42:83-93; http://dx.doi.org/10.1007/BF02890372. PubMed DOI

Papadopoulos T, Pfeifer U. Regression of rat liver autophagic vacuoles by locally applied cycloheximide. Lab Investig 1986; 54:100-7. PubMed

Rumpelt HJ, Albring M, Thoenes W. Prevention of D-galactosamine-induced hepatocellular autophagocytosis by cycloheximide. Virchows Arch B Cell Pathol 1974; 16:195-203; http://dx.doi.org/10.1007/BF02894074. PubMed DOI

Rumpelt HJ, Weisbach T. Effect of cycloheximide on glucagon-induced autophagy. Quantitative examinations on hepatocytes in the rat. Am J Pathol 1978; 91:49-55. PubMed PMC

Kovács AL, Kovács J. Autophagocytosis in mouse seminal vesicle cells in vitro. Temperature dependence and effects of vinblastine and inhibitors of protein synthesis. Virchows Arch B Cell Pathol Incl Mol Pathol 1980; 32:97-104; http://dx.doi.org/10.1007/BF02889018. PubMed DOI

Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2007; 83:781-91; http://dx.doi.org/10.1080/09553000701769970. PubMed DOI

Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 2011; 99:287-92; http://dx.doi.org/10.1016/j.radonc.2011.06.002. PubMed DOI

Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008; 68:1485-94; http://dx.doi.org/10.1158/0008-5472.CAN-07-0562. PubMed DOI

Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 2010; 3:ra31. PubMed

Seglen PO, Gordon PB. Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes. Mol Pharmacol 1980; 18:468-75. PubMed

Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA 2011; 108:11121-6; http://dx.doi.org/10.1073/pnas.1107969108. PubMed DOI PMC

Pellegrini P, Strambi A, Zipoli C, Hagg-Olofsson M, Buoncervello M, Linder S, De Milito A. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 2014; 10:562-71; http://dx.doi.org/10.4161/auto.27901. PubMed DOI PMC

Fischer S, Ronellenfitsch MW, Thiepold AL, Harter PN, Reichert S, Kogel D, Paschke R, Mittelbronn M, Weller M, Steinbach JP, et al.. Hypoxia enhances the antiglioma cytotoxicity of B10, a glycosylated derivative of betulinic acid. PloS One 2014; 9:e94921; http://dx.doi.org/10.1371/journal.pone.0094921. PubMed DOI PMC

Gonzalez P, Mader I, Tchoghandjian A, Enzenmuller S, Cristofanon S, Basit F, Debatin KM, Fulda S. Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ 2012; 19:1337-46; http://dx.doi.org/10.1038/cdd.2012.10. PubMed DOI PMC

Potze L, Mullauer FB, Colak S, Kessler JH, Medema JP. Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis 2014; 5:e1169; http://dx.doi.org/10.1038/cddis.2014.139. PubMed DOI PMC

Broniatowski M, Flasinski M, Wydro P. Investigation of the interactions of lupane type pentacyclic triterpenes with outer leaflet membrane phospholipids–Langmuir monolayer and synchrotron X-ray scattering study. J Colloid Interface Sci 2012; 381:116-24; http://dx.doi.org/10.1016/j.jcis.2012.05.020. PubMed DOI

Chen Y, Sun R, Wang B. Monolayer behavior of binary systems of betulinic acid and cardiolipin: thermodynamic analyses of Langmuir monolayers and AFM study of Langmuir-Blodgett monolayers. J Colloid Interface Sci 2011; 353:294-300; http://dx.doi.org/10.1016/j.jcis.2010.09.019. PubMed DOI

Gao M, Lau PM, Kong SK. Mitochondrial toxin betulinic acid induces in vitro eryptosis in human red blood cells through membrane permeabilization. Arch Toxicol 2014; 88:755-68. PubMed

Wei P, Zhang L, Lu Y, Man N, Wen L. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 2010; 21:495101; http://dx.doi.org/10.1088/0957-4484/21/49/495101. PubMed DOI

Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998; 8:397-403; http://dx.doi.org/10.1016/S0962-8924(98)01346-4. PubMed DOI

S Mehdi. Cell-penetrating inhibitors of calpain. Trends Biochem Sci 1991; 16:150-3; http://dx.doi.org/10.1016/0968-0004(91)90058-4. PubMed DOI

Holen I, Gordon PB, Seglen PO. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur J Biochem 1993; 215:113-22; http://dx.doi.org/10.1111/j.1432-1033.1993.tb18013.x. PubMed DOI

Sasaki K, Murata M, Yasumoto T, Mieskes G, Takai A. Affinity of okadaic acid to type-1 and type-2A protein phosphatases is markedly reduced by oxidation of its 27-hydroxyl group. Biochem J 1994; 298:259-62; http://dx.doi.org/10.1042/bj2980259. PubMed DOI PMC

Robinson DG, Albrecht S, Moriyasu Y. The V-ATPase inhibitors concanamycin A and bafilomycin A lead to Golgi swelling in tobacco BY-2 cells. Protoplasma 2004; 224:255-60; http://dx.doi.org/10.1007/s00709-004-0070-6. PubMed DOI

Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, et al.. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20:526-40; http://dx.doi.org/10.1016/j.cmet.2014.06.014. PubMed DOI

Wu YC, Wu WK, Li Y, Yu L, Li ZJ, Wong CC, Li HT, Sung JJ, Cho CH. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem Biophys Res Commun 2009; 382:451-6; http://dx.doi.org/10.1016/j.bbrc.2009.03.051. PubMed DOI

Ostenfeld MS, Hoyer-Hansen M, Bastholm L, Fehrenbacher N, Olsen OD, Groth-Pedersen L, Puustinen P, Kirkegaard-Sorensen T, Nylandsted J, Farkas T, et al.. Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 2008; 4:487-99; http://dx.doi.org/10.4161/auto.5774. PubMed DOI

Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007. PubMed PMC

Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 2013; 136:166-82; http://dx.doi.org/10.1093/toxsci/kft188. PubMed DOI PMC

Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 2008; 118:79-88; http://dx.doi.org/10.1172/JCI33700. PubMed DOI PMC

Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 1981; 90:665-9; http://dx.doi.org/10.1083/jcb.90.3.665. PubMed DOI PMC

Matsuoka K, Higuchi T, Maeshima M, Nakamura K. A vacuolar-type H+-ATPase in a nonvacuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 1997; 9:533-46. PubMed PMC

Arstila AU, Nuuja IJ, Trump BF. Studies on cellular autophagocytosis. Vinblastine-induced autophagy in the rat liver. Exp Cell Res 1974; 87:249-52; http://dx.doi.org/10.1016/0014-4827(74)90477-7. PubMed DOI

Hirsimaki Y, Arstila AU, Trump BF. Autophagocytosis: in vitro induction by microtuble poisons. Exp Cell Res 1975; 92:11-4; http://dx.doi.org/10.1016/0014-4827(75)90630-8. PubMed DOI

Kominami E, Hashida S, Khairallah EA, Katunuma N. Sequestration of cytoplasmic enzymes in an autophagic vacuole-lysosomal system induced by injection of leupeptin. J Biol Chem 1983; 258:6093-100. PubMed

Réz G, Fellinger E, Reti M, Biczo I, Kovács AL. Time course of quantitative morphological changes of the autophagic-lysosomal compartment of murine seminal vesicle epithelial cells under the influence of vinblastine. J Submicrosc Cytol Pathol 1990; 22:529-34. PubMed

Oliva O, Réz G, Pálfia Z, Fellinger E. Dynamics of vinblastine-induced autophagocytosis in murine pancreatic acinar cells: influence of cycloheximide post-treatments. Exp Mol Pathol 1992; 56:76-86; http://dx.doi.org/10.1016/0014-4800(92)90025-7. PubMed DOI

Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009; 7:e38; http://dx.doi.org/10.1371/journal.pbio.1000038. PubMed DOI PMC

Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 2011; 7:9-17; http://dx.doi.org/10.1038/nchembio.500. PubMed DOI

Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284:8023-32; http://dx.doi.org/10.1074/jbc.M900301200. PubMed DOI PMC

Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al.. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69:6232-40; http://dx.doi.org/10.1158/0008-5472.CAN-09-0299. PubMed DOI

Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, et al.. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70:288-98; http://dx.doi.org/10.1158/0008-5472.CAN-09-1751. PubMed DOI

Roscic A, Baldo B, Crochemore C, Marcellin D, Paganetti P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J Neurochem 2011; 119:398-407; http://dx.doi.org/10.1111/j.1471-4159.2011.07435.x. PubMed DOI

Fan QW, Cheng C, Hackett C, Feldman M, Houseman BT, Nicolaides T, Haas-Kogan D, James CD, Oakes SA, Debnath J, et al.. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal 2010; 3:ra81. PubMed PMC

Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010; 11:467-78; http://dx.doi.org/10.1016/j.cmet.2010.04.005. PubMed DOI PMC

Yamamoto A, Yue Z. Autophagy and its normal and pathogenic States in the brain. Annu Rev Neurosci 2014; 37:55-78; http://dx.doi.org/10.1146/annurev-neuro-071013-014149. PubMed DOI

Tsvetkov AS, Miller J, Arrasate M, Wong JS, Pleiss MA, Finkbeiner S. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc Natl Acad Sci USA 2010; 107:16982-7; http://dx.doi.org/10.1073/pnas.1004498107. PubMed DOI PMC

Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al.. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4:295-305; http://dx.doi.org/10.1038/nchembio.79. PubMed DOI PMC

Palomo GM, Cerrato T, Gargini R, Diaz-Nido J. Silencing of frataxin gene expression triggers p53-dependent apoptosis in human neuron-like cells. Hum Mol Genet 2011; 20:2807-22; http://dx.doi.org/10.1093/hmg/ddr187. PubMed DOI

Bolinches-Amoros A, Molla B, Pla-Martin D, Palau F, Gonzalez-Cabo P. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. Front Cell Neurosci 2014; 8:124. PubMed PMC

Sakagami H, Kawase M, Wakabayashi H, Kurihara T. Factors that affect the type of cell death induced by chemicals. Autophagy 2007; 3:493-5; http://dx.doi.org/10.4161/auto.4594. PubMed DOI

Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 2002; 277:33105-14; http://dx.doi.org/10.1074/jbc.M204630200. PubMed DOI

Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al.. Ambra1 regulates autophagy and development of the nervous system. Nature 2007; 447:1121-5. PubMed

Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032-6; http://dx.doi.org/10.1038/nature03029. PubMed DOI

Hwang S, Maloney NS, Bruinsma MW, Goel G, Duan E, Zhang L, Shrestha B, Diamond MS, Dani A, Sosnovtsev SV, et al.. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 2012; 11:397-409; http://dx.doi.org/10.1016/j.chom.2012.03.002. PubMed DOI PMC

Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG, Yang JM. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 2009; 5:816-23; http://dx.doi.org/10.4161/auto.9064. PubMed DOI PMC

Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007; 14: 146-57; http://dx.doi.org/10.1038/sj.cdd.4401936. PubMed DOI

Poeck H, Besch R, Maihoefer C, Renn M, Tormo D, Morskaya SS, Kirschnek S, Gaffal E, Landsberg J, Hellmuth J, et al.. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat Med 2008; 14:1256-63; http://dx.doi.org/10.1038/nm.1887. PubMed DOI

Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J 2008; 27:1110-21; http://dx.doi.org/10.1038/emboj.2008.31. PubMed DOI PMC

Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 2007; 204:25-31; http://dx.doi.org/10.1084/jem.20061303. PubMed DOI PMC

Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat W, et al.. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2008; 4:309-14; http://dx.doi.org/10.4161/auto.5474. PubMed DOI

Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR, Chang H, Zhou FC, Gao SJ, Liang C, et al.. FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 2009; 11:1355-62; http://dx.doi.org/10.1038/ncb1980. PubMed DOI PMC

Kimball SR, Siegfried BA, Jefferson LS. Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 2004; 279:54103-9; http://dx.doi.org/10.1074/jbc.M410755200. PubMed DOI

Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995; 270:2320-6; http://dx.doi.org/10.1074/jbc.270.5.2320. PubMed DOI

Klionsky DJ, Meijer AJ, Codogno P, Neufeld TP, Scott RC. Autophagy and p70S6 kinase. Autophagy 2005; 1:59-61; http://dx.doi.org/10.4161/auto.1.1.1536. PubMed DOI

Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998; 273:3963-6; http://dx.doi.org/10.1074/jbc.273.7.3963. PubMed DOI

Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170:1101-11; http://dx.doi.org/10.1083/jcb.200504035. PubMed DOI PMC

Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 2010; 285:11061-7; http://dx.doi.org/10.1074/jbc.R109.072181. PubMed DOI PMC

Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, et al.. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 2007; 104:19023-8; http://dx.doi.org/10.1073/pnas.0709695104. PubMed DOI PMC

Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al.. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-[b], and Bcl-2. Mol Cell 2007; 25:193-205; http://dx.doi.org/10.1016/j.molcel.2006.12.009. PubMed DOI

Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, De Smedt H, Bultynck G, Parys JB. mTOR-Controlled Autophagy Requires Intracellular Ca(2+) Signaling. PloS One 2013; 8:e61020; http://dx.doi.org/10.1371/journal.pone.0061020. PubMed DOI PMC

Pereira GJ, Hirata H, Fimia GM, do Carmo LG, Bincoletto C, Han SW, Stilhano RS, Ureshino RP, Bloor-Young D, Churchill G, et al.. Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 2011; 286:27875-81; http://dx.doi.org/10.1074/jbc.C110.216580. PubMed DOI PMC

Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D, et al.. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013; 494:201-6; http://dx.doi.org/10.1038/nature11866. PubMed DOI PMC

Su M, Mei Y, Sanishvili R, Levine B, Colbert CL, Sinha S. Targeting gamma-herpesvirus 68 Bcl-2-mediated down-regulation of autophagy. J Biol Chem 2014; 289:8029-40; http://dx.doi.org/10.1074/jbc.M113.515361. PubMed DOI PMC

Winter G, Hazan R, Bakalinsky AT, Abeliovich H. Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid. Autophagy 2008; 4:28-36; http://dx.doi.org/10.4161/auto.5127. PubMed DOI

Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, Kobayashi H, Sato F, Sato S, Ishikawa K, et al.. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 2011; 7:176-87; http://dx.doi.org/10.4161/auto.7.2.14074. PubMed DOI PMC

Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP, Long MJ, Bishop DK, Haber JE. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res 2015; 43:6889-901; http://dx.doi.org/10.1093/nar/gkv520. PubMed DOI PMC

Fu J, Shao CJ, Chen FR, Ng HK, Chen ZP. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-oncology 2010; 12:328-40; http://dx.doi.org/10.1093/neuonc/nop005. PubMed DOI PMC

Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, et al.. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 2011; 471:74-9; http://dx.doi.org/10.1038/nature09803. PubMed DOI PMC

Bartholomew CR, Suzuki T, Du Z, Backues SK, Jin M, Lynch-Day MA, Umekawa M, Kamath A, Zhao M, Xie Z, et al.. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci USA 2012; 109:11206-10; http://dx.doi.org/10.1073/pnas.1200313109. PubMed DOI PMC

Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W, et al.. Function and molecular mechanism of acetylation in autophagy regulation. Science 2012; 336:474-7; http://dx.doi.org/10.1126/science.1216990. PubMed DOI

Katagiri N, Kuroda T, Kishimoto H, Hayashi Y, Kumazawa T, Kimura K. The nucleolar protein nucleophosmin is essential for autophagy induced by inhibiting Pol I transcription. Sci Rep 2015; 5:8903; http://dx.doi.org/10.1038/srep08903. PubMed DOI PMC

Kreiner G, Bierhoff H, Armentano M, Rodriguez-Parkitna J, Sowodniok K, Naranjo JR, Bonfanti L, Liss B, Schutz G, Grummt I, et al.. A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death Differ 2013; 20:1455-64. PubMed PMC

Furuya N, Liang XH, Levine B. Autophagy and cancer In: Klionsky DJ, ed. Autophagy. Georgetown, TX: Landes Bioscience, 2004:241-55.

de Medina P, Paillasse MR, Segala G, Khallouki F, Brillouet S, Dalenc F, Courbon F, Record M, Poirot M, Silvente-Poirot S. Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chem Phys Lipids 2011; 164:432-7. PubMed

de Medina P, Payre B, Boubekeur N, Bertrand-Michel J, Terce F, Silvente-Poirot S, Poirot M. Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ 2009; 16:1372-84. PubMed

Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL, et al.. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 2007; 3:331-8. PubMed PMC

Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and [a]-synuclein. J Biol Chem 2007; 282:5641-52. PubMed

Kruger U, Wang Y, Kumar S, Mandelkow EM. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 2012; 33:2291-305. PubMed

Koshkina NV, Briggs K, Palalon F, Curley SA. Autophagy and enhanced chemosensitivity in experimental pancreatic cancers induced by noninvasive radiofrequency field treatment. Cancer 2014; 120:480-91. PubMed PMC

Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, et al.. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010; 142:270-83. PubMed PMC

Decuypere JP, Bultynck G, Parys JB. A dual role for Ca2+ in autophagy regulation. Cell Calcium 2011; 50:242-50. PubMed

Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, et al.. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 2009; 16:1006-17. PubMed

Dayan F, Bilton RL, Laferriere J, Trottier E, Roux D, Pouyssegur J, Mazure NM. Activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway. J Cell Physiol 2009; 218:167-74. PubMed

Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009; 29:2570-81. PubMed PMC

Yamashita S, Yurimoto H, Murakami D, Yoshikawa M, Oku M, Sakai Y. Lag-phase autophagy in the methylotrophic yeast Pichia pastoris. Genes Cells 2009; 14:861-70. PubMed

van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ. Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 2010; 11:1. PubMed PMC

Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 2006; 47:1641-52. PubMed

Yano K, Suzuki T, Moriyasu Y. Constitutive autophagy in plant root cells. Autophagy 2007; 3:360-2. PubMed

Gordon PB, Kisen GO, Kovacs AL, Seglen PO. Experimental characterization of the autophagic-lysosomal pathway in isolated rat hepatocytes. Biochem Soc Symp 1989; 55:129-43. PubMed

Poli A, Gordon PB, Schwarze PE, Grinde B, Seglen PO. Effects of insulin and anchorage on hepatocytic protein metabolism and amino acid transport. J Cell Sci 1981; 48:1-18. PubMed

Schliess F, Reissmann R, Reinehr R, vom Dahl S, Häussinger D. Involvement of integrins and Src in insulin signaling toward autophagic proteolysis in rat liver. J Biol Chem 2004; 279:21294-301. PubMed

vom Dahl S, Dombrowski F, Schmitt M, Schliess F, Pfeifer U, Haussinger D. Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent way downstream from p38MAPK activation. Biochem J 2001; 354:31-6. PubMed PMC

vom Dahl S, Stoll B, Gerok W, Häussinger D. Inhibition of proteolysis by cell swelling in the liver requires intact microtubular structures. Biochem J 1995; 308 (Pt 2):529-36. PubMed PMC

Klionsky DJ, Bruford EA, Cherry JM, Hodgkin J, Laulederkind SJ, Singer AG. In the beginning there was babble. Autophagy 2012; 8:1165-7. PubMed PMC

Kovacs AL, Zhang H. Role of autophagy in Caenorhabditis elegans. FEBS Lett 2010; 584:1335-41. PubMed

Wu F, Li Y, Wang F, Noda NN, Zhang H. Differential function of the two Atg4 homologues in the aggrephagy pathway in Caenorhabditis elegans. J Biol Chem 2012; 287:29457-67. PubMed PMC

Zhang H, Wu F, Wang X, Du H, Wang X, Zhang H. The two C. elegans ATG-16 homologs have partially redundant functions in the basal autophagy pathway. Autophagy 2013; 9:1965-74. PubMed PMC

Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, et al.. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 2009; 136:308-21. PubMed

Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, et al.. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 2010; 1:e10. PubMed PMC

Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 2008; 15:105-12. PubMed

Alberti A, Michelet X, Djeddi A, Legouis R. The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in C. elegans. Autophagy 2010; 6:622-33. PubMed

Manil-Segalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, Satiat-Jeunemaitre B, Legouis R. The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 2014; 28:43-55; http://dx.doi.org/10.1016/j.devcel.2013.11.022. PubMed DOI

Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 2007; 21:2161-71; http://dx.doi.org/10.1101/gad.1573107. PubMed DOI PMC

Liang Q, Yang P, Tian E, Han J, Zhang H. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Autophagy 2012; 8:1426-33; http://dx.doi.org/10.4161/auto.21163. PubMed DOI

Yang P, Zhang H. The coiled-coil domain protein EPG-8 plays an essential role in the autophagy pathway in C. elegans. Autophagy 2011; 7:159-65; http://dx.doi.org/10.4161/auto.7.2.14223. PubMed DOI

SenGupta T, Torgersen ML, Kassahun H, Vellai T, Simonsen A, Nilsen H. Base excision repair AP endonucleases and mismatch repair act together to induce checkpoint-mediated autophagy. Nat Commun 2013; 4:2674; http://dx.doi.org/10.1038/ncomms3674. PubMed DOI PMC

Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, et al.. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 2015; 25:1810-22; http://dx.doi.org/10.1016/j.cub.2015.05.059. PubMed DOI

Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al.. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10:676-87; http://dx.doi.org/10.1038/ncb1730. PubMed DOI PMC

Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC, Kroemer G. The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 2008; 4:870-3; http://dx.doi.org/10.4161/auto.6730. PubMed DOI

Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, et al.. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp Gerontol 2013; 48:191-201; http://dx.doi.org/10.1016/j.exger.2012.12.002. PubMed DOI PMC

Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 2015; 521:525-8; http://dx.doi.org/10.1038/nature14300. PubMed DOI

Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovacs AL, Kumsta C, Lapierre LR, Legouis R, Lin L, et al.. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 2015; 11:9-27. PubMed PMC

Alers S, L{o}ffler AS, Paasch F, Dieterle AM, Keppeler H, Lauber K, Campbell DG, Fehrenbacher B, Schaller M, Wesselborg S, et al.. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy 2011; 7:1424-33; http://dx.doi.org/10.4161/auto.7.12.18027. PubMed DOI PMC

Brown WR, Hubbard SJ, Tickle C, Wilson SA. The chicken as a model for large-scale analysis of vertebrate gene function. Nature reviews Genetics 2003; 4:87-98; http://dx.doi.org/10.1038/nrg998. PubMed DOI

Wang L, Rodrigues NA, Wu Y, Maslikowski BM, Singh N, Lacroix S, Bedard PA. Pleiotropic action of AP-1 in v-Src-transformed cells. J Virol 2011; 85:6725-35; http://dx.doi.org/10.1128/JVI.01013-10. PubMed DOI PMC

Baba TW, Giroir BP, Humphries EH. Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology 1985; 144:139-51; http://dx.doi.org/10.1016/0042-6822(85)90312-5. PubMed DOI

Perez-Martin M, Perez-Perez ME, Lemaire SD, Crespo JL. Oxidative Stress Contributes to Autophagy Induction in Response to Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii. Plant Physiol 2014; 166:997-1008; http://dx.doi.org/10.1104/pp.114.243659. PubMed DOI PMC

Perez-Perez ME, Couso I, Crespo JL. Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy 2012; 8:376-88; http://dx.doi.org/10.4161/auto.18864. PubMed DOI

Mauvezin C, Ayala C, Braden CR, Kim J, Neufeld TP. Assays to monitor autophagy in Drosophila. Methods 2014; 68:134-9; http://dx.doi.org/10.1016/j.ymeth.2014.03.014. PubMed DOI PMC

Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW, Park H, Ro SH, Kim JS, Juhasz G, et al.. Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 2015; 11:1358-72; http://dx.doi.org/10.1080/15548627.2015.1063766. PubMed DOI PMC

Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 2008; 181:655-66; http://dx.doi.org/10.1083/jcb.200712051. PubMed DOI PMC

Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009; 30:588-98; http://dx.doi.org/10.1016/j.immuni.2009.02.009. PubMed DOI PMC

Anding AL, Baehrecke EH. Vps15 is required for stress induced and developmentally triggered autophagy and salivary gland protein secretion in Drosophila. Cell Death Differ 2014. PubMed PMC

Hou YC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 2008; 182:1127-39; http://dx.doi.org/10.1083/jcb.200712091. PubMed DOI PMC

Pircs K, Nagy P, Varga A, Venkei Z, Erdi B, Hegedus K, Juhasz G. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PloS One 2012; 7:e44214; http://dx.doi.org/10.1371/journal.pone.0044214. PubMed DOI PMC

Hindle SJ, Elliott CJ. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease. Autophagy 2013; 9:936-8; http://dx.doi.org/10.4161/auto.24397. PubMed DOI PMC

Shravage BV, Hill JH, Powers CM, Wu L, Baehrecke EH. Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development 2013; 140:1321-9; http://dx.doi.org/10.1242/dev.089490. PubMed DOI PMC

Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 2007; 117:2133-44; http://dx.doi.org/10.1172/JCI31807. PubMed DOI PMC

McIver SC, Kang YA, DeVilbiss AW, O'Driscoll CA, Ouellette JN, Pope NJ, Camprecios G, Chang CJ, Yang D, Bouhassira EE, et al.. The exosome complex establishes a barricade to erythroid maturation. Blood 2014; 124:2285-97; http://dx.doi.org/10.1182/blood-2014-04-571083. PubMed DOI PMC

Fujiwara T, O'Geen H, Keles S, Blahnik K, Linnemann AK, Kang YA, Choi K, Farnham PJ, Bresnick EH. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009; 36:667-81; http://dx.doi.org/10.1016/j.molcel.2009.11.001. PubMed DOI PMC

Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC, Blobel GA, Chodosh LA, Weiss MJ. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 2004; 104:3136-47; http://dx.doi.org/10.1182/blood-2004-04-1603. PubMed DOI

Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, Yu D, Hardison R, Weiss MJ, Orkin SH, et al.. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 2009; 36:682-95; http://dx.doi.org/10.1016/j.molcel.2009.11.002. PubMed DOI PMC

Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112:1493-502; http://dx.doi.org/10.1182/blood-2008-02-137398. PubMed DOI PMC

Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 2010; 107:832-7; http://dx.doi.org/10.1073/pnas.0913170107. PubMed DOI PMC

Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454:232-5; http://dx.doi.org/10.1038/nature07006. PubMed DOI PMC

Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, et al.. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104:19500-5; http://dx.doi.org/10.1073/pnas.0708818104. PubMed DOI PMC

Josefsen L, Droce A, Sondergaard TE, Sørensen JL, Bormann J, Schäfer W, Giese H, Olsson S. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium gaminearum. Autophagy 2012; 8:326-37. PubMed

