Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu směrnice, časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
R01 GM116908
NIGMS NIH HHS - United States
I01 BX001110
BLRD VA - United States
R01 CA078810
NCI NIH HHS - United States
R15 AI089518
NIAID NIH HHS - United States
R03 DK092434
NIDDK NIH HHS - United States
R01 EY026171
NEI NIH HHS - United States
I01 BX000976
BLRD VA - United States
R01 CA187305
NCI NIH HHS - United States
R01 AI091968
NIAID NIH HHS - United States
R01 NS078072
NINDS NIH HHS - United States
R01 HL126711
NHLBI NIH HHS - United States
R01 EY010199
NEI NIH HHS - United States
R01 DK044234
NIDDK NIH HHS - United States
R01 AR050429
NIAMS NIH HHS - United States
R01 HL072844
NHLBI NIH HHS - United States
MC_UU_12016/4
Medical Research Council - United Kingdom
R01 DK083575
NIDDK NIH HHS - United States
P20 RR024489
NCRR NIH HHS - United States
R21 AI115286
NIAID NIH HHS - United States
11359
Cancer Research UK - United Kingdom
13101
Cancer Research UK - United Kingdom
MC_UP_A390_1106
Medical Research Council - United Kingdom
K08 DK089117
NIDDK NIH HHS - United States
R01 GM021841
NIGMS NIH HHS - United States
P30 CA016672
NCI NIH HHS - United States
R01 NS065789
NINDS NIH HHS - United States
R01 CA159314
NCI NIH HHS - United States
R56 DK108921
NIDDK NIH HHS - United States
R01 CA140964
NCI NIH HHS - United States
R01 AI087669
NIAID NIH HHS - United States
MR/J010448/1
Medical Research Council - United Kingdom
R01 CA132136
NCI NIH HHS - United States
R01 EY024327
NEI NIH HHS - United States
MC_U132670600
Medical Research Council - United Kingdom
145505
Swiss National Science Foundation - Switzerland
R01 DK097441
NIDDK NIH HHS - United States
I01 BX001969
BLRD VA - United States
R03 DK106304
NIDDK NIH HHS - United States
R01 EY018884
NEI NIH HHS - United States
G0300648
Medical Research Council - United Kingdom
U54 CA149147
NCI NIH HHS - United States
R01 NS069566
NINDS NIH HHS - United States
R01 AG032611
NIA NIH HHS - United States
R01 DK076685
NIDDK NIH HHS - United States
R01 AG039756
NIA NIH HHS - United States
R01 CA138441
NCI NIH HHS - United States
U01 DK127747
NIDDK NIH HHS - United States
14BGIA20030027
American Heart Association-American Stroke Association - United States
R01 HL107594
NHLBI NIH HHS - United States
16337
Cancer Research UK - United Kingdom
K12 GM068524
NIGMS NIH HHS - United States
K08 CA193982
NCI NIH HHS - United States
K02 AG042095
NIA NIH HHS - United States
P01 DK098108
NIDDK NIH HHS - United States
P30 ES006694
NIEHS NIH HHS - United States
R01 AG020197
NIA NIH HHS - United States
R01 HL071158
NHLBI NIH HHS - United States
GM053396
NIGMS NIH HHS - United States
BBS/E/B/000C0413
Biotechnology and Biological Sciences Research Council - United Kingdom
R01 GM097355
NIGMS NIH HHS - United States
P01 CA108671
NCI NIH HHS - United States
R01 HL130230
NHLBI NIH HHS - United States
R01 DK079879
NIDDK NIH HHS - United States
16466
Cancer Research UK - United Kingdom
I01 BX002363
BLRD VA - United States
P42 ES027723
NIEHS NIH HHS - United States
K08 CA164047
NCI NIH HHS - United States
R01 HL079669
NHLBI NIH HHS - United States
R01 AR042527
NIAMS NIH HHS - United States
R01 AA022601
NIAAA NIH HHS - United States
R01 EY026885
NEI NIH HHS - United States
R01 DK090115
NIDDK NIH HHS - United States
K-1202
Parkinson's UK - United Kingdom
K01 DK075386
NIDDK NIH HHS - United States
P30 CA010815
NCI NIH HHS - United States
R01 AR060837
NIAMS NIH HHS - United States
G0801936
Medical Research Council - United Kingdom
R01 HL077328
NHLBI NIH HHS - United States
R15 GM102846
NIGMS NIH HHS - United States
R01 NS073813
NINDS NIH HHS - United States
R01 NS076896
NINDS NIH HHS - United States
11975
Cancer Research UK - United Kingdom
K01 AA019996
NIAAA NIH HHS - United States
R01 HL116329
NHLBI NIH HHS - United States
R01 DK033823
NIDDK NIH HHS - United States
R01 CA089121
NCI NIH HHS - United States
R00 DK094980
NIDDK NIH HHS - United States
NC/L000199/1
National Centre for the Replacement, Refinement and Reduction of Animals in Research - United Kingdom
R01 DK098331
NIDDK NIH HHS - United States
R01 NS091218
NINDS NIH HHS - United States
R01 GM096193
NIGMS NIH HHS - United States
R03 DK089010
NIDDK NIH HHS - United States
R01 AT005076
NCCIH NIH HHS - United States
R01 CA184137
NCI NIH HHS - United States
R01 EY024581
NEI NIH HHS - United States
R01 GM053396
NIGMS NIH HHS - United States
I01 RX000444
RRD VA - United States
R01 HL117233
NHLBI NIH HHS - United States
R21 DK075494
NIDDK NIH HHS - United States
R01 HL114697
NHLBI NIH HHS - United States
MC_UU_12022/6
Medical Research Council - United Kingdom
R01 EY009083
NEI NIH HHS - United States
R01 CA178394
NCI NIH HHS - United States
G12 MD007595
NIMHD NIH HHS - United States
087518
Wellcome Trust - United Kingdom
R01 HL085629
NHLBI NIH HHS - United States
R01 HL117913
NHLBI NIH HHS - United States
R37 AG021904
NIA NIH HHS - United States
R00 AG042494
NIA NIH HHS - United States
P20 GM104934
NIGMS NIH HHS - United States
R01 AR062030
NIAMS NIH HHS - United States
R01 NS062792
NINDS NIH HHS - United States
P30 AG028740
NIA NIH HHS - United States
R01 HL059888
NHLBI NIH HHS - United States
P01 CA163200
NCI NIH HHS - United States
R01 EY028559
NEI NIH HHS - United States
R01 AG045223
NIA NIH HHS - United States
R21 DA029249