Nadal M, Gold SE. The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis. Mol Plant Pathol 2010; 11:463-78; http://dx.doi.org/10.1111/j.1364-3703.2010.00620.x. PubMed DOI PMC

Pollack JK, Harris SD, Marten MR. Autophagy in filamentous fungi. Fungal Genet Biol 2009; 46:1-8; http://dx.doi.org/10.1016/j.fgb.2008.10.010. PubMed DOI

Richie DL, Fuller KK, Fortwendel J, Miley MD, McCarthy JW, Feldmesser M, Rhodes JC, Askew DS. Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot Cell 2007; 6:2437-47; http://dx.doi.org/10.1128/EC.00224-07. PubMed DOI PMC

Voigt O, Poggeler S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl Microbiol Biot 2013; 97:9277-90; http://dx.doi.org/10.1007/s00253-013-5221-2. PubMed DOI

Kim Y, Islam N, Moss BJ, Nandakumar MP, Marten MR. Autophagy induced by rapamycin and carbon-starvation have distinct proteome profiles in Aspergillus nidulans. Biotechnol Bioeng 2011; 108:2705-15; http://dx.doi.org/10.1002/bit.23223. PubMed DOI

Pinan-Lucarre B, Balguerie A, Clave C. Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell 2005; 4:1765-74; http://dx.doi.org/10.1128/EC.4.11.1765-1774.2005. PubMed DOI PMC

Deng YZ, Naqvi NI. A vacuolar glucoamylase, Sga1, participates in glycogen autophagy for proper asexual differentiation in Magnaporthe oryzae. Autophagy 2010; 6:455-61; http://dx.doi.org/10.4161/auto.6.4.11736. PubMed DOI

Deng YZ, Ramos-Pamplona M, Naqvi NI. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy 2009; 5:33-43; http://dx.doi.org/10.4161/auto.5.1.7175. PubMed DOI

Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 2014; 10:822-34; http://dx.doi.org/10.4161/auto.28148. PubMed DOI PMC

Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 2009; 21:1291-304; http://dx.doi.org/10.1105/tpc.108.060996. PubMed DOI PMC

Liu XH, Lu JP, Zhang L, Dong B, Min H, Lin FC. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 2007; 6:997-1005; http://dx.doi.org/10.1128/EC.00011-07. PubMed DOI PMC

Nguyen LN, Bormann J, Le GT, Starkel C, Olsson S, Nosanchuk JD, Giese H, Schafer W. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet Biol 2011; 48:217-24; http://dx.doi.org/10.1016/j.fgb.2010.11.004. PubMed DOI

Duan Z, Chen Y, Huang W, Shang Y, Chen P, Wang C. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 2013; 9:538-49; http://dx.doi.org/10.4161/auto.23575. PubMed DOI PMC

Deng YZ, Ramos-Pamplona M, Naqvi NI. Methods for functional analysis of macroautophagy in filamentous fungi. Methods Enzymol 2008; 451:295-310; http://dx.doi.org/10.1016/S0076-6879(08)03220-5. PubMed DOI

Kershaw MJ, Talbot NJ. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA 2009; 106:15967-72; http://dx.doi.org/10.1073/pnas.0901477106. PubMed DOI PMC

Liu TB, Liu XH, Lu JP, Zhang L, Min H, Lin FC. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy 2010; 6:74-85; http://dx.doi.org/10.4161/auto.6.1.10438. PubMed DOI

Penalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst HN, Pantazopoulou A. Searching for gold beyond mitosis: Mining intracellular membrane traffic in Aspergillus nidulans. Cell Log 2012; 2:2-14; http://dx.doi.org/10.4161/cl.19304. PubMed DOI PMC

Pinar M, Pantazopoulou A, Penalva MA. Live-cell imaging of Aspergillus nidulans autophagy: RAB1 dependence, Golgi independence and ER involvement. Autophagy 2013; 9:1024-43; http://dx.doi.org/10.4161/auto.24483. PubMed DOI PMC

Lipatova Z, Belogortseva N, Zhang XQ, Kim J, Taussig D, Segev N. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci USA 2012; 109:6981-6; http://dx.doi.org/10.1073/pnas.1121299109. PubMed DOI PMC

Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai H, Bartholomew CR, Brumell JH, Ferro-Novick S, Klionsky DJ. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci USA 2010; 107:7811-6; http://dx.doi.org/10.1073/pnas.1000063107. PubMed DOI PMC

Deng Y, Qu Z, Naqvi NI. The role of snx41-based pexophagy in magnaporthe development. PloS One 2013; 8:e79128. PubMed PMC

Piggott N, Cook MA, Tyers M, Measday V. Genome-wide fitness profiles reveal a requirement for autophagy during yeast fermentation. Genes Genomes Genetics 2011; 1:353-67. PubMed PMC

Cebollero E, Gonzalez R. Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines. Appl Environ Microbiol 2006; 72:4121-7; http://dx.doi.org/10.1128/AEM.02920-05. PubMed DOI PMC

Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 2008; 8:35-52; http://dx.doi.org/10.1111/j.1567-1364.2007.00338.x. PubMed DOI PMC

Mendes-Ferreira A, Sampaio-Marques B, Barbosa C, Rodrigues F, Costa V, Mendes-Faia A, Ludovico P, Leao C. Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 2010; 76:7918-24; http://dx.doi.org/10.1128/AEM.01535-10. PubMed DOI PMC

Rossignol T, Dulau L, Julien A, Blondin B. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 2003; 20:1369-85; http://dx.doi.org/10.1002/yea.1046. PubMed DOI

Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 2009; 75:5761-72; http://dx.doi.org/10.1128/AEM.00845-09. PubMed DOI PMC

Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 9:32-44; http://dx.doi.org/10.1111/j.1567-1364.2008.00456.x. PubMed DOI

Hazan R, Levine A, Abeliovich H. Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl Environ Microbiol 2004; 70:4449-57; http://dx.doi.org/10.1128/AEM.70.8.4449-4457.2004. PubMed DOI PMC

Singletary K, Milner J. Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomark Prev 2008; 17:1596-610; http://dx.doi.org/10.1158/1055-9965.EPI-07-2917. PubMed DOI

Su CL, Chen FN, Won SJ. Involvement of apoptosis and autophagy in reducing mouse hepatoma ML-1 cell growth in inbred BALB/c mice by bacterial fermented soybean products. Food Chem Toxicol 2011; 49:17-24; http://dx.doi.org/10.1016/j.fct.2010.08.017. PubMed DOI

Abeliovich H, Gonzalez R. Autophagy in food biotechnology. Autophagy 2009; 5:925-9; http://dx.doi.org/10.4161/auto.5.7.9213. PubMed DOI

Berger B, Abdalla FC, Cruz-Landim C. Effect of narcosis with CO2 on the ovarian development in queens of Apis mellifera (Hymenoptera, Apini). Sociobiology 2005; 45:261-70.

Silva-Zacarin ECM, Tomaino GA, Brocheto-Braga MR, Taboga SR, Silva de Moraes RLM. Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae). J Biosci 2007; 32:309-28; http://dx.doi.org/10.1007/s12038-007-0031-2. PubMed DOI

Gregorc A, Bowen ID. Programmed cell death in the honey-bee (Apis mellifera L.) larvae midgut. Cell Biol Int 1997; 21:151-8; http://dx.doi.org/10.1006/cbir.1997.0127. PubMed DOI

Navajas M, Migeon A, Alaux C, Martin-Magniette M, Robinson G, Evans J, Cros-Arteil S, Crauser D, Le Conte Y. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 2008; 9:301; http://dx.doi.org/10.1186/1471-2164-9-301. PubMed DOI PMC

Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res 2013; 73:3-7; http://dx.doi.org/10.1158/0008-5472.CAN-12-2464. PubMed DOI

Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, Matsui I, Niimura F, Matsusaka T, Fujita N, et al.. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 2012; 180:517-25; http://dx.doi.org/10.1016/j.ajpath.2011.11.001. PubMed DOI

Colasanti T, Vomero M, Alessandri C, Barbati C, Maselli A, Camperio C, Conti F, Tinari A, Carlo-Stella C, Tuosto L, et al.. Role of alpha-synuclein in autophagy modulation of primary human T lymphocytes. Cell Death Dis 2014; 5:e1265; http://dx.doi.org/10.1038/cddis.2014.211. PubMed DOI PMC

Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK, Spangenberg J, Zornig C, Juhl HH, David KA. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. BioTechniques 2004; 36:1030-7. PubMed

Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B, Banks S, Deng J, VanMeter AJ, Geho DH, et al.. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics: MCP 2008; 7:1998-2018; http://dx.doi.org/10.1074/mcp.M700596-MCP200. PubMed DOI PMC

Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol 2010; 221:117-24; http://dx.doi.org/10.1002/path.2694. PubMed DOI PMC

Domart MC, Esposti DD, Sebagh M, Olaya N, Harper F, Pierron G, Franc B, Tanabe KK, Debuire B, Azoulay D, et al.. Concurrent induction of necrosis, apoptosis, and autophagy in ischemic preconditioned human livers formerly treated by chemotherapy. J Hepatol 2009; 51:881-9; http://dx.doi.org/10.1016/j.jhep.2009.06.028. PubMed DOI

Jahania SM, Sengstock D, Vaitkevicius P, Andres A, Ito BR, Gottlieb RA, Mentzer RM Jr. Activation of the homeostatic intracellular repair response during cardiac surgery. J Am Coll Surgeons 2013; 216:719-26; discussion 26-9; http://dx.doi.org/10.1016/j.jamcollsurg.2012.12.034. PubMed DOI PMC

Singh KK, Yanagawa B, Quan A, Wang R, Garg A, Khan R, Pan Y, Wheatcroft MD, Lovren F, Teoh H, et al.. Autophagy gene fingerprint in human ischemia and reperfusion. J Thor Cardio Surg 2014; 147:1065-72 e1; http://dx.doi.org/10.1016/j.jtcvs.2013.04.042. PubMed DOI

Nyman E, Brannmark C, Palmer R, Brugard J, Nystrom FH, Stralfors P, Cedersund G. A hierarchical whole-body modeling approach elucidates the link between in Vitro insulin signaling and in Vivo glucose homeostasis. J Biol Chem 2011; 286:26028-41; http://dx.doi.org/10.1074/jbc.M110.188987. PubMed DOI PMC

Adkins Y, Schie IW, Fedor D, Reddy A, Nguyen S, Zhou P, Kelley DS, Wu J. A novel mouse model of nonalcoholic steatohepatitis with significant insulin resistance. Lab Investig 2013; 93:1313-22; http://dx.doi.org/10.1038/labinvest.2013.123. PubMed DOI

Lake AD, Novak P, Hardwick RN, Flores-Keown B, Zhao F, Klimecki WT, Cherrington NJ. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci 2014; 137:26-35; http://dx.doi.org/10.1093/toxsci/kft230. PubMed DOI PMC

Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, et al.. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 2014; 59:1366-80; http://dx.doi.org/10.1002/hep.26667. PubMed DOI

Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillon J, Lo Iacono O, Corazzari M, Fimia GM, et al.. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 2014; 5:e1179; http://dx.doi.org/10.1038/cddis.2014.162. PubMed DOI PMC

Buzgariu W, Chera S, Galliot B. Methods to investigate autophagy during starvation and regeneration in hydra. Methods Enzymol 2008; 451:409-37; http://dx.doi.org/10.1016/S0076-6879(08)03226-6. PubMed DOI

Chera S, Buzgariu W, Ghila L, Galliot B. Autophagy in Hydra: a response to starvation and stress in early animal evolution. Biochim Biophys Acta 2009; 1793:1432-43; http://dx.doi.org/10.1016/j.bbamcr.2009.03.010. PubMed DOI

Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K, Galliot B. Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci 2006; 119:846-57; http://dx.doi.org/10.1242/jcs.02807. PubMed DOI

B Galliot. Autophagy and self-preservation: a step ahead from cell plasticity? Autophagy 2006; 2:231-3; http://dx.doi.org/10.4161/auto.2706. PubMed DOI

Galliot B, Miljkovic-Licina M, de Rosa R, Chera S. Hydra, a niche for cell and developmental plasticity. Seminars Cell Dev Biol 2006; 17:492-502; http://dx.doi.org/10.1016/j.semcdb.2006.05.005. PubMed DOI

Sala-Mercado JA, Wider J, Undyala VV, Jahania S, Yoo W, Mentzer RM Jr., Gottlieb RA, Przyklenk K. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 2010; 122:S179-84; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.928242. PubMed DOI PMC

Botting KJ, McMillen IC, Forbes H, Nyengaard JR, Morrison JL. Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes. J Am Heart Assoc 2014; 3. PubMed PMC

Wang KC, Brooks DA, Summers-Pearce B, Bobrovskaya L, Tosh DN, Duffield JA, Botting KJ, Zhang S, Caroline McMillen I, Morrison JL. Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life. Physiol Rep 2015; 3. PubMed PMC

Zhang S, Regnault TR, Barker PL, Botting KJ, McMillen IC, McMillan CM, Roberts CT, Morrison JL. Placental adaptations in growth restriction. Nutrients 2015; 7:360-89; http://dx.doi.org/10.3390/nu7010360. PubMed DOI PMC

Derde S, Vanhorebeek I, Guiza F, Derese I, Gunst J, Fahrenkrog B, Martinet W, Vervenne H, Ververs EJ, Larsson L, et al.. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology 2012; 153:2267-76; http://dx.doi.org/10.1210/en.2011-2068. PubMed DOI

Gunst J, Derese I, Aertgeerts A, Ververs EJ, Wauters A, Van den Berghe G, Vanhorebeek I. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med 2013; 41:182-94; http://dx.doi.org/10.1097/CCM.0b013e3182676657. PubMed DOI

Lopez-Alonso I, Aguirre A, Gonzalez-Lopez A, Fernandez AF, Amado-Rodriguez L, Astudillo A, Batalla-Solis E, Albaiceta GM. Impairment of autophagy decreases ventilator-induced lung injury by blockade of the NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 2013; 304:L844-52; http://dx.doi.org/10.1152/ajplung.00422.2012. PubMed DOI

Sun Y, Li C, Shu Y, Ju X, Zou Z, Wang H, Rao S, Guo F, Liu H, Nan W, et al.. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection. Sci Signal 2012; 5:ra16. PubMed

Sobolewska A, Motyl T, Gajewska M. Role and regulation of autophagy in the development of acinar structures formed by bovine BME-UV1 mammary epithelial cells. Eur J Cell Biol 2011; 90:854-64; http://dx.doi.org/10.1016/j.ejcb.2011.06.007. PubMed DOI

Motyl T, Gajewska M, Zarzynska J, Sobolewska A, Gajkowska B. Regulation of autophagy in bovine mammary epithelial cells. Autophagy 2007; 3:484-6; http://dx.doi.org/10.4161/auto.4491. PubMed DOI

Sobolewska A, Gajewska M, Zarzynska J, Gajkowska B, Motyl T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur J Cell Biol 2009; 88:117-30; http://dx.doi.org/10.1016/j.ejcb.2008.09.004. PubMed DOI

Facey CO, Lockshin RA. The execution phase of autophagy associated PCD during insect metamorphosis. Apoptosis 2010; 15:639-52; http://dx.doi.org/10.1007/s10495-010-0499-3. PubMed DOI

Malagoli D, Abdalla FC, Cao Y, Feng Q, Fujisaki K, Gregorc A, Matsuo T, Nezis IP, Papassideri IS, Sass M, et al.. Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives. Autophagy 2010; 6:575-88; http://dx.doi.org/10.4161/auto.6.5.11962. PubMed DOI

Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev Growth Differ 2006; 48:419-28; http://dx.doi.org/10.1111/j.1440-169X.2006.00878.x. PubMed DOI

Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Different modes of programmed cell death during oogenesis of the silkmoth Bombyx mori. Autophagy 2008; 4:97-100; http://dx.doi.org/10.4161/auto.5205. PubMed DOI

Sumithra P, Britto CP, Krishnan M. Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L. Cell Tissue Res 2010; 339:349-58; http://dx.doi.org/10.1007/s00441-009-0898-3. PubMed DOI

Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B, Congiu T, Ferrarese R, Rivas-Pena ML, Pennacchio F, Eguileor M. Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res 2007; 330:345-59; http://dx.doi.org/10.1007/s00441-007-0449-8. PubMed DOI

Khoa DB, Takeda M. Expression of autophagy 8 (Atg8) and its role in the midgut and other organs of the greater wax moth, Galleria mellonella, during metamorphic remodelling and under starvation. Insect Mol Biol 2012; 21:473-87; http://dx.doi.org/10.1111/j.1365-2583.2012.01152.x. PubMed DOI

Gai Z, Zhang X, Islam M, Wang X, Li A, Yang Y, Li Y, Peng J, Hong H, Liu K. Characterization of Atg8 in lepidopteran insect cells. Arch Insect Biochem 2013; 84:57-77. PubMed

Goncu E, Parlak O. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori. Autophagy 2008; 4:1069-72; http://dx.doi.org/10.4161/auto.6953. PubMed DOI

Zhou S, Zhou Q, Liu Y, Wang S, Wen D, He Q, Wang W, Bendena WG, Li S. Two Tor genes in the silkworm Bombyx mori. Insect Mol Biol 2010; 19:727-35; http://dx.doi.org/10.1111/j.1365-2583.2010.01026.x. PubMed DOI

Zhang X, Hu ZY, Li WF, Li QR, Deng XJ, Yang WY, Cao Y, Zhou CZ. Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori. BMC Mol Biol 2009; 10:50; http://dx.doi.org/10.1186/1471-2199-10-50. PubMed DOI PMC

Romanelli D, Casati B, Franzetti E, Tettamanti G. A molecular view of autophagy in Lepidoptera. Biomed Res Int 2014; 2014:902315; http://dx.doi.org/10.1155/2014/902315. PubMed DOI PMC

Li Q, Deng X, Huang Z, Zheng S, Tettamanti G, Cao Y, Feng Q. Expression of autophagy-related genes in the anterior silk gland of the silkworm (Bombyx mori) during metamorphosis. Can J Zool 2011; 89:1019-26; http://dx.doi.org/10.1139/z11-075. DOI

Casati B, Terova G, Cattaneo AG, Rimoldi S, Franzetti E, de Eguileor M, Tettamanti G. Molecular cloning, characterization and expression analysis of ATG1 in the silkworm, Bombyx mori. Gene 2012; 511:326-37; http://dx.doi.org/10.1016/j.gene.2012.09.086. PubMed DOI

Godefroy N, Hoa C, Tsokanos F, Le Goff E, Douzery EJ, Baghdiguian S, Martinand-Mari C. Identification of autophagy genes in Ciona intestinalis: a new experimental model to study autophagy mechanism. Autophagy 2009; 5:805-15; http://dx.doi.org/10.4161/auto.8995. PubMed DOI

Martinand-Mari C, Vacelet J, Nickel M, Worheide G, Mangeat P, Baghdiguian S. Cell death and renewal during prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Poecilosclerida). J Exp Biol 2012; 215:3937-43; http://dx.doi.org/10.1242/jeb.072371. PubMed DOI

Thomé RG, Santos HB, Arantes FP, Domingos FF, Bazzoli N, Rizzo E. Dual roles for autophagy during follicular atresia in fish ovary. Autophagy 2009; 5:117-9; http://dx.doi.org/10.4161/auto.5.1.7302. PubMed DOI

Santos HB, Thome RG, Arantes FP, Sato Y, Bazzoli N, Rizzo E. Ovarian follicular atresia is mediated by heterophagy, autophagy, and apoptosis in Prochilodus argenteus and Leporinus taeniatus (Teleostei: Characiformes). Theriogenology 2008; 70:1449-60; http://dx.doi.org/10.1016/j.theriogenology.2008.06.091. PubMed DOI

Santos HB, Sato Y, Moro L, Bazzoli N, Rizzo E. Relationship among follicular apoptosis, integrin beta1 and collagen type IV during early ovarian regression in the teleost Prochilodus argenteus after induced spawning. Cell Tissue Res 2008; 332:159-70; http://dx.doi.org/10.1007/s00441-007-0540-1. PubMed DOI

Santos HB, Rizzo E, Bazzoli N, Sato Y, Moro L. Ovarian regression and apoptosis in the South American teleost Leporinus taeniatus Lutken (Characiformes, Anostomidae) from the São Francisco Basin. 2005; 67:1446-59.

Couve E, Schmachtenberg O. Autophagic activity and aging in human odontoblasts. J Dent Res 2011; 90:523-8; http://dx.doi.org/10.1177/0022034510393347. PubMed DOI

Gonzalez-Estevez C. Autophagy in freshwater planarians. Methods Enzymol 2008; 451:439-65; http://dx.doi.org/10.1016/S0076-6879(08)03227-8. PubMed DOI

Gonzalez-Estevez C, Felix DA, Aboobaker AA, Salo E. Gtdap-1 promotes autophagy and is required for planarian remodeling during regeneration and starvation. Proc Natl Acad Sci USA 2007; 104:13373-8; http://dx.doi.org/10.1073/pnas.0703588104. PubMed DOI PMC

Toyooka K, Moriyasu Y, Goto Y, Takeuchi M, Fukuda H, Matsuoka K. Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2006; 2:96-106; http://dx.doi.org/10.4161/auto.2.2.2366. PubMed DOI

Corral-Martinez P, Parra-Vega V, Segui-Simarro JM. Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. J Exp Bot 2013; 64:3061-75. PubMed

Le Bars R, Marion J, Le Borgne R, Satiat-Jeunemaitre B, Bianchi MW. ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. Nat Commun 2014; 5:4121; http://dx.doi.org/10.1038/ncomms5121. PubMed DOI

Shin KD, Lee HN, Chung T. A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol Cells 2014; 37:399-405; http://dx.doi.org/10.14348/molcells.2014.0042. PubMed DOI PMC

Svenning S, Lamark T, Krause K, Johansen T. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 2011; 7:993-1010; http://dx.doi.org/10.4161/auto.7.9.16389. PubMed DOI PMC

Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Surowiecki P, Lewandowska M, Liszewska F, Wawrzynska A, Sirko A. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 2011; 7:1145-58; http://dx.doi.org/10.4161/auto.7.10.16617. PubMed DOI PMC

Minina EA, Sanchez-Vera V, Moschou PN, Suarez MF, Sundberg E, Weih M, Bozhkov PV. Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis. Aging Cell 2013; 12:327-9; http://dx.doi.org/10.1111/acel.12048. PubMed DOI

van Doorn WG, Papini A. Ultrastructure of autophagy in plant cells: a review. Autophagy 2013; 9:1922-36; http://dx.doi.org/10.4161/auto.26275. PubMed DOI

Moriyasu Y, Inoue Y. Use of protease inhibitors for detecting autophagy in plants. Methods Enzymol 2008; 451:557-80; http://dx.doi.org/10.1016/S0076-6879(08)03232-1. PubMed DOI

Moriyasu Y, Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Phys 1996; 111:1233-41. PubMed PMC

Inoue Y, Moriyasu Y. Autophagy is not a main contributor to the degradation of phospholipids in tobacco cells cultured under sucrose starvation conditions. Plant Cell Physiol 2006; 47:471-80; http://dx.doi.org/10.1093/pcp/pcj013. PubMed DOI

Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y. 3-methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol 2004; 45:265-74; http://dx.doi.org/10.1093/pcp/pch031. PubMed DOI

Besteiro S, Brooks CF, Striepen B, Dubremetz J-F. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathog 2011; 7:e1002416. PubMed PMC

Calvo-Garrido J, Carilla-Latorre S, Kubohara Y, Santos-Rodrigo N, Mesquita A, Soldati T, Golstein P, Escalante R. Autophagy in Dictyostelium: genes and pathways, cell death and infection. Autophagy 2010; 6:686-701; http://dx.doi.org/10.4161/auto.6.6.12513. PubMed DOI

Tung SM, Unal C, Ley A, Pena C, Tunggal B, Noegel AA, Krut O, Steinert M, Eichinger L. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 2010; 12:765-80; http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x. PubMed DOI

Bozzaro S, Eichinger L. The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 2011; 12:942-54; http://dx.doi.org/10.2174/138945011795677782. PubMed DOI PMC

Schlegel M, Hülsmann N. Protists – A textbook example for a paraphyletic taxon. Org Divers Evol 2007; 7:166-72; http://dx.doi.org/10.1016/j.ode.2006.11.001. DOI

Kitamura K, Kishi-Itakura C, Tsuboi T, Sato S, Kita K, Ohta N, Mizushima N. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PloS One 2012; 7:e42977; http://dx.doi.org/10.1371/journal.pone.0042977. PubMed DOI PMC

Barquilla A, Crespo JL, Navarro M. Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci USA 2008; 105:14579-84; http://dx.doi.org/10.1073/pnas.0802668105. PubMed DOI PMC

Hain AU, Bartee D, Sanders NG, Miller AS, Sullivan DJ, Levitskaya J, Meyers CF, Bosch J. Identification of an Atg8-Atg3 protein-protein interaction inhibitor from the medicines for Malaria Venture Malaria Box active in blood and liver stage Plasmodium falciparum parasites. J Med Chem 2014; 57:4521-31; http://dx.doi.org/10.1021/jm401675a. PubMed DOI PMC

Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR, Graham DR, Colquhoun DR, Coppens I, Bosch J. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J Struct Biol 2012; 180:551-62; http://dx.doi.org/10.1016/j.jsb.2012.09.001. PubMed DOI PMC

Navale R, Atul  , Allanki AD, Sijwali PS. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum. PloS One 2014; 9:e113220; http://dx.doi.org/10.1371/journal.pone.0113220. PubMed DOI PMC

Morais P, Lamas J, Sanmartin ML, Orallo F, Leiro J. Resveratrol induces mitochondrial alterations, autophagy and a cryptobiosis-like state in scuticociliates. Protist 2009; 160:552-64; http://dx.doi.org/10.1016/j.protis.2009.04.004. PubMed DOI

Yakisich JS, Kapler GM. The effect of phosphoinositide 3-kinase inhibitors on programmed nuclear degradation in Tetrahymena and fate of surviving nuclei. Cell Death Differ 2004; 11:1146-9; http://dx.doi.org/10.1038/sj.cdd.4401473. PubMed DOI

Akematsu T, Pearlman RE, Endoh H. Gigantic macroautophagy in programmed nuclear death of Tetrahymena thermophila. Autophagy 2010; 6:901-11; http://dx.doi.org/10.4161/auto.6.7.13287. PubMed DOI PMC