NIDA NIH HHS - United States
R56 DK037034
NIDDK NIH HHS - United States
R01 EY022633
NEI NIH HHS - United States
R15 CA151112
NCI NIH HHS - United States
MR/M019217/1
Medical Research Council - United Kingdom
R03 DK106344
NIDDK NIH HHS - United States
H-1201
Parkinson's UK - United Kingdom
R56 NS065789
NINDS NIH HHS - United States
R01 EY026979
NEI NIH HHS - United States
P20 GM103554
NIGMS NIH HHS - United States
R01 CA109182
NCI NIH HHS - United States
R01 CA184208
NCI NIH HHS - United States
K08 NS085324
NINDS NIH HHS - United States
R01 CA175120
NCI NIH HHS - United States
R01 AI146180
NIAID NIH HHS - United States
R01 CA193698
NCI NIH HHS - United States
F-1002
Parkinson's UK - United Kingdom
R01 CA122346
NCI NIH HHS - United States
R01 AI108906
NIAID NIH HHS - United States
14-1328
Worldwide Cancer Research - United Kingdom
R37 AI042999
NIAID NIH HHS - United States
MC_UP_A500_1019
Medical Research Council - United Kingdom
R01 CA143811
NCI NIH HHS - United States
R01 AI137198
NIAID NIH HHS - United States
R01 DK100163
NIDDK NIH HHS - United States
P20 GM103492
NIGMS NIH HHS - United States
R01 EY015537
NEI NIH HHS - United States
12918
Cancer Research UK - United Kingdom
R01 AI139675
NIAID NIH HHS - United States
MR/N004434/1
Medical Research Council - United Kingdom
P20 GM103652
NIGMS NIH HHS - United States
K22 CA181274
NCI NIH HHS - United States
R01 AI111935
NIAID NIH HHS - United States
K08 NS083739
NINDS NIH HHS - United States
MC_U105185860
Medical Research Council - United Kingdom
R03 NS087338
NINDS NIH HHS - United States
MC_U105170648
Medical Research Council - United Kingdom
P30 DK020541
NIDDK NIH HHS - United States
P30 DK020593
NIDDK NIH HHS - United States
I01 BX001746
BLRD VA - United States
R01 DK073336
NIDDK NIH HHS - United States
16464
Cancer Research UK - United Kingdom
R01 NS075685
NINDS NIH HHS - United States
R01 NS057553
NINDS NIH HHS - United States
R01 NS089737
NINDS NIH HHS - United States
P30 ES023512
NIEHS NIH HHS - United States
15816
Cancer Research UK - United Kingdom
T32 CA009686
NCI NIH HHS - United States
R01 EY027733
NEI NIH HHS - United States
R00 DK087928
NIDDK NIH HHS - United States
R01 HL056416
NHLBI NIH HHS - United States
R01 AA019954
NIAAA NIH HHS - United States
U54 HD090255
NICHD NIH HHS - United States
R01 HL130845
NHLBI NIH HHS - United States
R35 CA220446
NCI NIH HHS - United States
R01 AA021751
NIAAA NIH HHS - United States
R03 NS090939
NINDS NIH HHS - United States
R01 GM061766
NIGMS NIH HHS - United States
T32 AI007538
NIAID NIH HHS - United States
R01 NS085070
NINDS NIH HHS - United States
R01 AG026389
NIA NIH HHS - United States
R01 NS077239
NINDS NIH HHS - United States
12825
Cancer Research UK - United Kingdom
18974
Cancer Research UK - United Kingdom
P30 DK020579
NIDDK NIH HHS - United States
R01 DK062777
NIDDK NIH HHS - United States
R21 NS091928
NINDS NIH HHS - United States
R01 DK062092
NIDDK NIH HHS - United States
R01 GM060574
NIGMS NIH HHS - United States
I01 RX001477
RRD VA - United States
P30 DK020572
NIDDK NIH HHS - United States
R01 DK105118
NIDDK NIH HHS - United States
R01 HL130174
NHLBI NIH HHS - United States
R01 GM089919
NIGMS NIH HHS - United States
MR/M00869X/1
Medical Research Council - United Kingdom
G0601891
Medical Research Council - United Kingdom
R37 AI103197
NIAID NIH HHS - United States
R01 CA142862
NCI NIH HHS - United States
R01 CA149646
NCI NIH HHS - United States
R01 HL072166
NHLBI NIH HHS - United States
R01 HL098216
NHLBI NIH HHS - United States
R21 AR060444
NIAMS NIH HHS - United States
R01 EY005681
NEI NIH HHS - United States
R01 NS079697
NINDS NIH HHS - United States
19276
Cancer Research UK - United Kingdom
R01 AG038664
NIA NIH HHS - United States
R01 AR064420
NIAMS NIH HHS - United States
R01 GM114840
NIGMS NIH HHS - United States
R01 EY025362
NEI NIH HHS - United States
G1002186
Medical Research Council - United Kingdom
2014112
Doris Duke Charitable Foundation - United States
R15 AI119980
NIAID NIH HHS - United States
R00 AG048016
NIA NIH HHS - United States
MR/K019384/1
Medical Research Council - United Kingdom
R01 DK061498
NIDDK NIH HHS - United States
MR/L010933/1
Medical Research Council - United Kingdom
R01 DK107220
NIDDK NIH HHS - United States
R01 CA162405
NCI NIH HHS - United States
R01 EY010577
NEI NIH HHS - United States
10SDG2600164
American Heart Association-American Stroke Association - United States
RF1 AG043517
NIA NIH HHS - United States
R01 AI092084
NIAID NIH HHS - United States
R01 GM117466
NIGMS NIH HHS - United States
P01 AG031782
NIA NIH HHS - United States
R21 AI113526
NIAID NIH HHS - United States
R01 CA130893
NCI NIH HHS - United States
R01 EY013434
NEI NIH HHS - United States
R01 CA129536
NCI NIH HHS - United States
R56 HL122580
NHLBI NIH HHS - United States
R01 GM101056
NIGMS NIH HHS - United States
R01 GM063075
NIGMS NIH HHS - United States
R01 AG031867
NIA NIH HHS - United States
P20 GM103625
NIGMS NIH HHS - United States
G1000089
Medical Research Council - United Kingdom
R01 NS078560
NINDS NIH HHS - United States
R01 AI104928
NIAID NIH HHS - United States
15890
Cancer Research UK - United Kingdom
R01 AR059115
NIAMS NIH HHS - United States
R01 DK094652
NIDDK NIH HHS - United States
R01 DK095842
NIDDK NIH HHS - United States
PubMed
26799652
PubMed Central
PMC4835977
DOI
10.1080/15548627.2015.1100356