Akematsu T, Fukuda Y, Attiq R, Pearlman RE. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. Autophagy 2014; 10:209-25; http://dx.doi.org/10.4161/auto.26929. PubMed DOI PMC

Liu ML, Yao MC. Role of ATG8 and autophagy in programmed nuclear degradation in Tetrahymena thermophila. Eukaryot Cell 2012; 11:494-506; http://dx.doi.org/10.1128/EC.05296-11. PubMed DOI PMC

Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, et al.. Status and opportunities for genomics research with rainbow trout. Comp Biochem Phys B 2002; 133:609-46; http://dx.doi.org/10.1016/S1096-4959(02)00167-7. PubMed DOI

Govoroun M, Le Gac F, Guiguen Y. Generation of a large scale repertoire of Expressed Sequence Tags (ESTs) from normalised rainbow trout cDNA libraries. BMC Genomics 2006; 7:196; http://dx.doi.org/10.1186/1471-2164-7-196. PubMed DOI PMC

Rexroad CE III, Lee Y, Keele JW, Karamycheva S, Brown G, Koop B, Gahr SA, Palti Y, Quackenbush J. Sequence analysis of a rainbow trout cDNA library and creation of a gene index. Cytogenetic Genome Res 2003; 102:347-54; http://dx.doi.org/10.1159/000075773. PubMed DOI

Rise ML, von Schalburg KR, Brown GD, Mawer MA, Devlin RH, Kuipers N, Busby M, Beetz-Sargent M, Alberto R, Gibbs AR, et al.. Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Res 2004; 14:478-90; http://dx.doi.org/10.1101/gr.1687304. PubMed DOI PMC

Salem M, Rexroad CE III, Wang J, Thorgaard GH, Yao J. Characterization of the rainbow trout transcriptome using Sanger and 454-pyrosequencing approaches. BMC Genomics 2010; 11:564; http://dx.doi.org/10.1186/1471-2164-11-564. PubMed DOI PMC

Polakof S, Panserat S, Craig PM, Martyres DJ, Plagnes-Juan E, Savari S, Aris-Brosou S, Moon TW. The metabolic consequences of hepatic AMP-kinase phosphorylation in rainbow trout. PloS One 2011; 6:e20228; http://dx.doi.org/10.1371/journal.pone.0020228. PubMed DOI PMC

Seiliez I, Gabillard JC, Skiba-Cassy S, Garcia-Serrana D, Gutierrez J, Kaushik S, Panserat S, Tesseraud S. An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Physiol Reg Integ Comp Physiol 2008; 295:R329-35; http://dx.doi.org/10.1152/ajpregu.00146.2008. PubMed DOI

Seiliez I, Gabillard J-C, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 2012; 8:364-75. PubMed

Chiarelli R, Agnello M, Bosco L, Roccheri MC. Sea urchin embryos exposed to cadmium as an experimental model for studying the relationship between autophagy and apoptosis. Mar Environ Res 2014; 93:47-55; http://dx.doi.org/10.1016/j.marenvres.2013.06.001. PubMed DOI

Umemiya R, Matsuo T, Hatta T, Sakakibara S, Boldbaatar D, Fujisaki K. Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis. Insect Biochem Molec 2007; 37:975-84; http://dx.doi.org/10.1016/j.ibmb.2007.05.006. PubMed DOI

Kawano S, Umemiya-Shirafuji R, Boldbaatar D, Matsuoka K, Tanaka T, Fujisaki K. Cloning and characterization of the autophagy-related gene 6 from the hard tick, Haemaphysalis longicornis. Parasitol Res 2011; 109:1341-9; http://dx.doi.org/10.1007/s00436-011-2429-x. PubMed DOI

Umemiya-Shirafuji R, Matsuo T, Liao M, Boldbaatar D, Battur B, Suzuki HI, Fujisaki K. Increased expression of ATG genes during nonfeeding periods in the tick Haemaphysalis longicornis. Autophagy 2010; 6:473-81; http://dx.doi.org/10.4161/auto.6.4.11668. PubMed DOI

Umemiya-Shirafuji R, Galay RL, Maeda H, Kawano S, Tanaka T, Fukumoto S, Suzuki H, Tsuji N, Fujisaki K. Expression analysis of autophagy-related genes in the hard tick Haemaphysalis longicornis. Vet Parasitol 2014; 201:169-75; http://dx.doi.org/10.1016/j.vetpar.2014.01.024. PubMed DOI

de la Fuente J, Kocan KM, Almazan C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 2007; 23:427-33; http://dx.doi.org/10.1016/j.pt.2007.07.002. PubMed DOI

Ayllón N, Villar V, Galindo RC, Kocan KM, Šíma R, López JA, Vázquez J, Alberdi P, Cabezas-Cruz A, Kopáček P, et al.. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet 2015; 11:e1005120; http://dx.doi.org/10.1371/journal.pgen.1005120. PubMed DOI PMC

Genomic Resources Development C, Contreras M, de la Fuente J, Estrada-Pena A, Grubhoffer L, Tobes R. Genomic resources notes accepted 1 April 2014 - 31 May 2014. Mol Ecol Resour 2014; 14:1095. PubMed

Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF. Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 2014; 10:572-87; http://dx.doi.org/10.4161/auto.27649. PubMed DOI PMC

Sasaki T, Lian S, Qi J, Bayliss PE, Carr CE, Johnson JL, Guha S, Kobler P, Catz SD, Gill M, et al.. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet 2014; 10:e1004409; http://dx.doi.org/10.1371/journal.pgen.1004409. PubMed DOI PMC

He C, Bartholomew CR, Zhou W, Klionsky DJ. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 2009; 5:520-6; http://dx.doi.org/10.4161/auto.5.4.7768. PubMed DOI PMC

Komoike Y, Shimojima K, Liang JS, Fujii H, Maegaki Y, Osawa M, Fujii S, Higashinakagawa T, Yamamoto T. A functional analysis of GABARAP on 17p13.1 by knockdown zebrafish. J Hum Genet 2010; 55:155-62; http://dx.doi.org/10.1038/jhg.2010.1. PubMed DOI

Dowling JJ, Low SE, Busta AS, Feldman EL. Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 2010; 19:2668-81; http://dx.doi.org/10.1093/hmg/ddq153. PubMed DOI PMC

Makky K, Tekiela J, Mayer AN. Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Dev Biol 2007; 303:501-13; http://dx.doi.org/10.1016/j.ydbio.2006.11.030. PubMed DOI PMC

Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, et al.. PICALM modulates autophagy activity and tau accumulation. Nat Commun 2014; 5:4998; http://dx.doi.org/10.1038/ncomms5998. PubMed DOI PMC

Hishiya A, Salman MN, Carra S, Kampinga HH, Takayama S. BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity. PloS One 2011; 6:e16828; http://dx.doi.org/10.1371/journal.pone.0016828. PubMed DOI PMC

Ruparelia AA, Oorschot V, Vaz R, Ramm G, Bryson-Richardson RJ. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol 2014; 128:821-33; http://dx.doi.org/10.1007/s00401-014-1344-5. PubMed DOI

Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M, Cossart P, Herbomel P, Levraud JP, Colucci-Guyon E. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog 2013; 9:e1003588; http://dx.doi.org/10.1371/journal.ppat.1003588. PubMed DOI PMC

van der Vaart M, Korbee CJ, Lamers GE, Tengeler AC, Hosseini R, Haks MC, Ottenhoff TH, Spaink HP, Meijer AH. The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLP-MYD88 to Authophagic Defense. Cell Host Microbe 2014; 15:753-67; http://dx.doi.org/10.1016/j.chom.2014.05.005. PubMed DOI

Varga M, Sass M, Papp D, Takacs-Vellai K, Kobolak J, Dinnyes A, Klionsky DJ, Vellai T. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 2014; 21:547-56; http://dx.doi.org/10.1038/cdd.2013.175. PubMed DOI PMC

Benato F, Skobo T, Gioacchini G, Moro I, Ciccosanti F, Piacentini M, Fimia GM, Carnevali O, Dalla Valle L. Ambra1 knockdown in zebrafish leads to incomplete development due to severe defects in organogenesis. Autophagy 2013; 9:476-95; http://dx.doi.org/10.4161/auto.23278. PubMed DOI PMC

Skobo T, Benato F, Grumati P, Meneghetti G, Cianfanelli V, Castagnaro S, Chrisam M, Di Bartolomeo S, Bonaldo P, Cecconi F, et al.. Zebrafish ambra1a and ambra1b knockdown impairs skeletal muscle development. PloS One 2014; 9:e99210; http://dx.doi.org/10.1371/journal.pone.0099210. PubMed DOI PMC

Mizushima N. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol 2009; 452:13-23; http://dx.doi.org/10.1016/S0076-6879(08)03602-1. PubMed DOI

Henault J, Martinez J, Riggs JM, Tian J, Mehta P, Clarke L, Sasai M, Latz E, Brinkmann MM, Iwasaki A, et al.. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 2012; 37:986-97; http://dx.doi.org/10.1016/j.immuni.2012.09.014. PubMed DOI PMC

Varma H, Gangadhar NM, Letso RR, Wolpaw AJ, Sriramaratnam R, Stockwell BR. Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity. Exp Cell Res 2013; 319:1759-73; http://dx.doi.org/10.1016/j.yexcr.2013.03.019. PubMed DOI PMC

Kong-Hap MA, Mouammine A, Daher W, Berry L, Lebrun M, Dubremetz JF, Besteiro S. Regulation of ATG8 membrane association by ATG4 in the parasitic protist Toxoplasma gondii. Autophagy 2013; 9:1334-48; http://dx.doi.org/10.4161/auto.25189. PubMed DOI

Jayabalasingham B, Voss C, Ehrenman K, Romano JD, Smith ME, Fidock DA, Bosch J, Coppens I. Characterization of the ATG8-conjugation system in 2 Plasmodium species with special focus on the liver stage: possible linkage between the apicoplastic and autophagic systems? Autophagy 2014; 10:269-84; http://dx.doi.org/10.4161/auto.27166. PubMed DOI PMC

Tomlins AM, Ben-Rached F, Williams RA, Proto WR, Coppens I, Ruch U, Gilberger TW, Coombs GH, Mottram JC, Muller S, et al.. Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation. Autophagy 2013; 9:1540-52; http://dx.doi.org/10.4161/auto.25832. PubMed DOI

Mizushima N, Sahani MH. ATG8 localization in apicomplexan parasites: apicoplast and more? Autophagy 2014; 10:1487-94; http://dx.doi.org/10.4161/auto.32183. PubMed DOI PMC

Haldar AK, Piro AS, Pilla DM, Yamamoto M, Coers J. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance. PloS One 2014; 9:e86684; http://dx.doi.org/10.1371/journal.pone.0086684. PubMed DOI PMC

Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, Matsuura Y, Pann-Ghill S, Hayashi M, Ebisu S, et al.. Role of mouse and human autophagy proteins in IFN-gamma-induced cell-autonomous responses against Toxoplasma gondii. J Immunol 2014; 192:3328-35; http://dx.doi.org/10.4049/jimmunol.1302822. PubMed DOI

Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog 2009; 5:e1000288; http://dx.doi.org/10.1371/journal.ppat.1000288. PubMed DOI PMC

Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, et al.. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 2014; 509:366-70; http://dx.doi.org/10.1038/nature13157. PubMed DOI

Taguchi Y, Imaoka K, Kataoka M, Uda A, Nakatsu D, Horii-Okazaki S, Kunishige R, Kano F, Murata M. Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog 2015; 11:e1004747; http://dx.doi.org/10.1371/journal.ppat.1004747. PubMed DOI PMC

Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C, Virgin HW, Celli J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012; 11:33-45; http://dx.doi.org/10.1016/j.chom.2011.12.002. PubMed DOI PMC

Ferguson TA, Green DR. Autophagy and phagocytosis converge for better vision. Autophagy 2014; 10:165-7; http://dx.doi.org/10.4161/auto.26735. PubMed DOI PMC

Mehta P, Henault J, Kolbeck R, Sanjuan MA. Noncanonical autophagy: one small step for LC3, one giant leap for immunity. Curr Opin Immunol 2014; 26:69-75; http://dx.doi.org/10.1016/j.coi.2013.10.012. PubMed DOI

Scarlatti F, Maffei R, Beau I, Ghidoni R, Codogno P. Non-canonical autophagy: an exception or an underestimated form of autophagy? Autophagy 2008; 4:1083-5; http://dx.doi.org/10.4161/auto.7068. PubMed DOI

Takeshita F, Kobiyama K, Miyawaki A, Jounai N, Okuda K. The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy 2008; 4:67-9; http://dx.doi.org/10.4161/auto.5055. PubMed DOI

Deretic V, Jiang S, Dupont N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 2012; 22:397-406; http://dx.doi.org/10.1016/j.tcb.2012.04.008. PubMed DOI PMC

Cleyrat C, Darehshouri A, Steinkamp MP, Vilaine M, Boassa D, Ellisman MH, Hermouet S, Wilson BS. Mpl traffics to the cell surface through conventional and unconventional routes. Traffic 2014; 15:961-82; http://dx.doi.org/10.1111/tra.12185. PubMed DOI PMC

Hughes T, Rusten TE. Origin and evolution of self-consumption: autophagy. Adv Exp Med Biol 2007; 607:111-8; http://dx.doi.org/10.1007/978-0-387-74021-8. PubMed DOI

JA Kiel. Autophagy in unicellular eukaryotes. Philos Trans R Soc B 2010; 365:819-30; http://dx.doi.org/10.1098/rstb.2009.0237. PubMed DOI PMC

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; http://dx.doi.org/10.1093/nar/25.17.3389. PubMed DOI PMC

Pertsemlidis A, Fondon JW III. Having a BLAST with bioinformatics (and avoiding BLASTphemy). Genome Biol 2001; 2:REVIEWS2002; http://dx.doi.org/10.1186/gb-2001-2-10-reviews2002. PubMed DOI PMC

B Rost. Twilight zone of protein sequence alignments. Protein engineering 1999; 12:85-94; http://dx.doi.org/10.1093/protein/12.2.85. PubMed DOI

Duszenko M, Ginger ML, Brennand A, Gualdron-Lopez M, Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langsley G, de Castro SL, et al.. Autophagy in protists. Autophagy 2011; 7:127-58; http://dx.doi.org/10.4161/auto.7.2.13310. PubMed DOI PMC

Rigden DJ, Michels PA, Ginger ML. Autophagy in protists: Examples of secondary loss, lineage-specific innovations, and the conundrum of remodeling a single mitochondrion. Autophagy 2009; 5:784-94; http://dx.doi.org/10.4161/auto.8838. PubMed DOI

Katsani KR, Irimia M, Karapiperis C, Scouras ZG, Blencowe BJ, Promponas VJ, Ouzounis CA. Functional genomics evidence unearths new moonlighting roles of outer ring coat nucleoporins. Sci Rep 2014; 4:4655; http://dx.doi.org/10.1038/srep04655. PubMed DOI PMC

Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC. Intrinsically disordered regions in autophagy proteins. Proteins 2014; 82:565-78; http://dx.doi.org/10.1002/prot.24424. PubMed DOI PMC

Promponas VJ, Ouzounis CA, Iliopoulos I. Experimental evidence validating the computational inference of functional associations from gene fusion events: a critical survey. Brief Bioinform 2014; 15:443-54; http://dx.doi.org/10.1093/bib/bbs072. PubMed DOI PMC

Homma K, Suzuki K, Sugawara H. The Autophagy Database: an all-inclusive information resource on autophagy that provides nourishment for research. Nucleic Acids Res 2011; 39:D986-90; http://dx.doi.org/10.1093/nar/gkq995. PubMed DOI PMC

Turei D, Foldvari-Nagy L, Fazekas D, Modos D, Kubisch J, Kadlecsik T, Demeter A, Lenti K, Csermely P, Vellai T, et al.. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy. Autophagy 2015; 11:155-65; http://dx.doi.org/10.4161/15548627.2014.994346. PubMed DOI PMC

Birgisdottir AB, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci 2013; 126:3237-47. PubMed

Wild P, McEwan DG, Dikic I. The LC3 interactome at a glance. J Cell Sci 2014; 127:3-9; http://dx.doi.org/10.1242/jcs.140426. PubMed DOI

Noda NN, Ohsumi Y, Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 2010; 584:1379-85; http://dx.doi.org/10.1016/j.febslet.2010.01.018. PubMed DOI

Kalvari I, Tsompanis S, Mulakkal NC, Osgood R, Johansen T, Nezis IP, Promponas VJ. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 2014; 10:913-25; http://dx.doi.org/10.4161/auto.28260. PubMed DOI PMC

Dosztanyi Z, Meszaros B, Simon I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 2009; 25:2745-6; http://dx.doi.org/10.1093/bioinformatics/btp518. PubMed DOI PMC

Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, Speck T, Kruger D, Grebnev G, Kuban M, et al.. The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 2014; 42:D259-66; http://dx.doi.org/10.1093/nar/gkt1047. PubMed DOI PMC

Wu D, Huang Y, Kang JJ, Li KN, Bi XM, Zhang T, Jin NN, Hu YF, Tan PW, Zhang L, et al.. ncRDeathDB: a comprehensive bioinformatics resource for deciphering network organization of the ncRNA-mediated cell death system. Autophagy 2015; 11:1917-26. PubMed PMC

Li Y, Zhuang L, Wang Y, Hu Y, Wu Y, Wang D, Xu J. Connect the dots: a systems level approach for analyzing the miRNA-mediated cell death network. Autophagy 2013; 9:436-9; http://dx.doi.org/10.4161/auto.23096. PubMed DOI PMC

Xu J, Li YH. miRDeathDB: a database bridging microRNAs and the programmed cell death. Cell Death Differ 2012; 19:1571; http://dx.doi.org/10.1038/cdd.2012.87. PubMed DOI PMC

Xu J, Wang Y, Tan X, Jing H. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 2012; 8:873-82; http://dx.doi.org/10.4161/auto.19629. PubMed DOI PMC

Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson JJ. Dynamic Modeling of the Interaction Between Autophagy and Apoptosis in Mammalian Cells. CPT Pharmacometrics Syst Pharmacol 2015; 4:263-72; http://dx.doi.org/10.1002/psp4.29. PubMed DOI PMC

Tavassoly I. Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells: Mathematical Modeling and Experimental Observations. Springer, 2015.

Borlin CS, Lang V, Hamacher-Brady A, Brady NR. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics. Cell Commun Signal 2014; 12:56; http://dx.doi.org/10.1186/s12964-014-0056-8. PubMed DOI PMC

Martin KR, Barua D, Kauffman AL, Westrate LM, Posner RG, Hlavacek WS, Mackeigan JP. Computational model for autophagic vesicle dynamics in single cells. Autophagy 2013; 9:74-92; http://dx.doi.org/10.4161/auto.22532. PubMed DOI PMC

Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, et al.. A comprehensive glossary of autophagy-related molecules and processes (2nd) edition). Autophagy 2011; 7:1273-94; http://dx.doi.org/10.4161/auto.7.11.17661. PubMed DOI PMC

Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, Gewirtz DA, Kroemer G, Levine B, Mizushima N, et al.. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 2010; 6:438-48; http://dx.doi.org/10.4161/auto.6.4.12244. PubMed DOI PMC

Rosich L, Xargay-Torrent S, Lopez-Guerra M, Campo E, Colomer D, Roue G. Counteracting autophagy overcomes resistance to everolimus in mantle cell lymphoma. Clin Cancer Res 2012; 18:5278-89; http://dx.doi.org/10.1158/1078-0432.CCR-12-0351. PubMed DOI

Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E, Cuervo AM. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat Chem Biol 2013; 9:374-82; http://dx.doi.org/10.1038/nchembio.1230. PubMed DOI PMC

De Mei C, Ercolani L, Parodi C, Veronesi M, Vecchio CL, Bottegoni G, Torrente E, Scarpelli R, Marotta R, Ruffili R, et al.. Dual inhibition of REV-ERBbeta and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. Oncogene 2015; 34:2597-608; http://dx.doi.org/10.1038/onc.2014.203. PubMed DOI PMC

Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 2008; 19:4651-9; http://dx.doi.org/10.1091/mbc.E08-03-0312. PubMed DOI PMC

Vanrell MC, Cueto JA, Barclay JJ, Carrillo C, Colombo MI, Gottlieb RA, Romano PS. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity. Autophagy 2013; 9:1080-93; http://dx.doi.org/10.4161/auto.24709. PubMed DOI PMC

Song W, Zukor H, Liberman A, Kaduri S, Arvanitakis Z, Bennett DA, Schipper HM. Astroglial heme oxygenase-1 and the origin of corpora amylacea in aging and degenerating neural tissues. Exp Neurol 2014; 254:78-89; http://dx.doi.org/10.1016/j.expneurol.2014.01.006. PubMed DOI PMC

Song W, Zukor H, Lin SH, Liberman A, Tavitian A, Mui J, Vali H, Fillebeen C, Pantopoulos K, Wu TD, et al.. Unregulated brain iron deposition in transgenic mice over-expressing HMOX1 in the astrocytic compartment. J Neurochem 2012; 123:325-36; http://dx.doi.org/10.1111/j.1471-4159.2012.07914.x. PubMed DOI

Zukor H, Song W, Liberman A, Mui J, Vali H, Fillebeen C, Pantopoulos K, Wu TD, Guerquin-Kern JL, Schipper HM. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues. J Neurochem 2009; 109:776-91; http://dx.doi.org/10.1111/j.1471-4159.2009.06007.x. PubMed DOI

Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 2009; 421:29-42; http://dx.doi.org/10.1042/BJ20090489. PubMed DOI PMC

Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al.. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458:732-6; http://dx.doi.org/10.1038/nature07884. PubMed DOI

Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D, Pan Y, Ding C, Qian J, Wu L, et al.. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res 2012; 72:3360-71; http://dx.doi.org/10.1158/0008-5472.CAN-12-0388. PubMed DOI

Yang D, Zhao Y, Liu J, Sun Y, Jia L. Protective autophagy induced by RBX1/ROC1 knockdown or CRL inactivation via modulating the DEPTOR-MTOR axis. Autophagy 2012; 8:1856-8; http://dx.doi.org/10.4161/auto.22024. PubMed DOI PMC

Zhao Y, Xiong X, Jia L, Sun Y. Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis 2012; 3:e386; http://dx.doi.org/10.1038/cddis.2012.125. PubMed DOI PMC

Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, et al.. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008; 68:8022-30; http://dx.doi.org/10.1158/0008-5472.CAN-08-1385. PubMed DOI

Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM, Garcia-Echevrria C, Yung WK. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 2009; 8:2204-10; http://dx.doi.org/10.1158/1535-7163.MCT-09-0160. PubMed DOI PMC

Pirola L, Frojdo S. Resveratrol: one molecule, many targets. IUBMB Life 2008; 60:323-32; http://dx.doi.org/10.1002/iub.47. PubMed DOI

Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, et al.. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 2010; 285:9100-13; http://dx.doi.org/10.1074/jbc.M109.060061. PubMed DOI PMC

Puissant A, Auberger P. AMPK- and p62/SQSTM1-dependent autophagy mediate Resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy 2010; 6:655-7; http://dx.doi.org/10.4161/auto.6.5.12126. PubMed DOI

Vingtdeux V, Chandakkar P, Zhao H, d'Abramo C, Davies P, Marambaud P. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-[b] peptide degradation. The FASEB J 2011; 25:219-31; http://dx.doi.org/10.1096/fj.10-167361. PubMed DOI PMC

Wong VK, Li T, Law BY, Ma ED, Yip NC, Michelangeli F, Law CK, Zhang MM, Lam KY, Chan PL, et al.. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis 2013; 4:e720; http://dx.doi.org/10.1038/cddis.2013.217. PubMed DOI PMC

Gordon PB, Holen I, Fosse M, Rotnes JS, Seglen PO. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 1993; 268:26107-12. PubMed

Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42:731-43; http://dx.doi.org/10.1016/j.molcel.2011.04.024. PubMed DOI PMC

Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, Guo Y, Zhou G. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. Biochim Biophys Acta 2015; 1853:377-87; http://dx.doi.org/10.1016/j.bbamcr.2014.10.030. PubMed DOI

Casarejos MJ, Solano RM, Gomez A, Perucho J, de Yebenes JG, Mena MA. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int 2011; 58:512-20; http://dx.doi.org/10.1016/j.neuint.2011.01.008. PubMed DOI

Fernandez-Estevez MA, Casarejos MJ, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, Perucho J, de Yebenes JG, Mena MA. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PloS One 2014; 9:e90202; http://dx.doi.org/10.1371/journal.pone.0090202. PubMed DOI PMC

Carpenter JE, Jackson W, Benetti L, Grose C. Autophagosome formation during varicella-zoster virus Infection following endoplasmic reticulum stress and the unfolded protein response. J Virol 2011; 85:9414-24; http://dx.doi.org/10.1128/JVI.00281-11. PubMed DOI PMC

Lu Y, Dong S, Hao B, Li C, Zhu K, Guo W, Wang Q, Cheung KH, Wong CW, Wu WT, et al.. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 2014; 10:1895-905; http://dx.doi.org/10.4161/auto.32200. PubMed DOI PMC

Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I, Ammerer G, Kraft C, Peter M. Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy 2010; 6:1168-78; http://dx.doi.org/10.4161/auto.6.8.13849. PubMed DOI

Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 2010; 30:1049-58; http://dx.doi.org/10.1128/MCB.01344-09. PubMed DOI PMC

Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci USA 2009; 106:17049-54; http://dx.doi.org/10.1073/pnas.0903316106. PubMed DOI PMC

Wei Y, An Z, Zou Z, Sumpter R, Su M, Zang X, Sinha S, Gaestel M, Levine B. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. eLife 2015; 4. PubMed PMC

Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013; 152:290-303; http://dx.doi.org/10.1016/j.cell.2012.12.016. PubMed DOI PMC

Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999; 344 Pt 2:427-31; http://dx.doi.org/10.1042/bj3440427. PubMed DOI PMC

Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 2000; 275:7416-23; http://dx.doi.org/10.1074/jbc.275.10.7416. PubMed DOI

Nicot AS, Lo Verso F, Ratti F, Pilot-Storck F, Streichenberger N, Sandri M, Schaeffer L, Goillot E. Phosphorylation of NBR1 by GSK3 modulates protein aggregation. Autophagy 2014; 10:1036-53; http://dx.doi.org/10.4161/auto.28479. PubMed DOI PMC