Knihovny.cz E-zdroje
- Klíčová slova
- LC3, autolysosome, autophagosome, chaperone-mediated autophagy, flux, lysosome, macroautophagy, phagophore, stress, vacuole,
- MeSH
- autofagie * fyziologie MeSH
- biotest metody normy MeSH
- lidé MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
A*STAR Institute of Molecular and Cell Biology Singapore
Aarhus University Department of Biomedicine Aarhus Denmark
Aix Marseille Université CNRS IBDM UMR 7288 Campus de Luminy Marseille France
Albert Einstein College of Medicine Department of Medicine Bronx NY USA
Albert Einstein College of Medicine Departments of Biochemistry and of Medicine Bronx NY USA
Amorepacific Corporation RandD Center Bioscience Research Institute Gyeonggi Korea
b Albert Einstein College of Medicine Department of Molecular Pharmacology Bronx NY USA
b Catholic University of Korea Seoul Korea
b Georgia Regents University Department of Neurology Augusta GA USA
b Ludwig Maximilians University Munich Department of Pharmacy Munich Germany
b Sapienza University of Rome Department of Experimental Medicine Rome Italy
ba Baker IDI Heart and Diabetes Institute Molecular Cardiology Laboratory Melbourne Australia
ba Max Planck Institute of Biochemistry Molecular Membrane and Organelle Biology Martinsried Germany
baa Université Paris Est Institut Mondor de Recherche Biomédicale Paris France
bac Université Paris Sud CEA CNRS Paris France
bad Université Paris Sud INSERM 1030 Gustave Roussy Cancer Campus Paris France
bae Université Paris Sud Institut Gustave Roussy CNRS UMR 8126 Villejuif France
bah University G dAnnunzio Department of Medical Oral and Biotechnological Sciences Chieti Italy
bai University Magna Graecia of Catanzaro Department of Health Sciences Catanzaro Italy
baj University Belgrade School of Medicine Belgrade Serbia
bak University Bourgogne Franche Comté EA 7270 INSERM Dijon France
bal University Clinic Heidelberg Department of Experimental Surgery Heidelberg Germany
bam University Clinics Institute of Cellular and Molecular Anatomy Frankfurt Germany
ban University College Cork Cork Cancer Research Centre BioSciences Institute Co Cork Ireland
bap University College Dublin School of Chemical and Bioprocess Engineering Dublin Ireland
baq University College London Department of Clinical Neurosciences London UK
bar University College London MRC Laboratory for Molecular Cell Biology London UK
bau University Hospital Aachen IZKF and Department of Internal Medicine 3 Aachen Germany
baw University Hospital Cologne CECAD Research Center Cologne Germany
bax University Hospital Erlangen Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
bay University Hospital Freiburg Department of Medicine 2 Freiburg Germany
bb Baylor College of Medicine Department of Medicine Houston TX USA
bba University Hospital La Coruña Microbiology Department La Coruña Spain
bbc University Hospital of Göttingen Department of Nephrology and Rheumatology Göttingen Germany
bbf University Hospital Ulm Sektion Experimentelle Anaestesiologie Ulm Germany
bbg University Hospital Zürich Division of Gastroenterology and Hepatolog Zürich Switzerland
bbi University Hospitals Leuven Department of Neurology Leuven Belgium
bbk University Lille INSERM CHU Lille Institut Pasteur de Lille U1011 EGID Lille France
bbl University Medical Center Freiburg Freiburg Germany
bbn University Medical Center Hamburg Eppendorf Institute of Neuropathology Hamburg Germany
bbp University Medical Center Utrecht Department of Cell Biology Groningen The Netherlands
bbt University Medicine Göttingen Department of Neurology Göttingen Germany
bbu University Montpellier 1 INSERM U1051 Montpellier France
bbv University Montpellier UMR5235 Montpellier France
bbw University of Aberdeen Division of Applied Medicine Aberdeen UK
bbx University of Adelaide Alzheimer's Disease Genetics Laboratory Adelaide Australia
bc Baylor College of Medicine Department of Molecular and Human Genetics Houston TX USA
bc Max Planck Institute of Psychiatry Translational Research in Psychiatry Munich Germany
bcb University of Alabama at Birmingham Department of Pathology Birmingham AL USA
bce University of Alabama Department of Chemical and Biological Engineering Tuscaloosa AL USA
bcf University of Alberta Department of Biochemistry Edmonton Alberta Canada
bcl University of Antwerp Department of Paediatric Oncology Antwerp Belgium
bcm University of Antwerp Laboratory of Physiopharmacology Wilrijk Antwerp Belgium
bcn University of Arizona Cancer Center Department of Medicine Tucson AZ USA
bcp University of Arizona Department of Entomology Tucson AZ USA
bcr University of Arkansas for Medical Sciences Department of Cardiology Little Rock AR USA
bcu University of Arkansas Center of Excellence for Poultry Science Fayetteville AR USA
bcv University of Athens Department of Cell Biology and Biophysics Faculty of Biology Athens Greece
bcx University of Groningen Department of Cell Biology Groningen The Netherlands
bcz University of Aveiro QOPNA Department of Chemistry Aveiro Portugal
bd Mayo Clinic Department of Biochemistry Rochester MN USA
bdb University of Barcelona School of Medicine Campus Bellvitge Hospitalet del Llobregat Spain
bde University of Bari 'Aldo Moro' Division of Medical Genetics DIMO School of Medicine Bari Italy