Rosner M, Fuchs C, Siegel N, Valli A, Hengstschlager M. Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet 2009; 18:3298-310; http://dx.doi.org/10.1093/hmg/ddp271. PubMed DOI PMC

Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO. Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA 2011; 108:E1204-13; http://dx.doi.org/10.1073/pnas.1110195108. PubMed DOI PMC

Ro SH, Semple IA, Park H, Park H, Park HW, Kim M, Kim JS, Lee JH. Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J 2014; 281:3816-27. PubMed PMC

Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J-L, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008; 181:497-510; http://dx.doi.org/10.1083/jcb.200712064. PubMed DOI PMC

Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 1999; 14:180-98; http://dx.doi.org/10.1006/mcne.1999.0780. PubMed DOI

Zhang N, Chen Y, Jiang R, Li E, Chen X, Xi Z, Guo Y, Liu X, Zhou Y, Che Y, et al.. PARP and RIP 1 are required for autophagy induced by 11'-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 2011; 7:598-612; http://dx.doi.org/10.4161/auto.7.6.15103. PubMed DOI

Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 2010; 142:590-600; http://dx.doi.org/10.1016/j.cell.2010.07.018. PubMed DOI PMC

Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 2007; 3: 374-6; http://dx.doi.org/10.4161/auto.4237. PubMed DOI

Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, et al.. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435:677-81; http://dx.doi.org/10.1038/nature03579. PubMed DOI

Nazarko TY. Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy 2014; 10:1348-9; http://dx.doi.org/10.4161/auto.29073. PubMed DOI PMC

Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A, et al.. Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 2014; 19:431-44; http://dx.doi.org/10.1016/j.cmet.2014.02.010. PubMed DOI PMC

Marino G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso-Santano M, et al.. Regulation of autophagy by cytosolic acetyl-coenzyme a. Mol Cell 2014; 53:710-25; http://dx.doi.org/10.1016/j.molcel.2014.01.016. PubMed DOI

Nandi N, Tyra LK, Stenesen D, Kramer H. Acinus integrates AKT1 and subapoptotic caspase activities to regulate basal autophagy. J Cell Biol 2014; 207:253-68; http://dx.doi.org/10.1083/jcb.201404028. PubMed DOI PMC

Haberman AS, Akbar MA, Ray S, Kramer H. Drosophila acinus encodes a novel regulator of endocytic and autophagic trafficking. Development 2010; 137:2157-66. PubMed PMC

Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, et al.. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 2009; 11:1233-40; http://dx.doi.org/10.1038/ncb1967. PubMed DOI

Till A, Lipinski S, Ellinghaus D, Mayr G, Subramani S, Rosenstiel P, Franke A. Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy 2013; 9:1256-7; http://dx.doi.org/10.4161/auto.25483. PubMed DOI PMC

Eby KG, Rosenbluth JM, Mays DJ, Marshall CB, Barton CE, Sinha S, Johnson KN, Tang L, Pietenpol JA. ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy. Mol Cancer 2010; 9:95; http://dx.doi.org/10.1186/1476-4598-9-95. PubMed DOI PMC

Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ 3rd. The Receptor for Advanced Glycation End-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Sign 2011; 15:2175-84; http://dx.doi.org/10.1089/ars.2010.3378. PubMed DOI PMC

Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ. The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Sign 2011; 15:2175-84. PubMed PMC

Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C. BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 2011; 12:149-56; http://dx.doi.org/10.1038/embor.2010.203. PubMed DOI PMC

Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J Cell Biol 1998; 143:1883-98; http://dx.doi.org/10.1083/jcb.143.7.1883. PubMed DOI PMC

Viana R, Aguado C, Esteban I, Moreno D, Viollet B, Knecht E, Sanz P. Role of AMP-activated protein kinase in autophagy and proteasome function. Biochem Biophys Res Commun 2008; 369:964-8; http://dx.doi.org/10.1016/j.bbrc.2008.02.126. PubMed DOI

Hadano S, Otomo A, Kunita R, Suzuki-Utsunomiya K, Akatsuka A, Koike M, Aoki M, Uchiyama Y, Itoyama Y, Ikeda JE. Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking. PloS One 2010; 5:e9805; http://dx.doi.org/10.1371/journal.pone.0009805. PubMed DOI PMC

Otomo A, Kunita R, Suzuki-Utsunomiya K, Ikeda JE, Hadano S. Defective relocalization of ALS2/alsin missense mutants to Rac1-induced macropinosomes accounts for loss of their cellular function and leads to disturbed amphisome formation. FEBS Lett 2011; 585:730-6; http://dx.doi.org/10.1016/j.febslet.2011.01.045. PubMed DOI

Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB, Corazzari M, Marsella C, Piselli P, Gretzmeier C, Dengjel J, et al.. AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev Cell 2014; 31:734-46; http://dx.doi.org/10.1016/j.devcel.2014.11.013. PubMed DOI

Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, De Zio D, Nazio F, Antonioli M, D'Orazio M, et al.. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 2015; 17:20-30; http://dx.doi.org/10.1038/ncb3072. PubMed DOI PMC

Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 2013; 24:1153-62; http://dx.doi.org/10.1091/mbc.E12-08-0607. PubMed DOI PMC

Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, Lin YJ, Wu CT, Liu HS. Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 2014; 59:505-17; http://dx.doi.org/10.1002/hep.26659. PubMed DOI PMC

Lee KY, Oh S, Choi YJ, Oh SH, Yang YS, Yang MJ, Lee K, Lee BH. Activation of autophagy rescues amiodarone-induced apoptosis of lung epithelial cells and pulmonary toxicity in rats. Toxicol Sci 2013; 136:193-204; http://dx.doi.org/10.1093/toxsci/kft168. PubMed DOI

Seglen PO, Berg TO, Blankson H, Fengsrud M, Holen I, Stromhaug PE. Structural aspects of autophagy. Adv Exp Med Biol 1996; 389:103-11; http://dx.doi.org/10.1007/978-1-4613-0335-0. PubMed DOI

Meijer AJ, Codogno P. AMP-activated protein kinase and autophagy. Autophagy 2007; 3:238-40; http://dx.doi.org/10.4161/auto.3710. PubMed DOI

Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E. The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. Plant Cell 2011; 23:3026-40; http://dx.doi.org/10.1105/tpc.111.087254. PubMed DOI PMC

Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C, Schwechheimer C, Brunner F, Huckelhoven R, Isono E. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 2013; 25:2236-52; http://dx.doi.org/10.1105/tpc.113.113399. PubMed DOI PMC

Costa R, Morrison A, Wang J, Manithody C, Li J, Rezaie AR. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. J Thromb Haemost 2012; 10:1736-44; http://dx.doi.org/10.1111/j.1538-7836.2012.04833.x. PubMed DOI PMC

Yuga M, Gomi K, Klionsky DJ, Shintani T. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 2011; 286:13704-13; http://dx.doi.org/10.1074/jbc.M110.173906. PubMed DOI PMC

Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 2009; 5:527-49; http://dx.doi.org/10.1016/j.chom.2009.05.016. PubMed DOI PMC

Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, Su DF, Pei G, Miao CY. ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy 2014; 10:1535-48; http://dx.doi.org/10.4161/auto.29203. PubMed DOI PMC

Keller KE, Yang YF, Sun YY, Sykes R, Acott TS, Wirtz MK. Ankyrin repeat and suppressor of cytokine signaling box containing protein-10 is associated with ubiquitin-mediated degradation pathways in trabecular meshwork cells. Mol Vis 2013; 19:1639-55. PubMed PMC

Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I, Harris AL. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 2010; 29:4424-35; http://dx.doi.org/10.1038/onc.2010.191. PubMed DOI

Sheng Z, Ma L, Sun JE, Zhu LJ, Green MR. BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription. Blood 2011; 118:2840-8; http://dx.doi.org/10.1182/blood-2010-12-322537. PubMed DOI PMC

Klionsky DJ, Cregg JM, Dunn WA Jr., Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, et al.. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5:539-45; http://dx.doi.org/10.1016/S1534-5807(03)00296-X. PubMed DOI

Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 1997; 192:245-50; http://dx.doi.org/10.1016/S0378-1119(97)00084-X. PubMed DOI

Shintani T, Suzuki K, Kamada Y, Noda T, Ohsumi Y. Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem 2001; 276:30452-60; http://dx.doi.org/10.1074/jbc.M102346200. PubMed DOI

Wang C-W, Kim J, Huang W-P, Abeliovich H, Stromhaug PE, Dunn WA Jr., Klionsky DJ. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 2001; 276:30442-51; http://dx.doi.org/10.1074/jbc.M102342200. PubMed DOI PMC

Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, et al.. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408:488-92; http://dx.doi.org/10.1038/35044114. PubMed DOI

Schlumpberger M, Schaeffeler E, Straub M, Bredschneider M, Wolf DH, Thumm M. AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. J Bacteriol 1997; 179:1068-76. PubMed PMC

Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E. Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 2006; 273:2553-62; http://dx.doi.org/10.1111/j.1742-4658.2006.05260.x. PubMed DOI

Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature 1998; 395:395-8; http://dx.doi.org/10.1038/26506. PubMed DOI

Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 1999; 10:1337-51; http://dx.doi.org/10.1091/mbc.10.5.1337. PubMed DOI PMC

Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell 1999; 10:1367-79; http://dx.doi.org/10.1091/mbc.10.5.1367. PubMed DOI PMC

Noda T, Kim J, Huang W-P, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 2000; 148:465-80; http://dx.doi.org/10.1083/jcb.148.3.465. PubMed DOI PMC

Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, Scherer SW. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 2005; 280:18283-90; http://dx.doi.org/10.1074/jbc.M413957200. PubMed DOI

Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 1999; 18:5234-41; http://dx.doi.org/10.1093/emboj/18.19.5234. PubMed DOI PMC

Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, Baba M, Scott SV, Ohsumi Y, Dunn WA Jr., Klionsky DJ. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 2001; 153:381-96; http://dx.doi.org/10.1083/jcb.153.2.381. PubMed DOI PMC

Kamber RA, Shoemaker CJ, Denic V. receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol Cell 2015; 59:372-81; http://dx.doi.org/10.1016/j.molcel.2015.06.009. PubMed DOI PMC

Lin L, Yang P, Huang X, Zhang H, Lu Q, Zhang H. The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J Cell Biol 2013; 201:113-29; http://dx.doi.org/10.1083/jcb.201209098. PubMed DOI PMC

Li F, Chung T, Vierstra RD. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. 2014. PubMed PMC

Funakoshi T, Matsuura A, Noda T, Ohsumi Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 1997; 192:207-13; http://dx.doi.org/10.1016/S0378-1119(97)00031-0. PubMed DOI

Kametaka S, Okano T, Ohsumi M, Ohsumi Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 1998; 273:22284-91; http://dx.doi.org/10.1074/jbc.273.35.22284. PubMed DOI

Epple UD, Suriapranata I, Eskelinen E-L, Thumm M. Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 2001; 183: 5942-55; http://dx.doi.org/10.1128/JB.183.20.5942-5955.2001. PubMed DOI PMC

Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ. Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 2001; 276:2083-7; http://dx.doi.org/10.1074/jbc.C000739200. PubMed DOI PMC

van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2014; 25:290-301; http://dx.doi.org/10.1091/mbc.E13-08-0448. PubMed DOI PMC

Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 1999; 18:3888-96; http://dx.doi.org/10.1093/emboj/18.14.3888. PubMed DOI PMC

Massey DC, Parkes M. Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn's disease. Autophagy 2007; 3:649-51; http://dx.doi.org/10.4161/auto.5075. PubMed DOI

Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, Kim KM, Ye BD, Kim KJ, Park SH, et al.. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 2014; 63:80-7; http://dx.doi.org/10.1136/gutjnl-2013-305193. PubMed DOI

Chew LH, Setiaputra D, Klionsky DJ, Yip CK. Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy 2013; 9:1467-74; http://dx.doi.org/10.4161/auto.25687. PubMed DOI PMC

Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U, Popelka H, Yip CK, Klionsky DJ. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA 2013; 110:E2875-84; http://dx.doi.org/10.1073/pnas.1300064110. PubMed DOI PMC

Mao K, Chew LH, Yip CK, Klionsky DJ. The role of Atg29 phosphorylation in PAS assembly. Autophagy 2013; 9:2178-9; http://dx.doi.org/10.4161/auto.26740. PubMed DOI PMC

Leber R, Silles E, Sandoval IV, Mazon MJ. Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J Biol Chem 2001; 276:29210-7; http://dx.doi.org/10.1074/jbc.M101438200. PubMed DOI

Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell 2001; 7:1131-41; http://dx.doi.org/10.1016/S1097-2765(01)00263-5. PubMed DOI PMC

Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 2002; 277:30198-207; http://dx.doi.org/10.1074/jbc.M204736200. PubMed DOI PMC

Deng YZ, Qu Z, He Y, Naqvi NI. Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae. Autophagy 2012; 8:1058-70; http://dx.doi.org/10.4161/auto.20217. PubMed DOI PMC

Suriapranata I, Epple UD, Bernreuther D, Bredschneider M, Sovarasteanu K, Thumm M. The breakdown of autophagic vesicles inside the vacuole depends on Aut4p. J Cell Sci 2000; 113:4025-33. PubMed

Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 2006; 17:5094-104; http://dx.doi.org/10.1091/mbc.E06-06-0479. PubMed DOI PMC

Legakis JE, Yen W-L, Klionsky DJ. A cycling protein complex required for selective autophagy. Autophagy 2007; 3:422-32; http://dx.doi.org/10.4161/auto.4129. PubMed DOI

Tucker KA, Reggiori F, Dunn WA Jr., Klionsky DJ. Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 2003; 278:48445-52; http://dx.doi.org/10.1074/jbc.M309238200. PubMed DOI PMC

Monastyrska I, Kiel JAKW, Krikken AM, Komduur JA, Veenhuis M, van der Klei IJ. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy 2005; 1:92-100; http://dx.doi.org/10.4161/auto.1.2.1832. PubMed DOI

Cao Y, Klionsky DJ. Atg26 is not involved in autophagy-related pathways in Saccharomyces cerevisiae. Autophagy 2007; 3:17-20; http://dx.doi.org/10.4161/auto.3371. PubMed DOI

Yamashita S, Oku M, Wasada Y, Ano Y, Sakai Y. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J Cell Biol 2006; 173:709-17; http://dx.doi.org/10.1083/jcb.200512142. PubMed DOI PMC

Yen W-L, Legakis JE, Nair U, Klionsky DJ. Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 2007; 18:581-93; http://dx.doi.org/10.1091/mbc.E06-07-0612. PubMed DOI PMC

Stasyk OV, Stasyk OG, Mathewson RD, Farre JC, Nazarko VY, Krasovska OS, Subramani S, Cregg JM, Sibirny AA. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy 2006; 2:30-8; http://dx.doi.org/10.4161/auto.2226. PubMed DOI

Kawamata T, Kamada Y, Suzuki K, Kuboshima N, Akimatsu H, Ota S, Ohsumi M, Ohsumi Y. Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 2005; 338:1884-9; http://dx.doi.org/10.1016/j.bbrc.2005.10.163. PubMed DOI

Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y. Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 356:405-10; http://dx.doi.org/10.1016/j.bbrc.2007.02.150. PubMed DOI

Watanabe Y, Noda NN, Kumeta H, Suzuki K, Ohsumi Y, Inagaki F. Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. J Biol Chem 2010; 285:30026-33; http://dx.doi.org/10.1074/jbc.M110.143545. PubMed DOI PMC

Meijer WH, van der Klei IJ, Veenhuis M, Kiel JAKW. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 2007; 3:106-16. PubMed

Nazarko VY, Nazarko TY, Farre JC, Stasyk OV, Warnecke D, Ulaszewski S, Cregg JM, Sibirny AA, Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 2011; 7:375-85; http://dx.doi.org/10.4161/auto.7.4.14369. PubMed DOI PMC

Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 2012; 31:2852-68; http://dx.doi.org/10.1038/emboj.2012.151. PubMed DOI PMC

Araki Y, Ku WC, Akioka M, May AI, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol 2013; 203:299-313; http://dx.doi.org/10.1083/jcb.201304123. PubMed DOI PMC

Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 2009; 5:973-9; http://dx.doi.org/10.4161/auto.5.7.9296. PubMed DOI

Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 2009; 5:649-62; http://dx.doi.org/10.4161/auto.5.5.8249. PubMed DOI

Honig A, Avin-Wittenberg T, Ufaz S, Galili G. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 2012; 24:288-303; http://dx.doi.org/10.1105/tpc.111.093112. PubMed DOI PMC

Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron MH, Doudnikoff E, Vital A, Vila M, Klein C, Bezard E. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci USA 2012; 109:9611-6; http://dx.doi.org/10.1073/pnas.1112368109. PubMed DOI PMC

Gusdon AM, Zhu J, Van Houten B, Chu CT. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neuobiol Dis 2012; 45:962-72; http://dx.doi.org/10.1016/j.nbd.2011.12.015. PubMed DOI PMC

Niu H, Rikihisa Y. Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 2013; 9:787-8; http://dx.doi.org/10.4161/auto.23693. PubMed DOI PMC

Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci USA 2012; 109:20800-7; http://dx.doi.org/10.1073/pnas.1218674109. PubMed DOI PMC

Isakson P, Bjoras M, Boe SO, Simonsen A. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 2010; 116:2324-31; http://dx.doi.org/10.1182/blood-2010-01-261040. PubMed DOI

Orfali N, McKenna SL, Cahill MR, Gudas LJ, Mongan NP. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia. Exp Cell Res 2014; 324:1-12; http://dx.doi.org/10.1016/j.yexcr.2014.03.018. PubMed DOI PMC

Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 2011; 23:785-805; http://dx.doi.org/10.1105/tpc.110.081570. PubMed DOI PMC

Papp D, Kovacs T, Billes V, Varga M, Tarnoci A, Hackler L Jr, et al. AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects. Autophagy 2015; 11:in press. PubMed PMC

Dunn WA., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 1990; 110:1923-33; http://dx.doi.org/10.1083/jcb.110.6.1923. PubMed DOI PMC

Schulze RJ, Weller SG, Schroeder B, Krueger EW, Chi S, Casey CA, McNiven MA. Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 2013; 203:315-26; http://dx.doi.org/10.1083/jcb.201306140. PubMed DOI PMC

Gundara JS, Robinson BG, Sidhu SB. Evolution of the “autophagamiR”. Autophagy 2011; 7:1553-4; http://dx.doi.org/10.4161/auto.7.12.17762. PubMed DOI PMC

Mijaljica D, Nazarko TY, Brumell JH, Huang WP, Komatsu M, Prescott M, Simonsen A, Yamamoto A, Zhang H, Klionsky DJ, et al.. Receptor protein complexes are in control of autophagy. Autophagy 2012; 8:1701-5; http://dx.doi.org/10.4161/auto.21332. PubMed DOI PMC

Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, Elazar Z. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 2015; 34:2117-31; http://dx.doi.org/10.15252/embj.201490315. PubMed DOI PMC

Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 2009; 28:889-901; http://dx.doi.org/10.1038/emboj.2009.29. PubMed DOI PMC

Sebti S, Prebois C, Perez-Gracia E, Bauvy C, Desmots F, Pirot N, Gongora C, Bach AS, Hubberstey AV, Palissot V, et al.. BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proc Natl Acad Sci USA 2014; 111:4115-20; http://dx.doi.org/10.1073/pnas.1313618111. PubMed DOI PMC

Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F. Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem 2012; 287:16256-66; http://dx.doi.org/10.1074/jbc.M112.348250. PubMed DOI PMC

Lindqvist LM, Heinlein M, Huang DC, Vaux DL. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci USA 2014; 111:8512-7; http://dx.doi.org/10.1073/pnas.1406425111. PubMed DOI PMC

Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, et al.. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 2015; 6:7527; http://dx.doi.org/10.1038/ncomms8527. PubMed DOI PMC

Paul S, Kashyap AK, Jia W, He YW, Schaefer BC. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 2012; 36:947-58; http://dx.doi.org/10.1016/j.immuni.2012.04.008. PubMed DOI PMC

Liang X, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402:672-6; http://dx.doi.org/10.1038/45257. PubMed DOI

Hurley JH, Schulman BA. Atomistic autophagy: the structures of cellular self-digestion. Cell 2014; 157:300-11; http://dx.doi.org/10.1016/j.cell.2014.01.070. PubMed DOI PMC

Cheng B, Xu A, Qiao M, Wu Q, Wang W, Mei Y, Wu M. BECN1s, a short splice variant of BECN1, functions in mitophagy. Autophagy 2015; in press. PubMed PMC

He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch LN, Khan S, Sinha S, et al.. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell 2013; 154:1085-99; http://dx.doi.org/10.1016/j.cell.2013.07.035. PubMed DOI PMC

Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao J, Zhang BP, Cui GH. Betulinic acid inhibits autophagic flux and induces apoptosis in human multiple myeloma cells in vitro. Acta Pharmacol Sin 2012; 33:1542-8; http://dx.doi.org/10.1038/aps.2012.102. PubMed DOI PMC

Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, Poletti A, Krom S, Reits E, Kampinga HH, Carra S. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: Implications for a proteasome-to-autophagy switch. Autophagy 2014; 10. PubMed PMC

Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 1994; 79:341-51; http://dx.doi.org/10.1016/0092-8674(94)90202-X. PubMed DOI

Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 2012; 287:19094-104; http://dx.doi.org/10.1074/jbc.M111.322933. PubMed DOI PMC

Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metab 2015; 3:4; http://dx.doi.org/10.1186/s40170-015-0130-8. PubMed DOI PMC

Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 2010; 11:459-65; http://dx.doi.org/10.1038/embor.2010.50. PubMed DOI PMC

Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino TA, Cleveland JL, Brindle PK. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 2005; 24:3846-58; http://dx.doi.org/10.1038/sj.emboj.7600846. PubMed DOI PMC

Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007; 27:6229-42; http://dx.doi.org/10.1128/MCB.02246-06. PubMed DOI PMC

Feng X, Liu X, Zhang W, Xiao W. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J 2011; 30:3397-415; http://dx.doi.org/10.1038/emboj.2011.248. PubMed DOI PMC

Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F, Weidman D, Scramstad C, Weisman H, Kirshenbaum LA. Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci USA 2008; 105:20734-9; http://dx.doi.org/10.1073/pnas.0807735105. PubMed DOI PMC

Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, et al.. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007; 117:2825-33; http://dx.doi.org/10.1172/JCI32490. PubMed DOI PMC

Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW 2nd, Brady MJ, Macleod KF. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 2012; 32:2570-84; http://dx.doi.org/10.1128/MCB.00167-12. PubMed DOI PMC

Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, et al.. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17:719-30; http://dx.doi.org/10.1016/j.cmet.2013.03.014. PubMed DOI

Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V, Halloran MA, Gleeson PA, Blair IP, Soo KY, et al.. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 2014; 23:3579-95; http://dx.doi.org/10.1093/hmg/ddu068. PubMed DOI PMC

O'Farrell F, Wang S, Katheder N, Rusten TE, Samakovlis C. Two-tiered control of epithelial growth and autophagy by the insulin receptor and the ret-like receptor, stitcher. PLoS Biol 2013; 11:e1001612. PubMed PMC

Ikeda H, Hideshima T, Fulciniti M, Perrone G, Mimura N, Yasui H, Okawa Y, Kiziltepe T, Santo L, Vallet S, et al.. PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 2010; 116:1460-8; http://dx.doi.org/10.1182/blood-2009-06-222943. PubMed DOI PMC

Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, Ma X, Ma D, Yuan J. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 2010; 6:61-6; http://dx.doi.org/10.4161/auto.6.1.10326. PubMed DOI PMC

Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 2010; 16:3100-4; http://dx.doi.org/10.1158/1078-0432.CCR-09-2891. PubMed DOI

Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al.. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13:54-61; http://dx.doi.org/10.1038/nm1523. PubMed DOI

Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photoch Photobio Sci 2014; 13:474-87; http://dx.doi.org/10.1039/c3pp50333j. PubMed DOI

Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 2005; 280:29060-6; http://dx.doi.org/10.1074/jbc.M503824200. PubMed DOI

Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen E-L, Schneider C. Calpain is required for macroautophagy in mammalian cells. J Cell Biol 2006; 175:595-605; http://dx.doi.org/10.1083/jcb.200601024. PubMed DOI PMC

Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen Q. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 2010; 1:468-77; http://dx.doi.org/10.1007/s13238-010-0048-4. PubMed DOI PMC

Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J, Zhang L. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res 2011; 71:3625-34; http://dx.doi.org/10.1158/0008-5472.CAN-10-4475. PubMed DOI PMC

Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P. A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Mol Biol Cell 2011; 22:673-86; http://dx.doi.org/10.1091/mbc.E10-08-0738. PubMed DOI PMC

Latterich M, Frohlich KU, Schekman R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 1995; 82:885-93; http://dx.doi.org/10.1016/0092-8674(95)90268-6. PubMed DOI

Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen E-L, Thumm M. Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 2010; 190:965-73; http://dx.doi.org/10.1083/jcb.201002075. PubMed DOI PMC

Joubert PE, Meiffren G, Gregoire IP, Pontini G, Richetta C, Flacher M, Azocar O, Vidalain PO, Vidal M, Lotteau V, et al.. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 2009; 6:354-66; http://dx.doi.org/10.1016/j.chom.2009.09.006. PubMed DOI

Orlotti NI, Cimino-Reale G, Borghini E, Pennati M, Sissi C, Perrone F, Palumbo M, Daidone MG, Folini M, Zaffaroni N. Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy 2012; 8:1185-96; http://dx.doi.org/10.4161/auto.20519. PubMed DOI

Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, et al.. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9:218-24; http://dx.doi.org/10.1038/ncb1537. PubMed DOI

Budina-Kolomets A, Hontz RD, Pimkina J, Murphy ME. A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction. Autophagy 2013; 9:1553-65; http://dx.doi.org/10.4161/auto.25831. PubMed DOI PMC

Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 2010; 21:142-50; http://dx.doi.org/10.1016/j.tem.2009.10.003. PubMed DOI PMC

Dice J. Chaperone-mediated autophagy. Autophagy 2007; 3:295-9; http://dx.doi.org/10.4161/auto.4144. PubMed DOI

Agarraberes F, Terlecky S, Dice J. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 1997; 137:825-34; http://dx.doi.org/10.1083/jcb.137.4.825. PubMed DOI PMC

Cuervo A, Dice J. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501-3; http://dx.doi.org/10.1126/science.273.5274.501. PubMed DOI