bdf University of Basel Biozentrum Basel BS Switzerland
bdg University of Basel Biozentrum Basel Switzerland
bdh University of Bayreuth Cell Biology Bayreuth Germany
bdi University of Bayreuth Department of Biochemistry Bayreuth Germany
bdj University of Belgrade Institute for Biological Research Sinisa Stankovic Belgrade Serbia
bdk University of Belgrade Institute of Histology and Embryology School of Medicine Belgrade Serbia
bdm University of Belgrade School of Medicine Belgrade Serbia
bdn University of Belgrade School of Medicine Institute of Histology and Embryology Belgrade Serbia
bdo University of Bern Division of Experimental Pathology Institute of Pathology Bern Switzerland
bdq University of Bern Institute of Biochemistry and Molecular Medicine Bern Switzerland
bdr University of Bern Institute of Pharmacology Bern Switzerland
bdt University of Birmingham Institute of Immunology and Immunotherapy Birmingham West Midlands UK
bdu University of Bologna Department of Biomedical and Neuromotor Sciences Bologna Italy
bdv University of Bologna Dipartimento di Scienze Biomediche e Neuromotorie Bologna Italy
bdw University of Bonn Department of Neurology Bonn Germany
bdx University of Bonn Institute for Cell Biology Bonn Germany
bdy University of Bonn Institute of Reconstructive Neurobiology Bonn Germany
bdz University of Brescia Department of Molecular and Translational Medicine Brescia Italy
be Beatson Institute for Cancer Research University of Glasgow Glasgow UK
be Mayo Clinic Department of Neuroscience Jacksonville FL USA
bea University of Bristol School of Biochemistry Bristol UK
beb University of Bristol School of Cellular and Molecular Medicine Bristol UK
bei University of British Columbia Department of Psychiatry Vancouver BC Canada
bej University of British Columbia Department of Urological Sciences Vancouver BC Canada
bem University of British Columbia Michael Smith Laboratories Vancouver British Columbia Canada
bev University of Calgary Faculty of Veterinary Medicine Calgary AB Canada
bew University of California Berkeley Department of Molecular and Cell Biology Berkeley CA USA
bey University of California Davis Cancer Center Davis CA USA
bf Beckman Research Institute City of Hope Department of Molecular Pharmacology Duarte CA USA
bf Mayo Clinic Division of Nephrology and Hypertension Rochester MN USA
bfa University of California Davis Department of Molecular and Cellular Biology Davis CA USA
bfb University of California Davis Department of Neurobiology Physiology and Behavior Davis CA USA
bfd University of California Davis Mann Laboratory Department of Plant Sciences Davis CA USA
bfe University of California Irvine Department of Developmental and Cell Biology Irvine CA USA
bff University of California Irvine Department of Neurosurgery Irvine CA USA
bfg University of California Irvine Department of Psychiatry and Human Behavior Irvine CA USA
bfh University of California Irvine Irvine CA USA
bfi University of California Los Angeles Department of Medicine Los Angeles CA USA
bfk University of California Riverside Department of Cell Biology and Neuroscience Riverside CA USA
bfl University of California San Diego Department of Cellular and Molecular Medicine La Jolla CA USA
bfm University of California San Diego Department of Medicine La Jolla CA USA
bfn University of California San Diego Department of Medicine San Diego CA USA
bfo University of California San Diego Department of Pathology La Jolla CA USA
bfq University of California San Diego Department of Pediatrics La Jolla CA USA
bfs University of California San Diego Department of Pharmacology La Jolla CA USA
bfu University of California San Diego Division of Biological Sciences La Jolla CA USA
bfx University of California San Diego San Diego Center for Systems Biology La Jolla CA USA
bfy University of California San Diego Moores Cancer Center La Jolla CA USA
bfz University of California San Diego School of Medicine Department of Psychiatry La Jolla CA USA
bg Mayo Clinic Rochester MN USA
bgc University of California San Francisco Department of Neurological Surgery San Francisco CA USA
bgd University of California San Francisco Department of Neurology San Francisco CA USA
bge FONDAP Center for Geroscience Brain Health and Metabolism Santiago Chile
bgg University of California San Francisco Department of Surgery San Francisco CA USA
bgl University of Cambridge Addenbrooke's Hospital Department of Medicine Cambridge UK
bgn University of Cambridge Cambridge Institute for Medical Research Cambridge UK
bgo University of Cambridge Cancer Research UK Cambridge Institute Li Ka Shing Centre Cambridge UK
bgp University of Cambridge Department of BIochemistry Cambridge UK
bgr University of Cambridge Department of Medicine Addenbrooke's Hospital Cambridge UK
bgs University of Cambridge Division of Virology Department of Pathology Cambridge UK
bgt University of Camerino School of Biosciences and Veterinary Medicine Camerino Italy
bgu University of Camerino School of Pharmacy Camerino Italy
bgv University of Camerino School of Pharmacy Section of Experimental Medicine Camerino MC Italy
bgw University of Campinas Department of Biochemistry and Tissue Biology Campinas São Paulo Brazil
bgy University of Cape Town Department of Human Biology Cape Town Western Province South Africa
bgz University of Cape Town Redox Laboratory Department of Human Biology Cape Town South Africa
bh Beechcroft Fulbourn Hospital Cambridge UK
bhb University of Chicago Department of Medicine Section of Dermatology Chicago IL USA
bhc University of Chicago Department of Pathology Chicago IL USA
bhd University of Chicago Pritzker School of Medicine Department of Neurology Chicago IL USA
bhe University of Chicago The Ben May Department for Cancer Research Chicago IL USA
bhh University of Chile Biomedical Neuroscience Institute Santiago Chile
bhi University of Chile Faculty of Medicine ICBM Molecular and Clinical Pharmacology Santiago Chile
bhl University of Cincinnati College of Medicine Department of Cancer Biology Cincinnati OH USA
bhm University of Cincinnati Cincinnati Children's Hospital Cincinnati OH USA
bhn University of Cincinnati Cincinnati OH USA
bhq University of Coimbra CNC Center for Neuroscience and Cell Biology Cantanhede Portugal
bhr University of Coimbra Coimbra Portugal
bht University of Coimbra IBILI Faculty of Medicine Coimbra Portugal
bhu University of Cologne Department of Dermatology Cologne Germany
bhv University of Cologne Institute for Genetics CECAD Research Center Cologne Germany
bhw University of Cologne Institute of Biochemistry 1 Medical Faculty Koeln Germany
bhx University of Cologne Medical Faculty Center for Biochemistry Cologne Germany
bhy University of Colorado Denver Boulder CO USA
bhz University of Colorado Denver Division of Medical Oncology Department of Medicine Aurora CO USA
bi McGill University Department of Anatomy and Cell Biology Montreal Canada
bib University of Colorado Denver ; and Denver VAMC Denver CO USA
bid University of Colorado HHMI Department of Chemistry and Biochemistry Aurora CO USA
bie University of Colorado School of Medicine Anschutz Medical Campus Aurora CO USA
bif University of Colorado School of Medicine Aurora CO USA
bih University of Colorado School of Medicine Department of Pharmacology Aurora CO USA
bii University of Colorado School of Medicine Division of Infectious Diseases Aurora CO USA
bij University of Copenhagen Biotech Research and Innovative Center Copenhagen Denmark
bik University of Copenhagen Department of Biology Copenhagen Denmark
bim University of Crete Department of Basic Sciences Faculty of Medicine Heraklion Crete Greece
bin University of Crete Institute of Molecular Biology and Biotechnology Heraklion Crete Greece
bio University of Crete School of Medicine Department of Infectious Diseases Heraklion Crete Greece
biq University of Debrecen Debrecen Hungary
bir University of Debrecen Faculty of Pharmacy Department of Pharmacology Debrecen Hungary
bis University of Delaware Department of Biological Sciences Newark DE USA
bit University of Delaware The Center for Translational Cancer Research Newark DE USA
biu University of Dundee Centre for Gene Regulation and Expression College of Life Sciences UK
biw University of East Anglia Norwich Medical School Norfolk UK
biz University of Edinburgh Easter Bush The Roslin Insitute Midlothian UK
bj McGill University Department of Biochemistry Montreal Quebec Canada
bja University of Edinburgh Edinburgh Cancer Research Centre Edinburgh UK
bjc University of Erlangen Nuremberg Department of Internal Medicine 3 Erlangen Germany
bje University of Exeter School of Biosciences Exeter UK
bjf University of Extremadura Department of Medicine Faculty of Veterinary Medicine Cáceres Spain
bjg University of Ferrara Department of Morphology Surgery and Experimental Medicine Ferrara Italy
bjh University of Florence Department of Biology Florence Italy
bjj University of Florida College of Medicine Department of Neuroscience Gainesville FL USA
bjk University of Florida Department of Aging and Geriatric Research Gainesville FL USA
bjm University of Florida Department of Applied Physiology and Kinesiology Gainesville FL USA
bjn University of Florida Department of Pediatrics Genetics and Metabolism Gainesville FL USA
bjo University of Florida Department of Surgery Gainesville FL USA
bjp University of Florida Gainesville FL USA
bjq University of Florida Institute on Aging Gainesville FL USA
bjt University of Fribourg Department of Medicine Division of Physiology Fribourg Switzerland
bju University of Geneva Department of Cellular Physiology and Metabolism Geneva Switzerland
bjx University of Georgia Department of Infectious Diseases Athens GA USA
bjy University of Glasgow Cancer Research UK Beatson Institute Glasgow UK
bjz University of Glasgow Institute of Cancer Sciences Glasgow UK
bk McGill University Department of Critical Care Montreal Quebec Canada
bka University of Glasgow Institute of Infection Immunity and Inflammation Glasgow UK
bkc University of Göttingen Department of Geobiology Göttingen Germany
bkd University of Göttingen Department of Neurology Göttingen Germany
bke University of Graz Institute of Molecular Biosciences BioTechMed Graz Graz Austria
bkf University of Groningen Molecular Cell Biology Groningen The Netherlands
bkg University of Heidelberg Center for Molecular Biology Heidelberg Germany
bkh University of Heidelberg Institute of Anatomy and Cell Biology Heidelberg Germany
bki University of Helsinki Biomedicum Helsinki Finland
bkj University of Helsinki Department of Biosciences Helsinki Finland