Mitsuhashi S, Hatakeyama H, Karahashi M, Koumura T, Nonaka I, Hayashi YK, Noguchi S, Sher RB, Nakagawa Y, Manfredi G, et al.. Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet 2011; 20:3841-51; http://dx.doi.org/10.1093/hmg/ddr305. PubMed DOI PMC

Fedorko M. Effect of chloroquine on morphology of cytoplasmic granules in maturing human leukocytes–an ultrastructural study. J Clin Invest 1967; 46:1932-42; http://dx.doi.org/10.1172/JCI105683. PubMed DOI PMC

Chang NC, Nguyen M, Germain M, Shore GC. Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J 2010; 29:606-18; http://dx.doi.org/10.1038/emboj.2009.369. PubMed DOI PMC

Chen YF, Kao CH, Chen YT, Wang CH, Wu CY, Tsai CY, Liu FC, Yang CW, Wei YH, Hsu MT, et al.. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev 2009; 23:1183-94; http://dx.doi.org/10.1101/gad.1779509. PubMed DOI PMC

Yang Z, Geng J, Yen W-L, Wang K, Klionsky DJ. Positive or negative regulatory roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae Mol Cell 2010; 38:250-64; http://dx.doi.org/10.1016/j.molcel.2010.02.033. PubMed DOI PMC

Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 2006; 281:20483-93; http://dx.doi.org/10.1074/jbc.M602180200. PubMed DOI

Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M, Oh H, Wolf P, Zhao WN, Norton S, et al.. Unbiased Cell-based Screening in a Neuronal Cell Model of Batten Disease Highlights an Interaction between Ca2+ Homeostasis, Autophagy, and CLN3 Protein Function. J Biol Chem 2015; 290:14361-80; http://dx.doi.org/10.1074/jbc.M114.621706. PubMed DOI PMC

Cortese A, Tucci A, Piccolo G, Galimberti CA, Fratta P, Marchioni E, Grampa G, Cereda C, Grieco G, Ricca I, et al.. Novel CLN3 mutation causing autophagic vacuolar myopathy. Neurology 2014; 82:2072-6; http://dx.doi.org/10.1212/WNL.0000000000000490. PubMed DOI PMC

Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, Bowne SJ, Sullivan LS, Luo H, Zhao L, et al.. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet 2014; 133:331-45; http://dx.doi.org/10.1007/s00439-013-1381-5. PubMed DOI PMC

Yen W-L, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M, Klionsky DJ. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 2010; 188:101-14; http://dx.doi.org/10.1083/jcb.200904075. PubMed DOI PMC

Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B, Ballot C, Blazejewski C, Corseaux D, Lescure B, et al.. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PloS One 2012; 7:e41836; http://dx.doi.org/10.1371/journal.pone.0041836. PubMed DOI PMC

Chen LL, Song JX, Lu JH, Yuan ZW, Liu LF, Durairajan SS, Li M. Corynoxine, a Natural Autophagy Enhancer, Promotes the Clearance of Alpha-Synuclein via Akt/mTOR Pathway. J Neuroimmune Pharm 2014:380-7; http://dx.doi.org/10.1007/s11481-014-9528-2. PubMed DOI

Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L, Shen HM, Chan HY, Li M. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 2012; 8:98-108 (see also the erratum in Autophagy 2012; 8:864-6); 10.4161/auto.8.1.18313. PubMed DOI

Smith RE, Farquhar MG. Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J Cell Biol 1966; 31:319-47; http://dx.doi.org/10.1083/jcb.31.2.319. PubMed DOI PMC

Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HWI, Kyei GB, Johansen T, Vergne I, et al.. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 2010; 32:329-41; http://dx.doi.org/10.1016/j.immuni.2010.02.009. PubMed DOI PMC

Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, et al.. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy 2015:0. PubMed PMC

Sun LL, Li M, Suo F, Liu XM, Shen EZ, Yang B, Dong MQ, He WZ, Du LL. Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet 2013; 9:e1003715; http://dx.doi.org/10.1371/journal.pgen.1003715. PubMed DOI PMC

Campbell EM, Fares H. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 2010; 11:40; http://dx.doi.org/10.1186/1471-2121-11-40. PubMed DOI PMC

Fares H, Greenwald I. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 2001; 28:64-8. PubMed

Hersh BM, Hartwieg E, Horvitz HR. The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 2002; 99:4355-60; http://dx.doi.org/10.1073/pnas.062065399. PubMed DOI PMC

Sun T, Wang X, Lu Q, Ren H, Zhang H. CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes. Autophagy 2011; 7:1308-15; http://dx.doi.org/10.4161/auto.7.11.17759. PubMed DOI

Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 2011; 195:979-92; http://dx.doi.org/10.1083/jcb.201106098. PubMed DOI PMC

Wang M, Tan W, Zhou J, Leow J, Go M, Lee HS, Casey PJ. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells. J Biol Chem 2008; 283:18678-84; http://dx.doi.org/10.1074/jbc.M801855200. PubMed DOI

Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 1995; 131:591-602; http://dx.doi.org/10.1083/jcb.131.3.591. PubMed DOI PMC

Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4:e24; http://dx.doi.org/10.1371/journal.pgen.0040024. PubMed DOI PMC

Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 2011; 21:1507-14; http://dx.doi.org/10.1016/j.cub.2011.07.042. PubMed DOI PMC

Netea-Maier RT, Plantinga TS, Van De Veerdonk FL, Smit JW, Netea MG. Modulation of inflammation by autophagy: consequences for human disease. Autophagy 2015:0; http://dx.doi.org/10.1080/15548627.2015.1071759. PubMed DOI PMC

Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol 2010; 20:1093-8; http://dx.doi.org/10.1016/j.cub.2010.04.041. PubMed DOI

Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002; 157:455-68; http://dx.doi.org/10.1083/jcb.200109094. PubMed DOI PMC

Buraschi S, Neill T, Goyal A, Poluzzi C, Smythies J, Owens RT, Schaefer L, Torres A, Iozzo RV. Decorin causes autophagy in endothelial cells via Peg3. Proc Natl Acad Sci USA 2013; 110:E2582-91; http://dx.doi.org/10.1073/pnas.1305732110. PubMed DOI PMC

DeVorkin L, Go NE, Hou Y-CC, Moradian A, Morin GB, Gorski SM. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB. J Cell Biol 2014; 205:477-92; http://dx.doi.org/10.1083/jcb.201303144. PubMed DOI PMC

Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, Zhang N, Waterman SR, Blewett NH, Myers TG, et al.. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 2015; 17:930-42; http://dx.doi.org/10.1038/ncb3189. PubMed DOI PMC

Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Finkel TH, Matsuyama S, Distelhorst CW. Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem 2011; 286:30181-9; http://dx.doi.org/10.1074/jbc.M111.245423. PubMed DOI PMC

Slavov N, Botstein D. Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression. Mol Biol Cell 2013; 24:157-68; http://dx.doi.org/10.1091/mbc.E12-09-0670. PubMed DOI PMC

Kohler K, Brunner E, Guan XL, Boucke K, Greber UF, Mohanty S, Barth JM, Wenk MR, Hafen E. A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila. Autophagy 2009; 5:980-90; http://dx.doi.org/10.4161/auto.5.7.9325. PubMed DOI

Shahnazari S, Yen W-L, Birmingham CL, Shiu J, Namolovan A, Zheng YT, Nakayama K, Klionsky DJ, Brumell JH. A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 2010; 8:137-46; http://dx.doi.org/10.1016/j.chom.2010.07.002. PubMed DOI PMC

Lu Z, Baquero MT, Yang H, Yang M, Reger AS, Kim C, Levine DA, Clarke CH, Liao WS, Bast RC Jr. DIRAS3 regulates the autophagosome initiation complex in dormant ovarian cancer cells. Autophagy 2014; 10:1071-92; http://dx.doi.org/10.4161/auto.28577. PubMed DOI PMC

Mao K, Liu X, Feng Y, Klionsky DJ. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 2014; 10:652-61; http://dx.doi.org/10.4161/auto.27852. PubMed DOI PMC

Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, Van Houten B, Cherra SJ 3rd, Chu CT. Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease. Cell Death Differ 2011; 18:1914-23; http://dx.doi.org/10.1038/cdd.2011.74. PubMed DOI PMC

Kwon MH, Callaway H, Zhong J, Yedvobnick B. A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster. G3 (Bethesda) 2013; 3:815-25; http://dx.doi.org/10.1534/g3.112.005496. PubMed DOI PMC

Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J, Ambrosio S. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 2003; 73:341-50; http://dx.doi.org/10.1002/jnr.10663. PubMed DOI

McPhee CK, Logan MA, Freeman MR, Baehrecke EH. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 2010; 465:1093-6; http://dx.doi.org/10.1038/nature09127. PubMed DOI PMC

Ragusa MJ, Stanley RE, Hurley JH. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 2012; 151:1501-12; http://dx.doi.org/10.1016/j.cell.2012.11.028. PubMed DOI PMC

Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 2007; 3:597-9; http://dx.doi.org/10.4161/auto.4989. PubMed DOI

Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, et al.. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 2008; 4:330-8; http://dx.doi.org/10.4161/auto.5618. PubMed DOI

Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM. Identification of regulators of chaperone-mediated autophagy. Mol Cell 2010; 39:535-47; http://dx.doi.org/10.1016/j.molcel.2010.08.004. PubMed DOI PMC

Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 2005; 19:15-26; http://dx.doi.org/10.1016/j.molcel.2005.05.020. PubMed DOI

Talloczy Z, Jiang W, Virgin HWT, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 2002; 99:190-5; http://dx.doi.org/10.1073/pnas.012485299. PubMed DOI PMC

Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, Lai H, Meng L, Wang D, Zheng Z, et al.. Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy 2015:0. PubMed PMC

Kim S, Naylor SA, DiAntonio A. Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function. Proc Natl Acad Sci USA 2012; 109:E1072-81; http://dx.doi.org/10.1073/pnas.1120320109. PubMed DOI PMC

Berge T, Leikfoss IS, Harbo HF. From Identification to Characterization of the Multiple Sclerosis Susceptibility Gene CLEC16A. Int J Mol Sci 2013; 14:4476-97; http://dx.doi.org/10.3390/ijms14034476. PubMed DOI PMC

Soleimanpour SA, Gupta A, Bakay M, Ferrari AM, Groff DN, Fadista J, Spruce LA, Kushner JA, Groop L, Seeholzer SH, et al.. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 2014; 157:1577-90; http://dx.doi.org/10.1016/j.cell.2014.05.016. PubMed DOI PMC

Li Y, Zhao Y, Hu J, Xiao J, Qu L, Wang Z, Ma D, Chen Y. A novel ER-localized transmembrane protein, EMC6, interacts with RAB5A and regulates cell autophagy. Autophagy 2013; 9:150-63; http://dx.doi.org/10.4161/auto.22742. PubMed DOI PMC

Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endorepellin evokes autophagy in endothelial cells. J Biol Chem 2014; 289:16114-28; http://dx.doi.org/10.1074/jbc.M114.556530. PubMed DOI PMC

Tian E, Wang F, Han J, Zhang H. epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans. Autophagy 2009; 5:608-15; http://dx.doi.org/10.4161/auto.5.5.8624. PubMed DOI

Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, et al.. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 2013; 45:83-7; http://dx.doi.org/10.1038/ng.2497. PubMed DOI PMC

Li S, Yang P, Tian E, Zhang H. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. Mol Cell 2013; 52:421-33; http://dx.doi.org/10.1016/j.molcel.2013.09.014. PubMed DOI

Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Cordoba SR, Knecht E, Rubinsztein DC. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 2010; 19:2867-76; http://dx.doi.org/10.1093/hmg/ddq190. PubMed DOI PMC

Bockler S, Westermann B. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell 2014; 28:450-8; http://dx.doi.org/10.1016/j.devcel.2014.01.012. PubMed DOI

Sinha S, Roy S, Reddy BS, Pal K, Sudhakar G, Iyer S, Dutta S, Wang E, Vohra PK, Roy KR, et al.. A lipid-modified estrogen derivative that treats breast cancer independent of estrogen receptor expression through simultaneous induction of autophagy and apoptosis. Mol Cancer Res 2011; 9:364-74; http://dx.doi.org/10.1158/1541-7786.MCR-10-0526. PubMed DOI PMC

Wang L, Yu C, Lu Y, He P, Guo J, Zhang C, Song Q, Ma D, Shi T, Chen Y. TMEM166, a novel transmembrane protein, regulates cell autophagy and apoptosis. Apoptosis 2007; 12:1489-502; http://dx.doi.org/10.1007/s10495-007-0073-9. PubMed DOI

Yu C, Wang L, Lv B, Lu Y, Zeng L, Chen Y, Ma D, Shi T. TMEM74, a lysosome and autophagosome protein, regulates autophagy. Biochem Biophys Res Commun 2008; 369:622-9; http://dx.doi.org/10.1016/j.bbrc.2008.02.055. PubMed DOI

Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, et al.. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 2011; 144:253-67; http://dx.doi.org/10.1016/j.cell.2010.12.018. PubMed DOI PMC

Abrahamsen H, Stenmark H. Protein secretion: unconventional exit by exophagy. Curr Biol 2010; 20:R415-8; http://dx.doi.org/10.1016/j.cub.2010.03.011. PubMed DOI

Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V. Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol 2010; 188:527-36; http://dx.doi.org/10.1083/jcb.200911154. PubMed DOI PMC

Manjithaya R, Anjard C, Loomis WF, Subramani S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol 2010; 188:537-46; http://dx.doi.org/10.1083/jcb.200911149. PubMed DOI PMC

Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, et al.. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 2010; 107:14621-6; http://dx.doi.org/10.1073/pnas.1000138107. PubMed DOI PMC

Lisa-Santamaria P, Jimenez A, Revuelta JL. The protein factor-arrest 11 (Far11) is essential for the toxicity of human caspase-10 in yeast and participates in the regulation of autophagy and the DNA damage signaling. J Biol Chem 2012; 287:29636-47; http://dx.doi.org/10.1074/jbc.M112.344192. PubMed DOI PMC

McKnight NC, Jefferies HB, Alemu EA, Saunders RE, Howell M, Johansen T, Tooze SA. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J 2012; 31:1931-46; http://dx.doi.org/10.1038/emboj.2012.36. PubMed DOI PMC

Vaccari I, Carbone A, Previtali SC, Mironova YA, Alberizzi V, Noseda R, Rivellini C, Bianchi F, Del Carro U, D'Antonio M, et al.. Loss of Fig4 in both Schwann cells and motor neurons contributes to CMT4J neuropathy. Hum Mol Genet 2015; 24:383-96; http://dx.doi.org/10.1093/hmg/ddu451. PubMed DOI PMC

Romano S, D'Angelillo A, Pacelli R, Staibano S, De Luna E, Bisogni R, Eskelinen EL, Mascolo M, Cali G, Arra C, et al.. Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells. Cell Death Differ 2010; 17:145-57; http://dx.doi.org/10.1038/cdd.2009.115. PubMed DOI

Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, et al.. Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med 2014; 11:e1001755; http://dx.doi.org/10.1371/journal.pmed.1001755. PubMed DOI PMC

Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, Duray P, Merino M, Choyke P, Pavlovich CP, et al.. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2002; 2:157-64; http://dx.doi.org/10.1016/S1535-6108(02)00104-6. PubMed DOI

Dunlop EA, Seifan S, Claessens T, Behrends C, Kamps MA, Rozycka E, Kemp AJ, Nookala RK, Blenis J, Coull BJ, et al.. FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy 2014; 10:1749-60; http://dx.doi.org/10.4161/auto.29640. PubMed DOI PMC

Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J Cell Biol 2013; 202:1107-22; http://dx.doi.org/10.1083/jcb.201307084. PubMed DOI PMC

Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013; 52: 495-505; http://dx.doi.org/10.1016/j.molcel.2013.09.016. PubMed DOI PMC

Huett A, Ng A, Cao Z, Kuballa P, Komatsu M, Daly MJ, Podolsky DK, Xavier RJ. A novel hybrid yeast-human network analysis reveals an essential role for FNBP1L in antibacterial autophagy. J Immunol 2009; 182:4917-30; http://dx.doi.org/10.4049/jimmunol.0803050. PubMed DOI PMC

Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12:665-75; http://dx.doi.org/10.1038/ncb2069. PubMed DOI

Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circulation Research 2010; 107:1470-82; http://dx.doi.org/10.1161/CIRCRESAHA.110.227371. PubMed DOI PMC

Attaix D, Bechet D. FoxO3 controls dangerous proteolytic liaisons. Cell Metab 2007; 6:425-7; http://dx.doi.org/10.1016/j.cmet.2007.11.005. PubMed DOI

Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, et al.. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012; 14:177-85; http://dx.doi.org/10.1038/ncb2422. PubMed DOI

Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, Lee JA. Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 2014; 35:2822-31; http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.026. PubMed DOI

Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, {O}vervatn A, Bjorkoy G, Johansen T. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 2010; 188:253-69; http://dx.doi.org/10.1083/jcb.200907015. PubMed DOI PMC

Lakhani R, Vogel KR, Till A, Liu J, Burnett SF, Gibson KM, Subramani S. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO Mol Med 2014; 6:551-66; http://dx.doi.org/10.1002/emmm.201303356. PubMed DOI PMC

Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, Isidoro C, Laburthe M, Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 1995; 270:13-6; http://dx.doi.org/10.1074/jbc.270.1.13. PubMed DOI

Ogier-Denis E, Houri JJ, Bauvy C, Codogno P. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J Biol Chem 1996; 271:28593-600; http://dx.doi.org/10.1074/jbc.271.45.28593. PubMed DOI

Tanida I, Tanida-Miyake E, Ueno T, Kominami E. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 2001; 276:1701-6; http://dx.doi.org/10.1074/jbc.C000752200. PubMed DOI

Mata IF, Samii A, Schneer SH, Roberts JW, Griffith A, Leis BC, Schellenberg GD, Sidransky E, Bird TD, Leverenz JB, et al.. Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch Neurol 2008; 65:379-82; http://dx.doi.org/10.1001/archneurol.2007.68. PubMed DOI PMC

Mitsui J, Mizuta I, Toyoda A, Ashida R, Takahashi Y, Goto J, Fukuda Y, Date H, Iwata A, Yamamoto M, et al.. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol 2009; 66:571-6; http://dx.doi.org/10.1001/archneurol.2009.72. PubMed DOI

Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, et al.. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. New Engl J Med 2009; 361:1651-61; http://dx.doi.org/10.1056/NEJMoa0901281. PubMed DOI PMC

Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, Waddington SN, Schapira AH, Duchen MR. Mitochondria and quality control defects in a mouse model of Gaucher disease–links to Parkinson's disease. Cell Metab 2013; 17:941-53; http://dx.doi.org/10.1016/j.cmet.2013.04.014. PubMed DOI PMC

Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, Malide D, Chen Y, Samsel L, Connelly PS, et al.. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J Cell Sci 2013; 126:4843-9; http://dx.doi.org/10.1242/jcs.131300. PubMed DOI PMC

Moreau K, Rubinsztein DC. The plasma membrane as a control center for autophagy. Autophagy 2012; 8:861-3; http://dx.doi.org/10.4161/auto.20060. PubMed DOI PMC

Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR, Sankar U. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 2010; 21:1225-36; http://dx.doi.org/10.1091/mbc.E09-11-0937. PubMed DOI PMC

Kalamidas SA, Kotoulas OB. Glycogen autophagy in newborn rat hepatocytes. Histol Histopathol 2000; 15:1011-8. PubMed

Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial autophagic energy stress responses–macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 2015; 308:H1194-204; http://dx.doi.org/10.1152/ajpheart.00002.2015. PubMed DOI PMC

Mellor KM, Varma U, Stapleton DI, Delbridge LM. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol 2014; 306:H1240-5; http://dx.doi.org/10.1152/ajpheart.00059.2014. PubMed DOI

Li B, Castano AP, Hudson TE, Nowlin BT, Lin S-L, Bonventre JV, Swanson KD, Duffield JS. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. FASEB J 2010; 24:4767-81; http://dx.doi.org/10.1096/fj.10-154757. PubMed DOI PMC

Buchan JR, Kolaitis RM, Taylor JP, Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013; 153: 1461-74; http://dx.doi.org/10.1016/j.cell.2013.05.037. PubMed DOI PMC

Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, et al.. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012; 336:477-81; http://dx.doi.org/10.1126/science.1217032. PubMed DOI

Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, et al.. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 2010; 29:969-80; http://dx.doi.org/10.1038/emboj.2009.405. PubMed DOI PMC

Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003; 115:727-38; http://dx.doi.org/10.1016/S0092-8674(03)00939-5. PubMed DOI

Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V. HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 2007; 3:207-14; http://dx.doi.org/10.4161/auto.3708. PubMed DOI

Mellor HR, Harris AL. The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev 2007; 26:553-66; http://dx.doi.org/10.1007/s10555-007-9080-0. PubMed DOI

Mimouna S, Bazin M, Mograbi B, Darfeuille-Michaud A, Brest P, Hofman P, Vouret-Craviari V. HIF1A regulates xenophagic degradation of adherent and invasive Escherichia coli (AIEC). Autophagy 2014; 10:2333-45; http://dx.doi.org/10.4161/15548627.2014.984275. PubMed DOI PMC

Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 2015; 22:248-57; http://dx.doi.org/10.1038/cdd.2014.173. PubMed DOI PMC

Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, et al.. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010; 29:5299-310; http://dx.doi.org/10.1038/onc.2010.261. PubMed DOI PMC

Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 2009; 16:175-83; http://dx.doi.org/10.1038/cdd.2008.143. PubMed DOI PMC

Mao K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 2011; 193:755-67; http://dx.doi.org/10.1083/jcb.201102092. PubMed DOI PMC

Pfaffenwimmer T, Reiter W, Brach T, Nogellova V, Papinski D, Schuschnig M, Abert C, Ammerer G, Martens S, Kraft C. Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep 2014; 15:862-70; http://dx.doi.org/10.15252/embr.201438932. PubMed DOI PMC

Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, Sakoh-Nakatogawa M, Ohsumi Y, Nakatogawa H. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J Cell Biol 2014; 207:91-105; http://dx.doi.org/10.1083/jcb.201402128. PubMed DOI PMC

Leu JI, Pimkina J, Frank A, Murphy ME, George DL. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36:15-27; http://dx.doi.org/10.1016/j.molcel.2009.09.023. PubMed DOI PMC

Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008; 15:1460-71; http://dx.doi.org/10.1038/cdd.2008.81. PubMed DOI PMC

Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246:382-5; http://dx.doi.org/10.1126/science.2799391. PubMed DOI

Kaushik S, Massey AC, Cuervo AM. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 2006; 25:3921-33; http://dx.doi.org/10.1038/sj.emboj.7601283. PubMed DOI PMC

Garcia-Mata R, Gao YS, Sztul E. Hassles with taking out the garbage: aggravating aggresomes. Traffic 2002; 3:388-96; http://dx.doi.org/10.1034/j.1600-0854.2002.30602.x. PubMed DOI

Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. FASEB J 2011; 25:2700-10; http://dx.doi.org/10.1096/fj.10-167676. PubMed DOI PMC

Bandhyopadhyay U, Kaushik S, Vartikovsky L, Cuervo AM. Dynamic organization of the receptor for chaperone-mediated autophagy at the lysosomal membrane. Mol Cell Biol 2008; 28:5747-63; http://dx.doi.org/10.1128/MCB.02070-07. PubMed DOI PMC

Li B, Hu Q, Wang H, Man N, Ren H, Wen L, Nukina N, Fei E, Wang G. Omi/HtrA2 is a positive regulator of autophagy that facilitates the degradation of mutant proteins involved in neurodegenerative diseases. Cell Death Differ 2010; 17:1773-84; http://dx.doi.org/10.1038/cdd.2010.55. PubMed DOI

Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. Biochim Biophys Acta 2014; 1843:1295-307; http://dx.doi.org/10.1016/j.bbamcr.2014.03.027. PubMed DOI

Kang S, Fernandes-Alnemri T, Alnemri ES. A novel role for the mitochondrial HTRA2/OMI protease in aging. Autophagy 2013; 9:420-1; http://dx.doi.org/10.4161/auto.22920. PubMed DOI PMC

Kang S, Louboutin JP, Datta P, Landel CP, Martinez D, Zervos AS, Strayer DS, Fernandes-Alnemri T, Alnemri ES. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging. Cell Death Differ 2013; 20: 259-69; http://dx.doi.org/10.1038/cdd.2012.117. PubMed DOI PMC

Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 2014; 21:1399-408; http://dx.doi.org/10.1038/cdd.2014.50. PubMed DOI PMC

Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, Lim YM, Oh SH, Jin SM, Kim JH, et al.. Amyloidogenic peptide oligomer accumulation in autophagy-deficient beta cells induces diabetes. J Clin Invest 2014; 124:3311-24; http://dx.doi.org/10.1172/JCI69625. PubMed DOI PMC

Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 2014; 124:3489-500; http://dx.doi.org/10.1172/JCI71981. PubMed DOI PMC

Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, Uchida T, Abe H, Toyofuku Y, Tamaki M, Ogihara T, et al.. Human IAPP-induced pancreatic beta cell toxicity and its regulation by autophagy. J Clin Invest 2014; 124:3634-44; http://dx.doi.org/10.1172/JCI69866. PubMed DOI PMC

Lotze MT, Buchser WJ, Liang X. Blocking the interleukin 2 (IL2)-induced systemic autophagic syndrome promotes profound antitumor effects and limits toxicity. Autophagy 2012; 8:1264-6; http://dx.doi.org/10.4161/auto.20752. PubMed DOI

Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al.. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; http://dx.doi.org/10.1016/S1093-3263(00)00138-8. PubMed DOI

Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; http://dx.doi.org/10.1016/S0968-0004(02)02169-2. PubMed DOI

Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7. PubMed DOI

Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; http://dx.doi.org/10.1006/jmbi.1999.3110. PubMed DOI

Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L. Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 2015; 72:137-51; http://dx.doi.org/10.1007/s00018-014-1661-9. PubMed DOI PMC

De Guzman RN, Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE. CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. Biochemistry 2005; 44:490-7; http://dx.doi.org/10.1021/bi048161t. PubMed DOI

Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z. Intrinsic disorder and protein function. Biochemistry 2002; 41:6573-82; http://dx.doi.org/10.1021/bi012159+. PubMed DOI

Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol 2008; 18:756-64; http://dx.doi.org/10.1016/j.sbi.2008.10.002. PubMed DOI

Tompa P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 2005; 579:3346-54; http://dx.doi.org/10.1016/j.febslet.2005.03.072. PubMed DOI