bkk University of Helsinki Department of Physiology Faculty of Medicine Helsinki Finland
bkl University of Hong Kong Department of Pharmacology and Pharmacy Hong Kong China
bkn University of Hong Kong Hong Kong China
bkr University of Idaho Plant Soil and Entomological Sciences Moscow ID USA
bkt University of Illinois at Chicago College of Medicine Department of Pediatrics Chicago IL USA
bku University of Illinois at Chicago Departments of Anesthesiology and Pharmacology Chicago IL USA
bkz University of Illinois at Urbana Champaign Institute for Genomic Biology Urbana IL USA
bl Bellvitge Biomedical Research Institute L'Hospitalet Cell Death Regulation Group Barcelona Spain
bl McGill University Department of Neuroscience Montreal Neurological Institute Montreal QC Canada
bla University of Innsbruck Institute for Biomedical Aging Research Innsbruck Austria
blb University of Insubria Department of Biotechnology and Life Sciences Varese Italy
blc University of Iowa Children's Hospital Iowa City IA USA
bld University of Iowa Department of Health and Human Physiology Iowa City IA USA
ble University of Iowa Department of Internal Medicine Iowa City IA USA
blf University of Iowa Department of Medicine Iowa City IA USA
blg University of Iowa Department of Ophthalmology and Visual Sciences Iowa City IA USA
blh University of Jyväskylä Department of Biology of Physical Activity Jyväskylä Finland
blm University of Kentucky Department of Biology Lexington KY USA
bln University of Kentucky Department of Molecular and Cellular Biochemistry Lexington KY USA
blo University of Kentucky Department of Pharmacology and Nutritional Sciences Lexington KY USA
blp University of Kentucky Department of Toxicology and Cancer Biology Lexington KY USA
blq University of Kiel Department of Cardiology Kiel Germany
blr University of Kiel Institute of Clinical Molecular Biology Kiel Germany
bls University of Kiel Institute of Human Nutrition and Food Science Kiel Germany
blv University of Lausanne Department of Biochemistry Epalinges Switzerland
blx University of Lausanne Department of Ophthalmology Lausanne Switzerland
bly Hakim Sabzevari University Department of Biology Faculty of Basic Sciences Sabzevar Iran
blz University of Leicester Department of Cancer Studies Leicester UK
bm Bellvitge Biomedical Research Institute Neurometabolic Diseases Laboratory Barcelona Spain
bm McGill University Department of Pharmacology and Therapeutics Montreal Quebec Canada
bma University of Leicester Department of Genetics Leicester UK
bmc University of Leuven Department of Neurosciences Leuven Belgium
bmf University of Lille INSERM UMR1011 Institut Pasteur de Lille EGID Lille France
bmg University of Limoges Department of Histology and Cell Biology Limoges France
bmi University of Ljubljana Institute of Cell Biology Faculty of Medicine Ljubljana Slovenia
bmk University of Louisiana at Monroe School of Pharmacy Monroe LA USA
bml University of Louisville Department of Biochemistry and Molecular Genetics Louisville KY USA
bmm University of Louisville Department of Medicine Louisville KY USA
bmo University of Louisville Department of Physiology Louisville KY USA
bms University of Luxembourg Luxembourg Center for Systems Biomedicine Luxembourg
bmw University of Manchester Faculty of Life Sciences Manchester UK
bmz University of Manitoba Department of Human Anatomy and Cell Science Winnipeg Manitoba Canada
bna University of Manitoba Department of Physiology and Pathophysiology Winnipeg Manitoba Canada
bnc University of Maryland Department of Nutrition and Food Science College Park MD USA
bnd University of Maryland Department of Veterinary Medicine College Park MD USA
bng University of Maryland School of Medicine Department of Anesthesiology Baltimore MD USA
bnh University of Maryland School of Medicine Department of Chemistry Baltimore MD USA
bnk University of Maryland School of Medicine Department of Pharmacology Baltimore MD USA
bnl University of Maryland School of Medicine Institute of Human Virology Baltimore MD USA
bnn University of Massachusetts Medical School Department of Neurology Worcester MA USA
bno University of Massachusetts Medical School Howard Hughes Medical Institute Worcester MA USA
bnr University of Melbourne Department of Pathology Parkville Victoria Australia
bns University of Melbourne Department of Physiology Parkville Australia
bnv University of Miami Miller School of Medicine Sylvester Comprehensive Cancer Center Miami FL USA
bnw University of Michigan Medical School Department of Internal Medicine Ann Arbor MI USA
bnx University of Michigan Medical School Department of Pathology Ann Arbor MI USA
bny University of Michigan Ann Arbor MI USA
bnz University of Michigan Department of Cell and Developmental Biology Ann Arbor MI USA
boa University of Michigan Department of Microbiology and Immunology Ann Arbor MI USA
bob University of Michigan Department of Molecular and Integrative Physiology Ann Arbor MI USA
bod University of Michigan Department of Ophthalmology and Visual Sciences Ann Arbor MI USA
boe University of Michigan Department of Radiation Oncology Ann Arbor MI USA
bog University of Michigan Life Sciences Institute Ann Arbor MI USA
boi University of Michigan Neurosurgery Ann Arbor MI USA
boj University of Michigan Ophthalmology and Visual Sciences Kellogg Eye Center Ann Arbor MI USA
bom University of Milan Department of Health Sciences Milan Italy
boq ICVS 3B's PT Government Associate Laboratory Braga Guimarães Portugal
bos University of Minnesota Department of Genetics Cell Biology and Development Minneapolis MN USA
bot University of Minnesota Department of Lab Medicine and Pathology Minneapolis MN USA
bou University of Minnesota Department of Neuroscience Minneapolis MN USA
bov University of Minnesota Department of Surgery Minneapolis MN USA
bow University of Modena and Reggio Emilia Department of Life Sciences Modena Italy
boz University of Montpellier INRA UMR 866 Dynamique Musculaire et Métabolisme Montpellier France
bp Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
bp McGill University Health Centre Department of Medicine Montreal Quebec Canada
bpa University of Montpellier UMR 866 Dynamique Musculaire et Métabolisme Montpellier France
bpb University of Montpellier UMR 5554 Montpellier France
bpe University of Namur Laboratory of Biochemistry and Cell Biology Namur Belgium
bpf University of Namur Research Unit in Molecular Physiology Namur Belgium
bph University of Nebraska Medical Center Department of Internal Medicine Omaha NE USA
bpi University of Nebraska Medical Center Omaha NE USA
bpl University of New Mexico Department of Internal Medicine Albuquerque NM USA
bpq University of Newcastle School of Biomedical Sciences and Pharmacy Newcastle NSW Australia
bpr University of Newcastle School of Medicine and Public Health Callaghan NSW Australia
bps University of Nice INSERM U1065 C3M Nice France
bpt University of Nice Sophia Antipolis INSERM U1081 CNRS 7284 Faculty of Medicine Nice France
bpv University of Nice Sophia Antipolis IRCAN Nice France
bpw University of Niigata Department of Neurosurgery Brain Research Institute Niigata Japan
bpx University of North Carolina Department of Genetics Chapel Hill NC USA
bpy University of North Carolina Department of Microbiology Immunology Chapel Hill NC USA
bpz University of North Carolina Lineberger Comprehensive Cancer Center Chapel Hill NC USA
bq Beth Israel Deaconess Medical Center Medical Genetics Boston MA USA
bqb University of North Carolina Microbiology and Immunology Chapel Hill NC USA
bqe University of Nottingham School of Life Sciences Nottingham UK
bqh University of Oklahoma Health Sciences Center Department of Medicine Oklahoma City OK USA
bqi University of Oklahoma Health Sciences Center Department of Pathology Oklahoma City OK USA
bqk University of Oslo Centre for Cancer Biomedicine Oslo Norway
bql University of Oslo Centre for Molecular Medicine Norway Oslo Norway
bqm University of Oslo Department of Biochemistry Institute for Cancer Research Oslo Norway
bqn University of Oslo Department of Molecular Oncology Department of Urology Oslo Norway
bqo University of Oslo Department of Clinical Molecular Biology Oslo Norway
bqp University of Oslo Department of Ophthalmology Oslo Norway
bqq Centre for Cancer Research and Cell Biology Queen's University Belfast Lisburn Road Belfast UK
bqr University of Oslo Institute of Basic Medical Sciences Oslo Norway
bqt University of Osnabrueck Division of Microbiology Osnabrueck Germany
bqu University of Osnabrueck Fachbereich Biologie Chemie Osnabrueck Germany
bqw University of Ottawa Department of Cellular and Molecular Medicine Ottawa Ontario Canada
bqy University of Oxford Acute Stroke Programme Radcliffe Department of Medicine Oxford UK
bqz University of Oxford CRUK MRC Oxford Institute for Radiation Oncology Oxford UK
br Binghamton University State University of New York Binghamton NY USA
br McGill University Lady Davis Institute for Medical Research Montreal Quebec Canada
bra University of Oxford Nuffield Department of Obstetrics and Gynaecology Oxford UK
brb University of Padova Department of Biology Padova Italy
brc University of Padova Department of Molecular Medicine Padova Italy
bri University of Pavia Department of Biology and Biotechnology Pavia Italy
brj University of Pavia Department of Health Sciences Pavia Italy
brl University of Pennsylvania Abramson Cancer Center Philadelphia PA USA
brn University of Pennsylvania Department of Anatomy and Cell Biology Philadelphia PA USA
bro University of Pennsylvania Department of Biochemistry SDM Philadelphia PA USA
brp University of Pennsylvania Department of Microbiology Philadelphia PA USA
brs University of Perugia Department of Experimental Medicine Perugia Italy
brw University of Pittsburgh Cancer Institute Pittsburgh PA USA
brx University of Pittsburgh Medical Center Department of Surgery Pittsburgh PA USA
brz University of Pittsburgh Department of Microbiology and Molecular Genetics Pittsburgh PA USA
bsa University of Pittsburgh Department of Pathology Pittsburgh PA USA
bsb University of Pittsburgh Department of Surgery Hillman Cancer Center Pittsburgh PA USA
bsc University of Pittsburgh Department of Surgery Pittsburgh PA USA
bse University of Pittsburgh Pittsburgh PA USA
bsf University of Pittsburgh School of Dental Medicine Department of Endodontics Pittsburgh PA USA
bsg University of Pittsburgh School of Medicine Department of Anesthesiology Pittsburgh PA USA
bsi University of Pittsburgh School of Medicine Department of Immunology Pittsburgh PA USA