Peng Z, Xue B, Kurgan L, Uversky VN. Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 2013; 20:1257-67; http://dx.doi.org/10.1038/cdd.2013.65. PubMed DOI PMC

Popelka H, Uversky VN, Klionsky DJ. Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast. Autophagy 2014; 10:1093-104; http://dx.doi.org/10.4161/auto.28616. PubMed DOI PMC

van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al.. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631; http://dx.doi.org/10.1021/cr400525m. PubMed DOI PMC

Uversky VN. Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 2013; 19:4191-213; http://dx.doi.org/10.2174/1381612811319230005. PubMed DOI

Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014; 23:1077-93; http://dx.doi.org/10.1002/pro.2494. PubMed DOI PMC

Chiang HS, Maric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radical Bio Med 2011; 51:688-99; http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.015. PubMed DOI

Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, et al.. The IKK complex contributes to the induction of autophagy. EMBO J 2010; 29:619-31; http://dx.doi.org/10.1038/emboj.2009.364. PubMed DOI PMC

Wu X, Tu BP. Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol Biol Cell 2011; 22:4124-33; http://dx.doi.org/10.1091/mbc.E11-06-0525. PubMed DOI PMC

Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, et al.. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2010; 32:654-69; http://dx.doi.org/10.1016/j.immuni.2010.04.011. PubMed DOI PMC

Deretic V. Autophagy in innate and adaptive immunity. Trends Immunol 2005; 26:523-8; http://dx.doi.org/10.1016/j.it.2005.08.003. PubMed DOI

Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA, Wiemer EA, Dussurget O, Cossart P. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 2011; 7:e1002168. PubMed PMC

Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313:1438-41; http://dx.doi.org/10.1126/science.1129577. PubMed DOI

Bugnicourt A, Mari M, Reggiori F, Haguenauer-Tsapis R, Galan JM. Irs4p and Tax4p: two redundant EH domain proteins involved in autophagy. Traffic 2008; 9:755-69; http://dx.doi.org/10.1111/j.1600-0854.2008.00715.x. PubMed DOI

Namkoong S, Lee KI, Lee JI, Park R, Lee EJ, Jang IS, Park J. The integral membrane protein ITM2A, a transcriptional target of PKA-CREB, regulates autophagic flux via interaction with the vacuolar ATPase. Autophagy 2015; 11:756-68; http://dx.doi.org/10.1080/15548627.2015.1034412. PubMed DOI PMC

Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E. Jun proteins are starvation-regulated inhibitors of autophagy. Cancer Res 2010; 70:2318-27; http://dx.doi.org/10.1158/0008-5472.CAN-09-3408. PubMed DOI

Taylor R Jr., Chen PH, Chou CC, Patel J, Jin SV. KCS1 deletion in Saccharomyces cerevisiae leads to a defect in translocation of autophagic proteins and reduces autophagosome formation. Autophagy 2012; 8:1300-11; http://dx.doi.org/10.4161/auto.20681. PubMed DOI PMC

Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y, Shen J, Chen CT, Huo L, Hsu MC, et al.. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 2009; 36:131-40; http://dx.doi.org/10.1016/j.molcel.2009.07.025. PubMed DOI PMC

Stepkowski TM, Kruszewski MK. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radical Bio Med 2011; 50:1186-95; http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.033. PubMed DOI

Puustinen P, Rytter A, Mortensen M, Kohonen P, Moreira JM, Jaattela M. CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation. J Cell Biol 2014; 204:713-27; http://dx.doi.org/10.1083/jcb.201304012. PubMed DOI PMC

Feng MM, Baryla J, Liu H, Laurie GW, McKown RL, Ashki N, Bhayana D, Hutnik CM. Cytoprotective effect of lacritin on human corneal epithelial cells exposed to benzalkonium chloride in vitro. Curr Eye Res 2014; 39:604-10; http://dx.doi.org/10.3109/02713683.2013.859275. PubMed DOI PMC

Ma P, Beck SL, Raab RW, McKown RL, Coffman GL, Utani A, Chirico WJ, Rapraeger AC, Laurie GW. Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J Cell Biol 2006; 174:1097-106; http://dx.doi.org/10.1083/jcb.200511134. PubMed DOI PMC

Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CM, Talla V, Tyler MFT, Lee JK, Laurie GW. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J Biol Chem 2013; 288:18146-61; http://dx.doi.org/10.1074/jbc.M112.436584. PubMed DOI PMC

Eskelinen E-L, Illert A, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002; 13:3355-68; http://dx.doi.org/10.1091/mbc.E02-02-0114. PubMed DOI PMC

Eskelinen E-L, Schmidt C, Neu S, Willenborg M, Fuertes G, Salvador N, Tanaka Y, Lullmann-Rauch R, Hartmann D, Heeren J, et al.. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 2004; 15: 3132-45; http://dx.doi.org/10.1091/mbc.E04-02-0103. PubMed DOI PMC

Tanaka Y, Guhde G, Suter A, Eskelinen E-L, Hartmann D, Lullmann-Rauch R, Janssen P, Blanz J, von Figura K, Saftig P. Accumulation of autophagic vacuoles and cardiomyopathy in Lamp-2-deficient mice. Nature 2000; 406:902-6; http://dx.doi.org/10.1038/35022595. PubMed DOI

Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, et al.. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000; 406:906-10; http://dx.doi.org/10.1038/35022604. PubMed DOI

Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, et al.. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 2013; 162:621-30; http://dx.doi.org/10.1111/bjh.12440. PubMed DOI PMC

Boya P. Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Sign 2012; 17:766-74; http://dx.doi.org/10.1089/ars.2011.4405. PubMed DOI

Gabande-Rodriguez E, Boya P, Labrador V, Dotti CG, Ledesma MD. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 2014; 21:864-75; http://dx.doi.org/10.1038/cdd.2014.4. PubMed DOI PMC

Rodriguez-Muela N, Hernandez-Pinto AM, Serrano-Puebla A, Garcia-Ledo L, Latorre SH, de la Rosa EJ, Boya P. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ 2014. PubMed PMC

Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 2013; 25:4085-100; http://dx.doi.org/10.1105/tpc.113.113407. PubMed DOI PMC

Carew JS, Espitia CM, Esquivel JA II, Mahalingam D, Kelly KR, Reddy G, Giles FJ, Nawrocki ST. Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem 2011; 286:6602-13; http://dx.doi.org/10.1074/jbc.M110.151324. PubMed DOI PMC

Zou J, Yue F, Jiang X, Li W, Yi J, Liu L. Mitochondrion-associated protein LRPPRC suppresses the initiation of basal levels of autophagy via enhancing Bcl-2 stability. Biochem J 2013; 454:447-57; http://dx.doi.org/10.1042/BJ20130306. PubMed DOI PMC

Zou J, Yue F, Li W, Song K, Jiang X, Yi J, Liu L. Autophagy inhibitor LRPPRC suppresses mitophagy through interaction with mitophagy initiator Parkin. PloS One 2014; 9:e94903; http://dx.doi.org/10.1371/journal.pone.0094903. PubMed DOI PMC

Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 2009; 18:4022-34; http://dx.doi.org/10.1093/hmg/ddp346. PubMed DOI PMC

Ng ACY, Eisenberg JM, Heath RJW, Huett A, Robinson CM, Nau GJ, Xavier RJ. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc Natl Acad Sci USA 2011; 108:4631-8; http://dx.doi.org/10.1073/pnas.1000093107. PubMed DOI PMC

Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243:240-6; http://dx.doi.org/10.1111/j.1432-1033.1997.0240a.x. PubMed DOI

McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, Lynch JP, Uehara T, Sepulveda AR, Davis LE, et al.. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 2012; 109:8253-8; http://dx.doi.org/10.1073/pnas.1118193109. PubMed DOI PMC

Amaravadi RK, Winkler JD. Lys05: a new lysosomal autophagy inhibitor. Autophagy 2012; 8:1383-4; http://dx.doi.org/10.4161/auto.20958. PubMed DOI PMC

Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, White MA, Potts PR. Degradation of AMPK by a Cancer-Specific Ubiquitin Ligase. Cell 2015; 160:715-28; http://dx.doi.org/10.1016/j.cell.2015.01.034. PubMed DOI PMC

Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 1994; 269:11492-7. PubMed

Xie R, Nguyen S, McKeehan K, Wang F, McKeehan WL, Liu L. Microtubule-associated protein 1S (MAP1S) bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. J Biol Chem 2011; 286:10367-77; http://dx.doi.org/10.1074/jbc.M110.206532. PubMed DOI PMC

Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 2009; 28:677-85; http://dx.doi.org/10.1038/emboj.2009.8. PubMed DOI PMC

Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 2000; 275: 39090-5; http://dx.doi.org/10.1074/jbc.M006198200. PubMed DOI

Fu MM, Nirschl JJ, Holzbaur EL. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell 2014; 29:577-90; http://dx.doi.org/10.1016/j.devcel.2014.04.015. PubMed DOI PMC

Raciti M, Lotti LV, Valia S, Pulcinelli FM, Di Renzo L. JNK2 is activated during ER stress and promotes cell survival. Cell Death Dis 2012; 3:e429; http://dx.doi.org/10.1038/cddis.2012.167. PubMed DOI PMC

Keil E, Hocker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I. Phosphorylation of Atg5 by the Gadd45beta-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ 2013; 20:321-32; http://dx.doi.org/10.1038/cdd.2012.129. PubMed DOI PMC

Menon MB, Dhamija S, Kotlyarov A, Gaestel M. The problem of pyridinyl imidazole class inhibitors of MAPK14/p38alpha and MAPK11/p38beta in autophagy research. Autophagy 2015; 11:1425-7; http://dx.doi.org/10.1080/15548627.2015.1059562. PubMed DOI PMC

Menon MB, Kotlyarov A, Gaestel M. SB202190-induced cell type-specific vacuole formation and defective autophagy do not depend on p38 MAP kinase inhibition. PloS One 2011; 6:e23054; http://dx.doi.org/10.1371/journal.pone.0023054. PubMed DOI PMC

Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall'Armi C, Piccioni F, Verrotti Di Pianella A, Chiariello M. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy 2012; 8:1724-40; http://dx.doi.org/10.4161/auto.21857. PubMed DOI PMC

Wang Z, Zhang J, Wang Y, Xing R, Yi C, Zhu H, Chen X, Guo J, Guo W, Li W, et al.. Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis 2013; 34:128-38; http://dx.doi.org/10.1093/carcin/bgs295. PubMed DOI

Liang Q, Seo GJ, Choi YJ, Kwak MJ, Ge J, Rodgers MA, Shi M, Leslie BJ, Hopfner KP, Ha T, et al.. Crosstalk between the cGAS DNA Sensor and Beclin-1 Autophagy Protein Shapes Innate Antimicrobial Immune Responses. Cell Host Microbe 2014; 15:228-38; http://dx.doi.org/10.1016/j.chom.2014.01.009. PubMed DOI PMC

Lorente M, Torres S, Salazar M, Carracedo A, Hernandez-Tiedra S, Rodriguez-Fornes F, Garcia-Taboada E, Melendez B, Mollejo M, Campos-Martin Y, et al.. Stimulation of ALK by the growth factor midkine renders glioma cells resistant to autophagy-mediated cell death. Autophagy 2011; 7:1071-3; http://dx.doi.org/10.4161/auto.7.9.15866. PubMed DOI

Lorente M, Torres S, Salazar M, Carracedo A, Hernandez-Tiedra S, Rodriguez-Fornes F, Garcia-Taboada E, Melendez B, Mollejo M, Campos-Martin Y, et al.. Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action. Cell Death Differ 2011; 18:959-73; http://dx.doi.org/10.1038/cdd.2010.170. PubMed DOI PMC

Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T, Deretic V. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol 2015; in press. PubMed PMC

Bagniewska-Zadworna A, Byczyk J, Eissenstat DM, Oleksyn J, Zadworny M. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions. Am J Bot 2012; 99:1417-26; http://dx.doi.org/10.3732/ajb.1100552. PubMed DOI

van Doorn WG, Woltering EJ. Many ways to exit? Cell death categories in plants. Trends Plant Sci 2005; 10:117-22; http://dx.doi.org/10.1016/j.tplants.2005.01.006. PubMed DOI

Eastwood MD, Cheung SW, Lee KY, Moffat J, Meneghini MD. Developmentally programmed nuclear destruction during yeast gametogenesis. Dev Cell 2012; 23:35-44; http://dx.doi.org/10.1016/j.devcel.2012.05.005. PubMed DOI

Wang P, Lazarus BD, Forsythe ME, Love DC, Krause MW, Hanover JA. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc Natl Acad Sci USA 2012; 109:17669-74; http://dx.doi.org/10.1073/pnas.1205748109. PubMed DOI PMC

Oku M, Warnecke D, Noda T, Muller F, Heinz E, Mukaiyama H, Kato N, Sakai Y. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J 2003; 22:3231-41; http://dx.doi.org/10.1093/emboj/cdg331. PubMed DOI PMC

Ding WX, Guo F, Ni HM, Bockus A, Manley S, Stolz DB, Eskelinen EL, Jaeschke H, Yin XM. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation. J Biol Chem 2012; 287:42379-88; http://dx.doi.org/10.1074/jbc.M112.413682. PubMed DOI PMC

Ding WX, Li M, Biazik JM, Morgan DG, Guo F, Ni HM, Goheen M, Eskelinen EL, Yin XM. Electron microscopic analysis of a spherical mitochondrial structure. J Biol Chem 2012; 287:42373-8; http://dx.doi.org/10.1074/jbc.M112.413674. PubMed DOI PMC

Seca H, Lima RT, Lopes-Rodrigues V, Guimaraes JE, Almeida GM, Vasconcelos MH. Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells. Curr Drug Targets 2013; 14:1135-43; http://dx.doi.org/10.2174/13894501113149990185. PubMed DOI

Pennati M, Lopergolo A, Profumo V, De Cesare M, Sbarra S, Valdagni R, Zaffaroni N, Gandellini P, Folini M. miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol 2014; 87:579-97; http://dx.doi.org/10.1016/j.bcp.2013.12.009. PubMed DOI

Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, Puertollano R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014; 7:ra9. PubMed PMC

Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005; 8:3-5; http://dx.doi.org/10.1089/rej.2005.8.3. PubMed DOI

Choi YJ, Hwang KC, Park JY, Park KK, Kim JH, Park SB, Hwang S, Park H, Park C, Kim JH. Identification and characterization of a novel mouse and human MOPT gene containing MORN-motif protein in testis. Theriogenology 2010; 73:273-81; http://dx.doi.org/10.1016/j.theriogenology.2009.09.010. PubMed DOI

Frost LS, Lopes VS, Bragin A, Reyes-Reveles J, Brancato J, Cohen A, Mitchell CH, Williams DS, Boesze-Battaglia K. The Contribution of Melanoregulin to Microtubule-Associated Protein 1 Light Chain 3 (LC3) Associated Phagocytosis in Retinal Pigment Epithelium. Mol Neurobiol 2014. PubMed PMC

Frost LS, Mitchell CH, Boesze-Battaglia K. Autophagy in the eye: implications for ocular cell health. Exp Eye Res 2014; 124:56-66; http://dx.doi.org/10.1016/j.exer.2014.04.010. PubMed DOI PMC

Bhutia SK, Kegelman TP, Das SK, Azab B, Su ZZ, Lee SG, Sarkar D, Fisher PB. Astrocyte elevated gene-1 induces protective autophagy. Proc Natl Acad Sci USA 2010; 107:22243-8; http://dx.doi.org/10.1073/pnas.1009479107. PubMed DOI PMC

Wu Y, Cheng S, Zhao H, Zou W, Yoshina S, Mitani S, Zhang H, Wang X. PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation. EMBO Rep 2014; 15:973-81; http://dx.doi.org/10.15252/embr.201438618. PubMed DOI PMC

Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel JL, Laporte J. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 2013; 27:3384-94; http://dx.doi.org/10.1096/fj.12-220947. PubMed DOI

Taguchi-Atarashi N, Hamasaki M, Matsunaga K, Omori H, Ktistakis NT, Yoshimori T, Noda T. Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic 2010; 11:468-78; http://dx.doi.org/10.1111/j.1600-0854.2010.01034.x. PubMed DOI

Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T, Laporte J, Deretic V. Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy. EMBO J 2009; 28:2244-58; http://dx.doi.org/10.1038/emboj.2009.159. PubMed DOI PMC

Zou J, Zhang C, Marjanovic J, Kisseleva MV, Majerus PW, Wilson MP. Myotubularin-related protein (MTMR) 9 determines the enzymatic activity, substrate specificity, and role in autophagy of MTMR8. Proc Natl Acad Sci USA 2012; 109:9539-44; http://dx.doi.org/10.1073/pnas.1207021109. PubMed DOI PMC

Hnia K, Kretz C, Amoasii L, Bohm J, Liu X, Messaddeq N, Qu CK, Laporte J. Primary T-tubule and autophagy defects in the phosphoinositide phosphatase Jumpy/MTMR14 knockout mice muscle. Adv Biol Reg 2012; 52:98-107; http://dx.doi.org/10.1016/j.advenzreg.2011.09.007. PubMed DOI

Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, et al.. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 2007; 17:1817-25; http://dx.doi.org/10.1016/j.cub.2007.09.032. PubMed DOI

Brandstaetter H, Kishi-Itakura C, Tumbarello DA, Manstein DJ, Buss F. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy 2014; 10:2310-23; http://dx.doi.org/10.4161/15548627.2014.984272. PubMed DOI PMC

Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 2012; 14:1024-35; http://dx.doi.org/10.1038/ncb2589. PubMed DOI PMC

Kuo HP, Lee DF, Chen CT, Liu M, Chou CK, Lee HJ, Du Y, Xie X, Wei Y, Xia W, et al.. ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 2010; 3:ra9; http://dx.doi.org/10.1126/scisignal.2000590. PubMed DOI PMC

Zhang Y, Cheng Y, Ren X, Zhang L, Yap KL, Wu H, Patel R, Liu D, Qin ZH, Shih IM, et al.. NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene 2012; 31:1055-64; http://dx.doi.org/10.1038/onc.2011.290. PubMed DOI PMC

Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 2012; 8:77-87; http://dx.doi.org/10.4161/auto.8.1.18274. PubMed DOI

Naydenov NG, Harris G, Morales V, Ivanov AI. Loss of a membrane trafficking protein alphaSNAP induces non-canonical autophagy in human epithelia. Cell Cycle 2012; 11:4613-25; http://dx.doi.org/10.4161/cc.22885. PubMed DOI PMC

Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135:1311-23; http://dx.doi.org/10.1016/j.cell.2008.10.044. PubMed DOI PMC

Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK, Schafer BW, Schrappe M, Stanulla M, Bourquin JP. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120:1310-23; http://dx.doi.org/10.1172/JCI39987. PubMed DOI PMC

Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Codogno P. Regulation of autophagy by NF{kappa}B transcription factor and reactives oxygen species. Autophagy 2007; 3:390-2; http://dx.doi.org/10.4161/auto.4248. PubMed DOI

Criado O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, Vernia S, San Millan B, Heredia M, Roma-Mateo C, Mouron S, et al.. Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet 2012; 21:1521-33; http://dx.doi.org/10.1093/hmg/ddr590. PubMed DOI

Cervia D, Perrotta C, Moscheni C, De Palma C, Clementi E. Nitric oxide and sphingolipids control apoptosis and autophagy with a significant impact on Alzheimer's disease. J Biol Reg Homeos Ag 2013; 27:11-22. PubMed

Rabkin SW. Nitric oxide-induced cell death in the heart: the role of autophagy. Autophagy 2007; 3:347-9; http://dx.doi.org/10.4161/auto.4054. PubMed DOI

Zang L, He H, Ye Y, Liu W, Fan S, Tashiro S, Onodera S, Ikejima T. Nitric oxide augments oridonin-induced efferocytosis by human histocytic lymphoma U937 cells via autophagy and the NF-kappaB-COX-2-IL-1beta pathway. Free Rad Res 2012; 46:1207-19; http://dx.doi.org/10.3109/10715762.2012.700515. PubMed DOI

Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, et al.. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11:55-62; http://dx.doi.org/10.1038/ni.1823. PubMed DOI

Aveleira CA, Botelho M, Carmo-Silva S, Pascoal JF, Ferreira-Marques M, Nobrega C, Cortes L, Valero J, Sousa-Ferreira L, Alvaro AR, et al.. Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proc Natl Acad Sci USA 2015; 112:E1642-51; http://dx.doi.org/10.1073/pnas.1416609112. PubMed DOI PMC

Cao Y, Wang Y, Abi Saab WF, Yang F, Pessin JE, Backer JM. NRBF2 regulates macroautophagy as a component of Vps34 Complex I. Biochem J 2014; 461:315-22; http://dx.doi.org/10.1042/BJ20140515. PubMed DOI PMC

Lu J, He L, Behrends C, Araki M, Araki K, Jun Wang Q, Catanzaro JM, Friedman SL, Zong WX, Fiel MI, et al.. NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. Nat Commun 2014; 5:3920. PubMed PMC

Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas-Hourani M, Cayet N, Jacob Y, Prevost MC, Pierre P, et al.. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep 2013; 14:534-44; http://dx.doi.org/10.1038/embor.2013.51. PubMed DOI PMC

Kong DK, Georgescu SP, Cano C, Aronovitz MJ, Iovanna JL, Patten RD, Kyriakis JM, Goruppi S. Deficiency of the transcriptional regulator p8 results in increased autophagy and apoptosis, and causes impaired heart function. Mol Biol Cell 2010; 21:1335-49; http://dx.doi.org/10.1091/mbc.E09-09-0818. PubMed DOI PMC

Chang KY, Tsai SY, Wu CM, Yen CJ, Chuang BF, Chang JY. Novel phosphoinositide 3-kinase/mTOR dual inhibitor, NVP-BGT226, displays potent growth-inhibitory activity against human head and neck cancer cells in vitro and in vivo. Clin Cancer Res 2011; 17:7116-26; http://dx.doi.org/10.1158/1078-0432.CCR-11-0796. PubMed DOI

Liu XM, Sun LL, Hu W, Ding YH, Dong MQ, Du LL. ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos. Mol Cell 2015; 59:1035-42; http://dx.doi.org/10.1016/j.molcel.2015.07.034. PubMed DOI

Gundara JS, Zhao J, Robinson BG, Sidhu SB. Oncophagy: harnessing regulation of autophagy in cancer therapy. Endocr Relat Cancer 2012; 19:R281-95; http://dx.doi.org/10.1530/ERC-12-0325. PubMed DOI

Mijaljica D. Autophagy in 2020 and beyond: eating our way into a healthy future. Autophagy 2010; 6:194-6; http://dx.doi.org/10.4161/auto.6.1.10992. PubMed DOI

Zhang CF, Gruber F, Ni C, Mildner M, Koenig U, Karner S, Barresi C, Rossiter H, Narzt MS, Nagelreiter IM, et al.. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes. J Invest Dermatol 2015; 135:1348-57; http://dx.doi.org/10.1038/jid.2014.439. PubMed DOI

Zhao Y, Zhang CF, Rossiter H, Eckhart L, Konig U, Karner S, Mildner M, Bochkov VN, Tschachler E, Gruber F. Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. J Invest Dermatol 2013; 133:1629-37; http://dx.doi.org/10.1038/jid.2013.26. PubMed DOI

Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, Dauphin A, Waharte F, Bayot A, Salamero J, et al.. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. Autophagy 2013; 9:1801-17; http://dx.doi.org/10.4161/auto.25884. PubMed DOI

Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012; 13:378-85; http://dx.doi.org/10.1038/embor.2012.14. PubMed DOI PMC

Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013; 9:1750-7; http://dx.doi.org/10.4161/auto.26122. PubMed DOI PMC

Meissner C, Lorenz H, Hehn B, Lemberg MK. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 2015:0. PubMed PMC

Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2012; 2:1002; http://dx.doi.org/10.1038/srep01002. PubMed DOI PMC

Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA, McLelland GL, Gros P, Shaler TA, Faubert D, Coulombe B, et al.. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 2014. PubMed PMC

Ren H, Fu K, Mu C, Li B, Wang D, Wang G. DJ-1, a cancer and Parkinson's disease associated protein, regulates autophagy through JNK pathway in cancer cells. Cancer Lett 2010; 297:101-8; http://dx.doi.org/10.1016/j.canlet.2010.05.001. PubMed DOI

Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010; 191:933-42; http://dx.doi.org/10.1083/jcb.201008084. PubMed DOI PMC

Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 2011; 117:856-67; http://dx.doi.org/10.1111/j.1471-4159.2011.07253.x. PubMed DOI

Shi G, Lee JR, Grimes DA, Racacho L, Ye D, Yang H, Ross OA, Farrer M, McQuibban GA, Bulman DE. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum Mol Genet 2011; 20:1966-74; http://dx.doi.org/10.1093/hmg/ddr077. PubMed DOI

Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodovar M, Oliver FJ. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 2009; 5:61-74; http://dx.doi.org/10.4161/auto.5.1.7272. PubMed DOI

Huang Q, Shen HM. To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 2009; 5:273-6; http://dx.doi.org/10.4161/auto.5.2.7640. PubMed DOI

Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S. ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 2014; 4:763-76; http://dx.doi.org/10.1016/j.fob.2014.08.005. PubMed DOI PMC

Wang LJ, Chen PR, Hsu LP, Hsu WL, Liu DW, Chang CH, Hsu YC, Lee JW. Concomitant induction of apoptosis and autophagy by prostate apoptosis response-4 in hypopharyngeal carcinoma cells. Am J Pathol 2014; 184:418-30; http://dx.doi.org/10.1016/j.ajpath.2013.10.012. PubMed DOI

Silvente-Poirot S, Poirot M. Cholesterol metabolism and cancer: the good, the bad and the ugly. Current Opin Pharmacol 2012; 12:673-6; http://dx.doi.org/10.1016/j.coph.2012.10.004. PubMed DOI

Bock BC, Tagscherer KE, Fassl A, Kramer A, Oehme I, Zentgraf HW, Keith M, Roth W. The PEA-15 protein regulates autophagy via activation of JNK. J Biol Chem 2010; 285:21644-54; http://dx.doi.org/10.1074/jbc.M109.096628. PubMed DOI PMC

Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 2015; 17:300-10; http://dx.doi.org/10.1038/ncb3112. PubMed DOI PMC

Leu JI-J, Pimkina J, Frank A, Murphy ME, George DL. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36:15-27; http://dx.doi.org/10.1016/j.molcel.2009.09.023. PubMed DOI PMC

Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 2013; 25:4967-83; http://dx.doi.org/10.1105/tpc.113.116947. PubMed DOI PMC

Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y, Kato N, Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell 2005; 16:446-57; http://dx.doi.org/10.1091/mbc.E04-09-0842. PubMed DOI PMC

Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, et al.. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol 2008; 9:908-16; http://dx.doi.org/10.1038/ni.1634. PubMed DOI PMC

Seglen PO, Gordon PB, Holen I. Non-selective autophagy. Semin Cell Biol 1990; 1:441-8. PubMed

He C, Klionsky DJ. Atg9 trafficking in autophagy-related pathways. Autophagy 2007; 3:271-4; http://dx.doi.org/10.4161/auto.3912. PubMed DOI

Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi Y, Fukusaki E. Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. EMBO J 2015; 34:154-68; http://dx.doi.org/10.15252/embj.201489083. PubMed DOI PMC

Meijer AJ, Klionsky DJ. Vps34 is a phosphatidylinositol 3-kinase, not a phosphoinositide 3-kinase. Autophagy 2011; 7:563-4; http://dx.doi.org/10.4161/auto.7.6.14873. PubMed DOI PMC

Devereaux K, Dall'Armi C, Alcazar-Roman A, Ogasawara Y, Zhou X, Wang F, Yamamoto A, De Camilli P, Di Paolo G. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PloS One 2013; 8:e76405. PubMed PMC

Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005; 280:33076-82; http://dx.doi.org/10.1074/jbc.M507201200. PubMed DOI

Roppenser B, Grinstein S, Brumell JH. Modulation of host phosphoinositide metabolism during Salmonella invasion by the type III secreted effector SopB. Methods Cell Biol 2012; 108:173-86; http://dx.doi.org/10.1016/B978-0-12-386487-1.00009-2. PubMed DOI

Cuesta-Geijo MA, Galindo I, Hernaez B, Quetglas JI, Dalmau-Mena I, Alonso C. Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PloS One 2012; 7:e48853; http://dx.doi.org/10.1371/journal.pone.0048853. PubMed DOI PMC

Jin N, Mao K, Jin Y, Tevzadze G, Kauffman EJ, Park S, Bridges D, Loewith R, Saltiel AR, Klionsky DJ, et al.. Roles for PI(3,5)P2 in nutrient sensing through TORC1. Mol Biol Cell 2014; 25:1171-85. PubMed PMC

Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, Levine B, Yin H. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc Natl Acad Sci USA 2015; 112:7015-20; http://dx.doi.org/10.1073/pnas.1507263112. PubMed DOI PMC

Dou Z, Chattopadhyay M, Pan JA, Guerriero JL, Jiang YP, Ballou LM, Yue Z, Lin RZ, Zong WX. The class IA phosphatidylinositol 3-kinase p110-β subunit is a positive regulator of autophagy. J Cell Biol 2010; 191:827-43; http://dx.doi.org/10.1083/jcb.201006056. PubMed DOI PMC

Lindmo K, Brech A, Finley KD, Gaumer S, Contamine D, Rusten TE, Stenmark H. The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy 2008; 4:500-6; http://dx.doi.org/10.4161/auto.5829. PubMed DOI

Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 2002; 3:416-27; http://dx.doi.org/10.1034/j.1600-0854.2002.30605.x. PubMed DOI

Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet 2010; 19:R28-37; http://dx.doi.org/10.1093/hmg/ddq143. PubMed DOI PMC

Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, et al.. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 2010; 107:378-83; http://dx.doi.org/10.1073/pnas.0911187107. PubMed DOI PMC

Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 2004; 279:20663-71; http://dx.doi.org/10.1074/jbc.M400272200. PubMed DOI PMC

Shahab S, Namolovan A, Mogridge J, Kim PK, Brumell JH. Bacterial toxins can inhibit host cell autophagy through cAMP generation. Autophagy 2011; 7:957-65. PubMed

Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2 regulates autophagosome formation. Autophagy 2015; 11:in press. PubMed PMC

McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, et al.. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 2015; 57: 39-54; http://dx.doi.org/10.1016/j.molcel.2014.11.006. PubMed DOI

Broadley K, Larsen L, Herst PM, Smith RA, Berridge MV, McConnell MJ. The novel phloroglucinol PMT7 kills glycolytic cancer cells by blocking autophagy and sensitizing to nutrient stress. J Cell Biochem 2011; 112:1869-79; http://dx.doi.org/10.1002/jcb.23107. PubMed DOI

Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T, Deretic V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 2014; 24:609-20; http://dx.doi.org/10.1016/j.cub.2014.02.008. PubMed DOI PMC

Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev 2013; 2013:891748; http://dx.doi.org/10.1155/2013/891748. PubMed DOI PMC

Macedo D, Tavares L, McDougall GJ, Vicente Miranda H, Stewart D, Ferreira RB, Tenreiro S, Outeiro TF, Santos CN. (Poly)phenols protect from alpha-synuclein toxicity by reducing oxidative stress and promoting autophagy. Hum Mol Genet 2015; 24:1717-32; http://dx.doi.org/10.1093/hmg/ddu585. PubMed DOI

Hasima N, Ozpolat B. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 2014; 5:e1509; http://dx.doi.org/10.1038/cddis.2014.467. PubMed DOI PMC

Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126:1713-9; http://dx.doi.org/10.1242/jcs.125773. PubMed DOI PMC

Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso E, Davidson MM, Michalik L, Wahli W, Vazquez-Carrera M. PPARbeta/delta attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. Int J Cardiol 2014; 174:110-8; http://dx.doi.org/10.1016/j.ijcard.2014.03.176. PubMed DOI

Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev 2000; 14:1027-47. PubMed

Phizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev 1995; 59:94-123. PubMed PMC

Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench 2014; 7:17-31. PubMed PMC

Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 2012; 16:68-80; http://dx.doi.org/10.1016/j.cmet.2012.06.003. PubMed DOI

Uddin MN, Ito S, Nishio N, Suganya T, Isobe KI. Gadd34 induces autophagy through the suppression of the mTOR pathway during starvation. Biochem Biophys Res Comm 2011; 407:692-8. PubMed

Peti W, Nairn AC, Page R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J 2013; 280:596-611; http://dx.doi.org/10.1111/j.1742-4658.2012.08509.x. PubMed DOI PMC

Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, et al.. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288-99; http://dx.doi.org/10.1038/ncb3114. PubMed DOI PMC

Eisenberg-Lerner A, Kimchi A. PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ 2012; 19:788-97; http://dx.doi.org/10.1038/cdd.2011.149. PubMed DOI PMC

Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 2012; 20:15-27; http://dx.doi.org/10.1016/j.str.2011.11.012. PubMed DOI PMC

Baskaran S, Ragusa MJ, Boura E, Hurley JH. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell 2012; 47:339-48; http://dx.doi.org/10.1016/j.molcel.2012.05.027. PubMed DOI PMC

Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, Thumm M, Kuhnel K. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci USA 2012; 109:E2042-9; http://dx.doi.org/10.1073/pnas.1205128109. PubMed DOI PMC

Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Inagaki F, Ohsumi Y, Noda NN. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem 2012; 287:31681-90; http://dx.doi.org/10.1074/jbc.M112.397570. PubMed DOI PMC

Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. Mol Cell 2015; 58:1053-66; http://dx.doi.org/10.1016/j.molcel.2015.04.023. PubMed DOI PMC

Starokadomskyy P, Dmytruk KV. A bird's-eye view of autophagy. Autophagy 2013; 9:1121-6; http://dx.doi.org/10.4161/auto.24544. PubMed DOI PMC

Neely KM, Green KN, Laferla FM. Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a {gamma}-secretase-independent manner. J Neurosci 2011; 31:2781-91; http://dx.doi.org/10.1523/JNEUROSCI.5156-10.2010. PubMed DOI PMC

Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr.. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005; 44:7342-72; http://dx.doi.org/10.1002/anie.200501023. PubMed DOI

Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods 2007; 4:798-806; http://dx.doi.org/10.1038/nmeth1100. PubMed DOI

Popelka H, Klionsky DJ. Posttranslationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 2015; 282:3474-88. PubMed PMC

Huang YH, Al-Aidaroos AQ, Yuen HF, Zhang SD, Shen HM, Rozycka E, McCrudden CM, Tergaonkar V, Gupta A, Lin YB, et al.. A role of autophagy in PTP4A3-driven cancer progression. Autophagy 2014; 10:1787-800; http://dx.doi.org/10.4161/auto.29989. PubMed DOI PMC

Martin KR, Xu Y, Looyenga BD, Davis RJ, Wu CL, Tremblay ML, Xu HE, MacKeigan JP. Identification of PTPsigma as an autophagic phosphatase. J Cell Sci 2011; 124:812-9; http://dx.doi.org/10.1242/jcs.080341. PubMed DOI PMC

Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Dinkins C, Silvestri G, Munch J, Kirchhoff F, Simonsen A, et al.. TRIM Proteins Regulate Autophagy and Can Target Autophagic Substrates by Direct Recognition. Dev Cell 2014; 30:394-409; http://dx.doi.org/10.1016/j.devcel.2014.06.013. PubMed DOI PMC

Nagy G, Ward J, Mosser DD, Koncz A, Gergely P Jr., Stancato C, Qian Y, Fernandez D, Niland B, Grossman CE, et al.. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. J Biol Chem 2006; 281:34574-91; http://dx.doi.org/10.1074/jbc.M606301200. PubMed DOI

Fernandez DR, Telarico T, Bonilla E, Li Q, Banerjee S, Middleton FA, Phillips PE, Crow MK, Oess S, Muller-Esterl W, et al.. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J Immunol 2009; 182:2063-73; http://dx.doi.org/10.4049/jimmunol.0803600. PubMed DOI PMC

Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP, Lai ZW, Miklossy G, Singh RR, Chudakov DM, et al.. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann Rheum Dis 2014; 73:1888-97; http://dx.doi.org/10.1136/annrheumdis-2013-203794. PubMed DOI PMC

Talaber G, Miklossy G, Oaks Z, Liu Y, Tooze SA, Chudakov DM, Banki K, Perl A. HRES-1/Rab4 promotes the formation of LC3(+) autophagosomes and the accumulation of mitochondria during autophagy. PloS One 2014; 9:e84392; http://dx.doi.org/10.1371/journal.pone.0084392. PubMed DOI PMC

Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 2011; 80:125-56; http://dx.doi.org/10.1146/annurev-biochem-052709-094552. PubMed DOI

Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nature Rev Mol Cell Biol 2009; 10:513-25; http://dx.doi.org/10.1038/nrm2728. PubMed DOI

Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 2004; 117:4837-48; http://dx.doi.org/10.1242/jcs.01370. PubMed DOI

Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, et al.. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37:223-34; http://dx.doi.org/10.1016/j.immuni.2012.04.015. PubMed DOI PMC

Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 2012; 197:659-75; http://dx.doi.org/10.1083/jcb.201111079. PubMed DOI PMC

Matsui T, Fukuda M. Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep 2013; 14:450-7; http://dx.doi.org/10.1038/embor.2013.32. PubMed DOI PMC

Jean S, Cox S, Nassari S, Kiger AA. Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion. EMBO Rep 2015; 16:297-311; http://dx.doi.org/10.15252/embr.201439464. PubMed DOI PMC

Munafo DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 2002; 3:472-82; http://dx.doi.org/10.1034/j.1600-0854.2002.30704.x. PubMed DOI

Ylä-Anttila P, Mikkonen E, Happonen KE, Holland P, Ueno T, Simonsen A, Eskelinen E-L: RAB24 facilitates clearance of autophagic compartments during basal conditions. Autophagy 2015, 10:1833-48 DOI: 10.1080/15548627.2015.108652210.1080/15548627.2015.1086522 PubMed DOI PMC

Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66:2913-32; http://dx.doi.org/10.1007/s00018-009-0080-9. PubMed DOI PMC

Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 2008; 19:2916-25; http://dx.doi.org/10.1091/mbc.E07-12-1231. PubMed DOI PMC

Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 2011; 192:839-53; http://dx.doi.org/10.1083/jcb.201008107. PubMed DOI PMC

Chen XW, Leto D, Xiong T, Yu G, Cheng A, Decker S, Saltiel AR. A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action. Mol Biol Cell 2011; 22:141-52; http://dx.doi.org/10.1091/mbc.E10-08-0665. PubMed DOI PMC

Gentry LR, Martin TD, Reiner DJ, Der CJ. Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. Biochim Biophys Acta 2014; 1843:2976-88; http://dx.doi.org/10.1016/j.bbamcr.2014.09.004. PubMed DOI PMC

Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, Der CJ. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell 2014; 53:209-20; http://dx.doi.org/10.1016/j.molcel.2013.12.004. PubMed DOI PMC

Geng J, Nair U, Yasumura-Yorimitsu K, Klionsky DJ. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:2257-69; http://dx.doi.org/10.1091/mbc.E09-11-0969. PubMed DOI PMC

Shirakawa R, Fukai S, Kawato M, Higashi T, Kondo H, Ikeda T, Nakayama E, Okawa K, Nureki O, Kimura T, et al.. Tuberous sclerosis tumor suppressor complex-like complexes act as GTPase-activating proteins for Ral GTPases. J Biol Chem 2009; 284:21580-8; http://dx.doi.org/10.1074/jbc.M109.012112. PubMed DOI PMC

Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, Kuhn LI, Gruber CW, Lienhard GE, Ghosh S. kappaB-Ras proteins regulate both NF-kappaB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8:1793-807; http://dx.doi.org/10.1016/j.celrep.2014.08.015. PubMed DOI PMC

Punnonen EL, Reunanen H, Hirsimaki P, Lounatmaa K. Filipin labelling and intramembrane particles on the membranes of early and later autophagic vacuoles in Ehrlich ascites cells. Virchows Archiv B, Cell Pathol 1988; 54:317-26; http://dx.doi.org/10.1007/BF02899229. PubMed DOI

Opipari AJ, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 2004; 15:696-703; http://dx.doi.org/10.1158/0008-5472.CAN-03-2404. PubMed DOI

Ogier-Denis E, Petiot A, Bauvy C, Codogno P. Control of the expression and activity of the Galpha-interacting protein (GAIP) in human intestinal cells. J Biol Chem 1997; 272:24599-603; http://dx.doi.org/10.1074/jbc.272.39.24599. PubMed DOI

Yorimitsu T, Zaman S, Broach JR, Klionsky DJ. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:4180-9; http://dx.doi.org/10.1091/mbc.E07-05-0485. PubMed DOI PMC

Yonekawa T, Gamez G, Kim J, Tan AC, Thorburn J, Gump J, Thorburn A, Morgan MJ. RIP1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis. EMBO Rep 2015; 16:700-8; http://dx.doi.org/10.15252/embr.201439496. PubMed DOI PMC

Hillwig MS, Contento AL, Meyer A, Ebany D, Bassham DC, Macintosh GC. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proc Natl Acad Sci USA 2011; 108:1093-8; http://dx.doi.org/10.1073/pnas.1009809108. PubMed DOI PMC

Haud N, Kara F, Diekmann S, Henneke M, Willer JR, Hillwig MS, Gregg RG, Macintosh GC, Gartner J, Alia A, et al.. rnaset2 mutant zebrafish model familial cystic leukoencephalopathy and reveal a role for RNase T2 in degrading ribosomal RNA. Proc Natl Acad Sci USA 2011; 108:1099-103; http://dx.doi.org/10.1073/pnas.1009811107. PubMed DOI PMC

Xu C, Feng K, Zhao X, Huang S, Cheng Y, Qian L, Wang Y, Sun H, Jin M, Chuang TH, et al.. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination. Autophagy 2014; 10:2239-50.. PubMed PMC

Ganley IG, Lam H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297-305; http://dx.doi.org/10.1074/jbc.M900573200. PubMed DOI PMC

Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 2011; 7:737-47; http://dx.doi.org/10.4161/auto.7.7.15491. PubMed DOI PMC

Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan K-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10:935-45; http://dx.doi.org/10.1038/ncb1753. PubMed DOI PMC

White E. Exploiting the bad eating habits of Ras-driven cancers. Genes Dev 2013; 27:2065-71; http://dx.doi.org/10.1101/gad.228122.113. PubMed DOI PMC

Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004; 101:18030-5; http://dx.doi.org/10.1073/pnas.0408345102. PubMed DOI PMC

Stankov MV, El Khatib M, Kumar Thakur B, Heitmann K, Panayotova-Dimitrova D, Schoening J, Bourquin JP, Schweitzer N, Leverkus M, Welte K, et al.. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia 2014; 28:577-88; http://dx.doi.org/10.1038/leu.2013.264. PubMed DOI PMC

Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos DP, Cristea IM, Williams R, Salamero J, Chait BT, Sali A, et al.. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol Cell Proteomics 2011; 10:M110 006478. PubMed PMC

Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen W-L, Griffith J, Nag S, Wang K, Moss T, et al.. SNARE proteins are required for macroautophagy. Cell 2011; 146:290-302; http://dx.doi.org/10.1016/j.cell.2011.06.022. PubMed DOI PMC

Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen WL, Griffith J, Nag S, Wang K, Moss T, et al.. SNARE proteins are required for macroautophagy. Cell 2011; 146:290-302; http://dx.doi.org/10.1016/j.cell.2011.06.022. PubMed DOI PMC

Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, Yoshimori T, Noda T, Ohsumi Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 2001; 12:3690-702; http://dx.doi.org/10.1091/mbc.12.11.3690. PubMed DOI PMC

Jiang S, Dupont N, Castillo EF, Deretic V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun 2013; 5:471-9; http://dx.doi.org/10.1159/000346707. PubMed DOI PMC

Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, Gouin E, Demangel C, Brosch R, Zimmer C, et al.. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 2010; 8:433-44; http://dx.doi.org/10.1016/j.chom.2010.10.009. PubMed DOI

Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, et al.. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010; 329:229-32; http://dx.doi.org/10.1126/science.1190354. PubMed DOI

Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 2013; 18:792-801; http://dx.doi.org/10.1016/j.cmet.2013.08.018. PubMed DOI PMC

Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 2013; 17:73-84; http://dx.doi.org/10.1016/j.cmet.2012.12.002. PubMed DOI

Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134:451-60; http://dx.doi.org/10.1016/j.cell.2008.06.028. PubMed DOI PMC

Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, Kim M, Nam M, Zhang D, Yin L, et al.. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 2014; 5:4233. PubMed PMC

Ben-Sahra I, Dirat B, Laurent K, Puissant A, Auberger P, Budanov A, Tanti JF, Bost F. Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death Differ 2013; 20:611-9; http://dx.doi.org/10.1038/cdd.2012.157. PubMed DOI PMC

Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, et al.. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007; 9:1142-51; http://dx.doi.org/10.1038/ncb1634. PubMed DOI PMC

Wong AS, Lee RH, Cheung AY, Yeung PK, Chung SK, Cheung ZH, Ip NY. Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nat Cell Biol 2011; 13:568-79; http://dx.doi.org/10.1038/ncb2217. PubMed DOI

Zhang C, Li A, Zhang X, Xiao H. A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem 2011; 286:9373-81; http://dx.doi.org/10.1074/jbc.M110.207720. PubMed DOI PMC

Khan MM, Strack S, Wild F, Hanashima A, Gasch A, Brohm K, Reischl M, Carnio S, Labeit D, Sandri M, et al.. Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 2014; 10:123-36; http://dx.doi.org/10.4161/auto.26841. PubMed DOI PMC

Belaid A, Ndiaye PD, Klionsky DJ, Hofman P, Mograbi B. Signalphagy: Scheduled signal termination by macroautophagy. Autophagy 2013; 9:1629-30. PubMed PMC

Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105:3374-9; http://dx.doi.org/10.1073/pnas.0712145105. PubMed DOI PMC

Webster BR, Scott I, Traba J, Han K, Sack MN. Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochim Biophys Acta 2014; 1841:525-34; http://dx.doi.org/10.1016/j.bbalip.2014.02.001. PubMed DOI PMC

Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, et al.. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 2015; 11:1037-51; http://dx.doi.org/10.1080/15548627.2015.1052208. PubMed DOI PMC

Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, et al.. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 2015; 11:253-70; http://dx.doi.org/10.1080/15548627.2015.1009778. PubMed DOI PMC

Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y, Wakui H, Yoshii Y, Yumino Y, Fujii S, et al.. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 2014; 192:958-68; http://dx.doi.org/10.4049/jimmunol.1302341. PubMed DOI

Araki S, Izumiya Y, Rokutanda T, Ianni A, Hanatani S, Kimura Y, Onoue Y, Senokuchi T, Yoshizawa T, Yasuda O, et al.. Sirt7 Contributes to Myocardial Tissue Repair by Maintaining TGF-beta Signaling Pathway. Circulation 2015. PubMed

Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 2008; 451:350-4; http://dx.doi.org/10.1038/nature06479. PubMed DOI

Bhardwaj V, Kanagawa O, Swanson PE, Unanue ER. Chronic Listeria infection in SCID mice: requirements for the carrier state and the dual role of T cells in transferring protection or suppression. J Immunol 1998; 160:376-84. PubMed

Liu H, Ma Y, He HW, Wang JP, Jiang JD, Shao RG. SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast cancer cells. Autophagy 2015:0. PubMed PMC

Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, Byers S, Giaccia AJ, Glasgow E, Albanese C, et al.. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 2012; 3:1220-35; http://dx.doi.org/10.18632/oncotarget.714. PubMed DOI PMC

Jung J, Genau HM, Behrends C. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Mol Cell Biol 2015; 35:2479-94; http://dx.doi.org/10.1128/MCB.00125-15. PubMed DOI PMC

Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, et al.. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519:477-81; http://dx.doi.org/10.1038/nature14107. PubMed DOI PMC

Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al.. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347:188-94; http://dx.doi.org/10.1126/science.1257132. PubMed DOI PMC

Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013; 13:722-37; http://dx.doi.org/10.1038/nri3532. PubMed DOI PMC

Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, Kimchi A. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 2006; 22:463-75; http://dx.doi.org/10.1016/j.molcel.2006.04.014. PubMed DOI

Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten TE, Bilder D, Stenmark H, Mironov AA, Vaccari T. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 2014; 10:2251-68; http://dx.doi.org/10.4161/15548627.2014.981913. PubMed DOI PMC

Batelli S, Peverelli E, Rodilossi S, Forloni G, Albani D. Macroautophagy and the proteasome are differently involved in the degradation of alpha-synuclein wild type and mutated A30P in an in vitro inducible model (PC12/TetOn). Neuroscience 2011; 195:128-37; http://dx.doi.org/10.1016/j.neuroscience.2011.08.030. PubMed DOI PMC

Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, Yue Z, Zhang HQ, Li M. HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 2014; 10:144-54; http://dx.doi.org/10.4161/auto.26751. PubMed DOI PMC

Knaevelsrud H, Soreng K, Raiborg C, Haberg K, Rasmuson F, Brech A, Liestol K, Rusten TE, Stenmark H, Neufeld TP, et al.. Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J Cell Biol 2013; 202:331-49; http://dx.doi.org/10.1083/jcb.201205129. PubMed DOI PMC

Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, Davies MR, Schulz BL, Nizet V, Teasdale RD, et al.. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 2013; 14:675-82; http://dx.doi.org/10.1016/j.chom.2013.11.003. PubMed DOI PMC

Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T, et al.. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 2011; 147:223-34; http://dx.doi.org/10.1016/j.cell.2011.08.037. PubMed DOI PMC

Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San Pedro JM, Sica V, Izzo V, Maiuri MC, Madeo F, Marino G, et al.. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ 2015; 22:509-16. PubMed PMC

Ghidoni R, Houri JJ, Giuliani A, Ogier-Denis E, Parolari E, Botti S, Bauvy C, Codogno P. The metabolism of sphingo(glyco)lipids is correlated with the differentiation-dependent autophagic pathway in HT-29 cells. Eur J Biochem 1996; 237:454-9; http://dx.doi.org/10.1111/j.1432-1033.1996.0454k.x. PubMed DOI

Lavieu G, Scarlatti F, Sala G, Levade T, Ghidoni R, Botti J, Codogno P. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy 2007; 3:45-7; http://dx.doi.org/10.4161/auto.3416. PubMed DOI

Rong Y, McPhee C, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehreck EH, Yu L, Lenardo MJ. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci USA 2011; 108:7826-31; http://dx.doi.org/10.1073/pnas.1013800108. PubMed DOI PMC

Chen Q, Yue F, Li W, Zou J, Xu T, Huang C, Zhang Y, Song K, Huang G, Xu G, et al.. Potassium Bisperoxo (1,10-phenanthroline) Oxovanadate (bpV(phen)) Induces Apoptosis and Pyroptosis and Disrupts the P62-HDAC6 Interaction to Suppress the Acetylated Microtubule-dependent Degradation of Autophagosomes. J Biol Chem 2015; 290:26051-8. PubMed PMC

Tambe Y, Yamamoto A, Isono T, Chano T, Fukuda M, Inoue H. The drs tumor suppressor is involved in the maturation process of autophagy induced by low serum. Cancer Lett 2009; 283:74-83; http://dx.doi.org/10.1016/j.canlet.2009.03.028. PubMed DOI

Mesquita FS, Thomas M, Sachse M, Santos AJ, Figueira R, Holden DW. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog 2012; 8:e1002743; http://dx.doi.org/10.1371/journal.ppat.1002743. PubMed DOI PMC

Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Marino G, Lachkar S, Senovilla L, et al.. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 2012; 48:667-80; http://dx.doi.org/10.1016/j.molcel.2012.09.013. PubMed DOI

Wang CW. Stationary phase lipophagy as a cellular mechanism to recycle sterols during quiescence. Autophagy 2014; 10:2075-6; http://dx.doi.org/10.4161/auto.36137. PubMed DOI PMC

Wang CW, Miao YH, Chang YS. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Biol 2014; 206:357-66; http://dx.doi.org/10.1083/jcb.201404115. PubMed DOI PMC

Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A, et al.. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 2015; 57:55-68; http://dx.doi.org/10.1016/j.molcel.2014.11.019. PubMed DOI PMC

Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, et al.. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med 2013; 19:1478-88; http://dx.doi.org/10.1038/nm.3322. PubMed DOI PMC

Renna M, Schaffner C, Winslow AR, Menzies FM, Peden AA, Floto RA, Rubinsztein DC. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J Cell Sci 2011; 124:469-82; http://dx.doi.org/10.1242/jcs.076489. PubMed DOI PMC

Lu Y, Zhang Z, Sun D, Sweeney ST, Gao FB. Syntaxin 13, a genetic modifier of mutant CHMP2B in frontotemporal dementia, is required for autophagosome maturation. Mol Cell 2013; 52:264-71; http://dx.doi.org/10.1016/j.molcel.2013.08.041. PubMed DOI PMC

Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, et al.. Autophagosomes form at ER-mitochondria contact sites. Nature 2013; 495:389-93; http://dx.doi.org/10.1038/nature11910. PubMed DOI

Webber JL, Tooze SA. Coordinated regulation of autophagy by p38{alpha} MAPK through mAtg9 and p38IP. EMBO J 2010; 29:27-40; http://dx.doi.org/10.1038/emboj.2009.321. PubMed DOI PMC

Lopergolo A, Nicolini V, Favini E, Dal Bo L, Tortoreto M, Cominetti D, Folini M, Perego P, Castiglioni V, Scanziani E, et al.. Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in human medullary thyroid cancer. J Clin Endocrinol Metab 2014; 99:498-509; http://dx.doi.org/10.1210/jc.2013-2574. PubMed DOI

Jackson DJ, Worheide G. Symbiophagy and biomineralization in the “living fossil” Astrosclera willeyana. Autophagy 2014; 10:408-15; http://dx.doi.org/10.4161/auto.27319. PubMed DOI PMC

Criollo A, Niso-Santano M, Malik SA, Michaud M, Morselli E, Marino G, Lachkar S, Arkhipenko AV, Harper F, Pierron G, et al.. Inhibition of autophagy by TAB2 and TAB3. EMBO J 2011; 30:4908-20; http://dx.doi.org/10.1038/emboj.2011.413. PubMed DOI PMC

Takaesu G, Kobayashi T, Yoshimura A. TGFbeta-activated kinase 1 (TAK1)-binding proteins (TAB) 2 and 3 negatively regulate autophagy. J Biochem 2012; 151:157-66; http://dx.doi.org/10.1093/jb/mvr123. PubMed DOI

Nagahara Y, Takeyoshi M, Sakemoto S, Shiina I, Nakata K, Fujimori K, Wang Y, Umeda E, Watanabe C, Uetake S, et al.. Novel tamoxifen derivative Ridaifen-B induces Bcl-2 independent autophagy without estrogen receptor involvement. Biochem Biophys Res Comm 2013; 435:657-63; http://dx.doi.org/10.1016/j.bbrc.2013.05.040. PubMed DOI

Bose JK, Huang CC, Shen CK. Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 2011; 286:44441-8; http://dx.doi.org/10.1074/jbc.M111.237115. PubMed DOI PMC

Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, et al.. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332:966-70; http://dx.doi.org/10.1126/science.1205407. PubMed DOI PMC

Newman AC, Scholefield CL, Kemp AJ, Newman M, McIver EG, Kamal A, Wilkinson S. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kappaB signalling. PloS One 2012; 7:e50672; http://dx.doi.org/10.1371/journal.pone.0050672. PubMed DOI PMC

Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47:535-46; http://dx.doi.org/10.1016/j.molcel.2012.06.009. PubMed DOI PMC

Alfaiz AA, Micale L, Mandriani B, Augello B, Pellico MT, Chrast J, Xenarios I, Zelante L, Merla G, Reymond A. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease. Hum Mutat 2014; 35:447-51; http://dx.doi.org/10.1002/humu.22529. PubMed DOI

Capo-Chichi JM, Tcherkezian J, Hamdan FF, Decarie JC, Dobrzeniecka S, Patry L, Nadon MA, Mucha BE, Major P, Shevell M, et al.. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly. J Med Genet 2013; 50:740-4; http://dx.doi.org/10.1136/jmedgenet-2013-101680. PubMed DOI

Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 1999; 18:6694-704; http://dx.doi.org/10.1093/emboj/18.23.6694. PubMed DOI PMC

Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, Iozzo RV. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) and mitostatin. J Biol Chem 2014; 289:4952-68; http://dx.doi.org/10.1074/jbc.M113.512566. PubMed DOI PMC

Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, et al.. A tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 2011; 9:376-89; http://dx.doi.org/10.1016/j.chom.2011.04.010. PubMed DOI

Li L, Khatibi NH, Hu Q, Yan J, Chen C, Han J, Ma D, Chen Y, Zhou C. Transmembrane protein 166 regulates autophagic and apoptotic activities following focal cerebral ischemic injury in rats. Exp Neurol 2012; 234:181-90; http://dx.doi.org/10.1016/j.expneurol.2011.12.038. PubMed DOI

Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K, Anikster Y, Reznik-Wolf H, Bar-Joseph I, Olender T, et al.. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 2012; 91:1065-72; http://dx.doi.org/10.1016/j.ajhg.2012.09.015. PubMed DOI PMC

Oz-Levi D, Gelman A, Elazar Z, Lancet D. TECPR2: a new autophagy link for neurodegeneration. Autophagy 2013; 9:801-2; http://dx.doi.org/10.4161/auto.23961. PubMed DOI PMC

D'Eletto M, Farrace MG, Falasca L, Reali V, Oliverio S, Melino G, Griffin M, Fimia GM, Piacentini M. Transglutaminase 2 is involved in autophagosome maturation. Autophagy 2009; 5:1145-54; http://dx.doi.org/10.4161/auto.5.8.10040. PubMed DOI

Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, et al.. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009; 119:1359-72; http://dx.doi.org/10.1172/JCI37948. PubMed DOI PMC

Salazar M, Lorente M, Garcia-Taboada E, Hernandez-Tiedra S, Davila D, Francis SE, Guzman M, Kiss-Toth E, Velasco G. The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action. Biochim Biophys Acta 2013; 1831:1573-8; http://dx.doi.org/10.1016/j.bbalip.2013.03.014. PubMed DOI

Velasco G, Sanchez C, Guzman M. Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer 2012; 12:436-44; http://dx.doi.org/10.1038/nrc3247. PubMed DOI

Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 2009; 28:3015-26; http://dx.doi.org/10.1038/emboj.2009.242. PubMed DOI PMC

Lok CN, Sy LK, Liu F, Che CM. Activation of autophagy of aggregation-prone ubiquitinated proteins by timosaponin A-III. J Biol Chem 2011; 286:31684-96; http://dx.doi.org/10.1074/jbc.M110.202531. PubMed DOI PMC

He P, Peng Z, Luo Y, Wang L, Yu P, Deng W, An Y, Shi T, Ma D. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy 2009; 5:52-60; http://dx.doi.org/10.4161/auto.5.1.7247. PubMed DOI

Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramon-Barros C, Pimentel-Muinos FX. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 2013; 32:566-82; http://dx.doi.org/10.1038/emboj.2013.8. PubMed DOI PMC

Shi CS, Kehrl JH. Traf6 and A20 differentially regulate TLR4-induced autophagy by affecting the ubiquitination of Beclin 1. Autophagy 2010; 6:986-7; http://dx.doi.org/10.4161/auto.6.7.13288. PubMed DOI PMC

Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y, Kobayashi M, Nibe Y, Nozaki K, Nagaishi T, Okamoto R, et al.. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 2015; 11:1052-62; http://dx.doi.org/10.1080/15548627.2015.1055439. PubMed DOI PMC

Jacinto E. What controls TOR? IUBMB Life 2008; 60:483-96; http://dx.doi.org/10.1002/iub.56. PubMed DOI

Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137:873-86; http://dx.doi.org/10.1016/j.cell.2009.03.046. PubMed DOI PMC

Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007; 405:513-22; http://dx.doi.org/10.1042/BJ20070540. PubMed DOI PMC

Vlahakis A, Graef M, Nunnari J, Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA 2014; 111:10586-91; http://dx.doi.org/10.1073/pnas.1406305111. PubMed DOI PMC

Renna M, Bento CF, Fleming A, Menzies FM, Siddiqi FH, Ravikumar B, Puri C, Garcia-Arencibia M, Sadiq O, Corrochano S, et al.. IGF-1 receptor antagonism inhibits autophagy. Hum Mol Genet 2013; 22:4528-44; http://dx.doi.org/10.1093/hmg/ddt300. PubMed DOI PMC

Arias E, Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM. Lysosomal mTORC2/PHLPP1/Akt Regulate Chaperone-Mediated Autophagy. Mol Cell 2015; 59:270-84; http://dx.doi.org/10.1016/j.molcel.2015.05.030. PubMed DOI PMC

N'Guessan P, Pouyet L, Gosset G, Hamlaoui S, Seillier M, Cano CE, Seux M, Stocker P, Culcasi M, Iovanna JL, et al.. Absence of Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibroblasts to Redox-Driven Apoptosis. Antioxid Redox Sign 2011; 15:1639-53; http://dx.doi.org/10.1089/ars.2010.3553. PubMed DOI

Sancho A, Duran J, Garcia-Espana A, Mauvezin C, Alemu EA, Lamark T, Macias MJ, DeSalle R, Royo M, Sala D, et al.. Absence of Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibroblasts to Redox-Driven Apoptosis. PloS One 2012; 7:e34034; http://dx.doi.org/10.1371/journal.pone.0034034. PubMed DOI PMC

Seillier M, Peuget S, Gayet O, Gauthier C, N'Guessan P, Monte M, Carrier A, Iovanna JL, Dusetti NJ. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ 2012; 19:1525-35; http://dx.doi.org/10.1038/cdd.2012.30. PubMed DOI PMC

Seillier M, Pouyet L, N'Guessan P, Nollet M, Capo F, Guillaumond F, Peyta L, Dumas JF, Varrault A, Bertrand G, et al.. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1. EMBO Mol Med 2015. PubMed PMC

Mauvezin C, Orpinell M, Francis VA, Mansilla F, Duran J, Ribas V, Palac{i}n M, Boya P, Teleman AA, Zorzano A. The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep 2010; 11:37-44; http://dx.doi.org/10.1038/embor.2009.242. PubMed DOI PMC

Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque MJ, Vaccaro MI, Velasco G, Dagorn JC, Iovanna JL. The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell 2009; 20:870-81; http://dx.doi.org/10.1091/mbc.E08-07-0671. PubMed DOI PMC

Sala D, Ivanova S, Plana N, Ribas V, Duran J, Bach D, Turkseven S, Laville M, Vidal H, Karczewska-Kupczewska M, et al.. Autophagy-regulating TP53INP2 mediates muscle wasting and is repressed in diabetes. J Clin Invest 2014; 124:1914-27; http://dx.doi.org/10.1172/JCI72327. PubMed DOI PMC

Cang C, Zhou Y, Navarro B, Seo YJ, Aranda K, Shi L, Battaglia-Hsu S, Nissim I, Clapham DE, Ren D. mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 2013; 152:778-90; http://dx.doi.org/10.1016/j.cell.2013.01.023. PubMed DOI PMC

Lin PH, Duann P, Komazaki S, Park KH, Li H, Sun M, Sermersheim M, Gumpper K, Parrington J, Galione A, et al.. Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J Biol Chem 2015; 290:3377-89; http://dx.doi.org/10.1074/jbc.M114.608471. PubMed DOI PMC

Funasaka T, Tsuka E, Wong RW. Regulation of autophagy by nucleoporin Tpr. Sci Rep 2012; 2:878; http://dx.doi.org/10.1038/srep00878. PubMed DOI PMC

Zou S, Chen Y, Liu Y, Segev N, Yu S, Liu Y, Min G, Ye M, Zeng Y, Zhu X, et al.. Trs130 participates in autophagy through GTPases Ypt31/32 in Saccharomyces cerevisiae. Traffic 2013; 14: 233-46; http://dx.doi.org/10.1111/tra.12024. PubMed DOI PMC

Hua F, Li K, Yu JJ, Lv XX, Yan J, Zhang XW, Sun W, Lin H, Shang S, Wang F, et al.. TRB3 links insulin/IGF to tumour promotion by interacting with p62 and impeding autophagic/proteasomal degradations. Nat Commun 2015; 6:7951; http://dx.doi.org/10.1038/ncomms8951. PubMed DOI PMC

Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Egia A, Lorente M, Vazquez P, Torres S, Iovanna JL, Guzman M, et al.. TRB3 links ER stress to autophagy in cannabinoid anti-tumoral action. Autophagy 2009; 5:1048-9; http://dx.doi.org/10.4161/auto.5.7.9508. PubMed DOI

Francisco R, Perez-Perarnau A, Cortes C, Gil J, Tauler A, Ambrosio S. Histone deacetylase inhibition induces apoptosis and autophagy in human neuroblastoma cells. Cancer Lett 2012; 318:42-52; http://dx.doi.org/10.1016/j.canlet.2011.11.036. PubMed DOI

Micale L, Fusco C, Augello B, Napolitano LM, Dermitzakis ET, Meroni G, Merla G, Reymond A. Williams-Beuren syndrome TRIM50 encodes an E3 ubiquitin ligase. Eur J Hum Genet 2008; 16:1038-49; http://dx.doi.org/10.1038/ejhg.2008.68. PubMed DOI PMC

Fusco C, Micale L, Augello B, Mandriani B, Pellico MT, De Nittis P, Calcagni A, Monti M, Cozzolino F, Pucci P, et al.. HDAC6 mediates the acetylation of TRIM50. Cell Signal 2014; 26:363-9; http://dx.doi.org/10.1016/j.cellsig.2013.11.036. PubMed DOI

Fusco C, Micale L, Egorov M, Monti M, D'Addetta EV, Augello B, Cozzolino F, Calcagni A, Fontana A, Polishchuk RS, et al.. The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome. PloS One 2012; 7:e40440; http://dx.doi.org/10.1371/journal.pone.0040440. PubMed DOI PMC

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al.. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294:1704-8; http://dx.doi.org/10.1126/science.1065874. PubMed DOI

Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, et al.. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001; 306:717-26; http://dx.doi.org/10.1006/jmbi.2001.4448. PubMed DOI

Gatliff J, East D, Crosby J, Abeti R, Harvey R, Craigen W, Parker P, Campanella M. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 2014; 10:2279-96; http://dx.doi.org/10.4161/15548627.2014.991665. PubMed DOI PMC

Geisler S, Vollmer S, Golombek S, Kahle PJ. UBE2N, UBE2L3 and UBE2D2/3 ubiquitin-conjugating enzymes are essential for parkin-dependent mitophagy. J Cell Sci 2014; 127:3280-93; http://dx.doi.org/10.1242/jcs.146035. PubMed DOI

Fiesel FC, Moussaud-Lamodiere EL, Ando M, Springer W. A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently. J Cell Sci 2014; 127:3488-504; http://dx.doi.org/10.1242/jcs.147520. PubMed DOI PMC

Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, et al.. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 2008; 134:668-78; http://dx.doi.org/10.1016/j.cell.2008.07.039. PubMed DOI

Muller M, Kotter P, Behrendt C, Walter E, Scheckhuber CQ, Entian KD, Reichert AS. Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy. Cell Rep 2015; 10:1215-25; http://dx.doi.org/10.1016/j.celrep.2015.01.044. PubMed DOI

N'Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 2009; 10:173-9; http://dx.doi.org/10.1038/embor.2008.238. PubMed DOI PMC

Chan EYW, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 2007; 282:25464-74; http://dx.doi.org/10.1074/jbc.M703663200. PubMed DOI

Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22:132-9; http://dx.doi.org/10.1016/j.ceb.2009.12.004. PubMed DOI

Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, Caldwell-Busby J. Mapping the phosphorylation sites of Ulk1. J Proteome Res 2009; 8:5253-63; http://dx.doi.org/10.1021/pr900583m. PubMed DOI

Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, Sue C, Gevaert K, De Strooper B, Verstreken P, et al.. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 2014; 23:5227-42. PubMed PMC

Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS, Sheng M. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014; 510:370-5. PubMed

Taillebourg E, Gregoire I, Viargues P, Jacomin AC, Thevenon D, Faure M, Fauvarque MO. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy 2012; 8:767-79; http://dx.doi.org/10.4161/auto.19381. PubMed DOI

Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006; 8:688-99; http://dx.doi.org/10.1038/ncb1426. PubMed DOI

Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS, Kim DH. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell 2015; 57:207-18; http://dx.doi.org/10.1016/j.molcel.2014.11.013. PubMed DOI PMC

Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM, Ganley IG. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J 2015. PubMed PMC

Pirooz SD, He S, Zhang T, Zhang X, Zhao Z, Oh S, O'Connell D, Khalilzadeh P, Amini-Bavil-Olyaee S, Farzan M, et al.. UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs. Proc Natl Acad Sci USA 2014; 111:2716-21; http://dx.doi.org/10.1073/pnas.1320629111. PubMed DOI PMC

Kosta A, Roisin-Bouffay C, Luciani MF, Otto GP, Kessin RH, Golstein P. Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J Biol Chem 2004; 279:48404-9; http://dx.doi.org/10.1074/jbc.M408924200. PubMed DOI

Oku M, Nishimura T, Hattori T, Ano Y, Yamashita S, Sakai Y. Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy. Autophagy 2006; 2:272-9; http://dx.doi.org/10.4161/auto.3135. PubMed DOI

Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 1990; 54:266-92. PubMed PMC

Hoffman M, Chiang H-L. Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 1996; 143:1555-66. PubMed PMC

Zhang C, Lee S, Peng Y, Bunker E, Giaime E, Shen J, Zhou Z, Liu X. PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr Biol 2014; 24:1854-65; http://dx.doi.org/10.1016/j.cub.2014.07.014. PubMed DOI PMC

Darsow T, Rieder SE, Emr SD. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 1997; 138:517-29; http://dx.doi.org/10.1083/jcb.138.3.517. PubMed DOI PMC

Fader CM, Sanchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta 2009; 1793:1901-16; http://dx.doi.org/10.1016/j.bbamcr.2009.09.011. PubMed DOI

Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Autophagosome precursor maturation requires homotypic fusion. Cell 2011; 146:303-17; http://dx.doi.org/10.1016/j.cell.2011.06.023. PubMed DOI PMC

Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell 2010; 21:1001-10; http://dx.doi.org/10.1091/mbc.E09-08-0693. PubMed DOI PMC

Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 2009; 187:875-88; http://dx.doi.org/10.1083/jcb.200908115. PubMed DOI PMC

Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 2010; 6:217-27; http://dx.doi.org/10.4161/auto.6.2.11014. PubMed DOI PMC

Donohue E, Tovey A, Vogl AW, Arns S, Sternberg E, Young RN, Roberge M. Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin. J Biol Chem 2011; 286:7290-300; http://dx.doi.org/10.1074/jbc.M110.139915. PubMed DOI PMC

Kaelin WG., Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008; 8:865-73; http://dx.doi.org/10.1038/nrc2502. PubMed DOI

Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. Escape of intracellular Shigella from autophagy. Science 2005; 307:727-31; http://dx.doi.org/10.1126/science.1106036. PubMed DOI

Vaccaro MI, Ropolo A, Grasso D, Iovanna JL. A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy 2008; 4:388-90; http://dx.doi.org/10.4161/auto.5656. PubMed DOI

Calvo-Garrido J, King JS, Munoz-Braceras S, Escalante R. Vmp1 regulates PtdIns3P signaling during autophagosome formation in Dictyostelium discoideum. Traffic 2014; 15:1235-46; http://dx.doi.org/10.1111/tra.12210. PubMed DOI

Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep 2013; 3:1055; http://dx.doi.org/10.1038/srep01055. PubMed DOI PMC

Balderhaar HJ, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 2013; 126:1307-16; http://dx.doi.org/10.1242/jcs.107805. PubMed DOI

Nickerson DP, Brett CL, Merz AJ. Vps-C complexes: gatekeepers of endolysosomal traffic. Curr Opin Cell Biol 2009; 21:543-51; http://dx.doi.org/10.1016/j.ceb.2009.05.007. PubMed DOI PMC

Clancey LF, Beirl AJ, Linbo TH, Cooper CD. Maintenance of melanophore morphology and survival is cathepsin and vps11 dependent in zebrafish. PloS One 2013; 8:e65096. PubMed PMC

Uttenweiler A, Schwarz H, Neumann H, Mayer A. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 2007; 18:166-75; http://dx.doi.org/10.1091/mbc.E06-08-0664. PubMed DOI PMC

Simonsen A, Birkeland HC, Gillooly DJ, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 2004; 117:4239-51; http://dx.doi.org/10.1242/jcs.01287. PubMed DOI

Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, et al.. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010; 38:265-79; http://dx.doi.org/10.1016/j.molcel.2010.04.007. PubMed DOI PMC

Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, Overvatn A, Stenmark H, Bjorkoy G, Simonsen A, et al.. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 2010; 6:330-44; http://dx.doi.org/10.4161/auto.6.3.11226. PubMed DOI

Kast DJ, Zajac AL, Holzbaur EL, Ostap EM, Dominguez R. WHAMM Directs the Arp2/3 Complex to the ER for Autophagosome Biogenesis through an Actin Comet Tail Mechanism. Curr Biol 2015; 25:1791-7; http://dx.doi.org/10.1016/j.cub.2015.05.042. PubMed DOI PMC

Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, Graf E, Sanford L, Meyer E, Kara E, et al.. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 2012; 91:1144-9; http://dx.doi.org/10.1016/j.ajhg.2012.10.019. PubMed DOI PMC

Abidi A, Mignon-Ravix C, Cacciagli P, Girard N, Milh M, Villard L. Early-onset epileptic encephalopathy as the initial clinical presentation of WDR45 deletion in a male patient. Eur J Hum Genet 2015. PubMed PMC

Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, et al.. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013; 45:445-9, 9e1; http://dx.doi.org/10.1038/ng.2562. PubMed DOI

Biagosch CA, Hensler S, Kühn R, Meitinger T, Prokisch HT. ALEN-mediated mutagenesis as a tool to generate disease models for diseases caused by dominant de novo mutations. Eur J Hum Genet 2014; 22:153.

Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Tar 2012; 16:1203-14; http://dx.doi.org/10.1517/14728222.2012.719499. PubMed DOI PMC

Petherick KJ, Williams AC, Lane JD, Ordonez-Moran P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C, et al.. Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 2013; 32:1903-16; http://dx.doi.org/10.1038/emboj.2013.123. PubMed DOI PMC

Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin Immunol 2009; 21:156-63; http://dx.doi.org/10.1016/j.smim.2009.01.001. PubMed DOI PMC

Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005; 120:159-62. PubMed

Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Diaz J, Lavandero S, Harper F, et al.. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 2007; 14:1029-39. PubMed

Kweon Y, Rothe A, Conibear E, Stevens TH. Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 2003; 14:1868-81; http://dx.doi.org/10.1091/mbc.E02-10-0687. PubMed DOI PMC

Cebollero E, van der Vaart A, Zhao M, Rieter E, Klionsky DJ, Helms JB, Reggiori F. Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion. Curr Biol 2012; 22:1545-53; http://dx.doi.org/10.1016/j.cub.2012.06.029. PubMed DOI PMC

Cheng J, Fujita A, Yamamoto H, Tatematsu T, Kakuta S, Obara K, Ohsumi Y, Fujimoto T. Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries. Nat Commun 2014; 5:3207. PubMed

Huang J, Birmingham CL, Shahnazari S, Shiu J, Zheng YT, Smith AC, Campellone KG, Heo WD, Gruenheid S, Meyer T, et al.. Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase. Autophagy 2011; 7:17-26; http://dx.doi.org/10.4161/auto.7.1.13840. PubMed DOI PMC

Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11:1246-61; http://dx.doi.org/10.1111/j.1600-0854.2010.01086.x. PubMed DOI

Pozuelo-Rubio M. Regulation of autophagic activity by 14-3-3zeta proteins associated with class III phosphatidylinositol-3-kinase. Cell Death Differ 2011; 18:479-92; http://dx.doi.org/10.1038/cdd.2010.118. PubMed DOI PMC

Vantaggiato C, Crimella C, Airoldi G, Polishchuk R, Bonato S, Brighina E, Scarlato M, Musumeci O, Toscano A, Martinuzzi A, et al.. Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. Brain 2013; 136:3119-39; http://dx.doi.org/10.1093/brain/awt227. PubMed DOI PMC

Lin JF, Lin YC, Lin YH, Tsai TF, Chou KY, Chen HE, Hwang TI. Zoledronic acid induces autophagic cell death in human prostate cancer cells. J Urol 2011; 185:1490-6; http://dx.doi.org/10.1016/j.juro.2010.11.045. PubMed DOI

Schneider EM, Lorezn M, Walther P. Autophagy as a hallmark of hemophagocytic diseases In: Gorbunov N, ed. Autophagy: Principles, Regulation and Roles in Disease: Nova Science Publishers, 2012.

Ryhanen T, Hyttinen JM, Kopitz J, Rilla K, Kuusisto E, Mannermaa E, Viiri J, Holmberg CI, Immonen I, Meri S, et al.. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 2009; 13:3616-31; http://dx.doi.org/10.1111/j.1582-4934.2008.00577.x. PubMed DOI PMC

Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin V, Nori SL, Calissano P. Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci 2014; 6:18; http://dx.doi.org/10.3389/fnagi.2014.00018. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Role of Heat Shock Proteins and Autophagy in Mechanisms Underlying Effects of Sulforaphane on Doxorubicin-Induced Toxicity in HEK293 Cells

. 2023 Jun 09 ; 72 (S1) : S47-S59.

Discovery of autism/intellectual disability somatic mutations in Alzheimer's brains: mutated ADNP cytoskeletal impairments and repair as a case study

. 2021 May ; 26 (5) : 1619-1633. [epub] 20191030

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1

. 2021 Jan ; 17 (1) : 1-382. [epub] 20210208

Consensus guidelines for the definition, detection and interpretation of immunogenic cell death

. 2020 Mar ; 8 (1) : .

AGR2 silencing contributes to metformin-dependent sensitization of colorectal cancer cells to chemotherapy

. 2019 Nov ; 18 (5) : 4964-4973. [epub] 20190904

Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)

. 2019 Oct ; 49 (10) : 1457-1973.

Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation

. 2019 Jun ; 11 (6) : .

Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma-A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis

. 2019 Mar 12 ; 8 (3) : . [epub] 20190312

The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species

. 2019 Feb 19 ; 10 (1) : 651. [epub] 20190219

Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness

. 2018 Mar 14 ; 69 (6) : 1415-1432.

Aspirin Recapitulates Features of Caloric Restriction

. 2018 Feb 27 ; 22 (9) : 2395-2407.

Guidelines for the use of flow cytometry and cell sorting in immunological studies

. 2017 Oct ; 47 (10) : 1584-1797.

Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells

. 2017 Mar 04 ; 8 (2) : 205-221. [epub] 20170109

Metabolic effects of fasting on human and mouse blood in vivo

. 2017 Mar 04 ; 13 (3) : 567-578. [epub] 20170106

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...