bsk University of Pittsburgh School of Medicine Department of Pediatrics Pittsburgh PA USA
bsn University of Pittsburgh Vascular Medicine Institute Pittsburgh PA USA
bsq University of Porto Department of Biological Sciences Faculty of Pharmacy Porto Portugal
bsr University of Porto Department of Pathology and Oncology Faculty of Medicine Porto Portugal
bss University of Porto i3S Instituto de Investigação e Inovação em Saúde Porto Portugal
bst University of Pretoria Department of Physiology Pretoria Gauteng South Africa
bsx University of Reading School of Pharmacy Reading UK
bsy University of Reading School of Pharmacy Whiteknights Reading UK
bsz University of Rochester Medical Center Department of Anesthesiology Rochester NY USA
bt McGill University Montreal Neurological Institute Montreal QC Canada
btb University of Siena Department of Medicine Surgery and Neuroscience Siena Italy
btd University of Rome Tor Vergata Department of Biology Rome Italy
bte University of Rome Tor Vergata Department of Biomedicine and Prevention Rome Italy
btf University of Rome Tor Vergata Department of Chemistry Rome Italy
bth University of Rome Tor Vergata Department of Experimental Medicine and Surgery Rome Italy
bti University of Rome Tor Vergata Department of Surgery and Experimental Medicine Rome Italy
btj University of Rome Tor Vergata Department of System Medicine Rome Italy
btk University of Rome Tor Vergata Department of Systems Medicine Rome Italy
btl University of Rome Tor Vergata Department of Biology Rome Italy
btm University of Rzeszow Institute of Cell Biology Rzeszow Poland
btp University of Salerno Department of Pharmacy Fisciano Salerno Italy
btq University of Salerno Section of Neurosciences Department of Medicine and Surgery Salerno Italy
btv University of Science and Technology of China Anhui China
bty University of Science and Technology of China School of Life Sciences Hefei Anhui China
btz University of Sevilla Department of Cell Biology Sevilla Spain
bu McMaster University Department of Biology Hamilton Ontario Canada
bua University of Sevilla Instituto de Biomedicina de Sevilla Oral Medicine Department Sevilla Spain
bub University of Sheffield Department of Biomedical Sciences Sheffield UK
bud University of Siena Department of Molecular and Developmental Medicine Siena Italy
bue University of Silesia Department of Animal Histology and Embryology Katowice Poland
buf University of South Alabama Mitchell Cancer Institute Mobile AL USA
bug University of South Australia and SA Pathology Centre for Cancer Biology Adelaide SA Australia
bum University of South Dakota Division of Basic Biomedical Sciences Vermillion SD USA
buo University of South Dakota Vermillion SD USA
bup University of South Florida Byrd Alzheimer's Institute Tampa FL USA
bur University of South Florida Department of Molecular Medicine Tampa FL USA
bus University of South Florida Department of Pharmaceutical Science Tampa FL USA
buu University of Southampton Cancer Sciences Southampton UK
buv University of Southampton Centre for Biological Sciences Highfield Campus Southampton UK
bv MD Anderson Cancer Center Department of Cancer Biology Houston TX USA
bvd University of St Andrews School of Medicine St Andrews Fife UK
bve University of Strathclyde Strathclyde Institute of Pharmacy and Biomedical Sciences Glasgow UK
bvg University of Sydney Department of Cardiology Sydney NSW Australia
bvh University of Sydney Department of Neurogenetics Kolling Institute St Leonards NSW Australia
bvk University of Szeged Department of Ophthalmology Faculty of Medicine Szeged Hungary
bvl University of Tartu Department of Pharmacology Tartu Estonia
bvm University of Tartu Institute of Biomedicine and Translational Medicine Tartu Estonia
bvn University of Tasmania School of Health Sciences Launceston Tasmania
bvo University of Tennessee Health Science Center Department of Physiology Memphis TN USA
bvp University of Texas at Austin College of Pharmacy Division of Medicinal Chemistry Austin TX USA
bvq University of Texas Department of Biochemistry Dallas TX USA
bvu University of Texas Health Science Center at Houston School of Dentistry Houston TX USA
bw Biomolecular Sciences and Biotechnology Institute Groningen The Netherlands
bw MD Anderson Cancer Center Department of Genomic Medicine Houston TX USA
bwc University of Texas MD Anderson Cancer Center Department of Hematopathology Houston TX USA
bwd University of Texas MD Anderson Cancer Center Department of Neuro Oncology Houston TX USA
bwe University of Texas MD Anderson Cancer Center Department of Systems Biology Houston TX USA
bwf University of Texas MD Anderson Cancer Center Houston TX USA
bwh University of Texas Medical Branch Department of Microbiology and Immunology Galveston TX USA
bwi University of Texas Medical Branch Department of Nutrition and Metabolism Galveston TX USA
bwj University of Texas Medical Branch Department of Pathology Galveston TX USA
bwm University of Texas Southwestern Medical Center at Dallas Department of Dermatology Dallas TX
bwn University of Texas Southwestern Medical Center Dallas TX USA
bwp University of Texas Southwestern Medical Center Department of Internal Medicine Dallas TX
bwq University of Texas Southwestern Medical Center Department of Neuroscience Dallas TX
bwr University of Texas Southwestern Medical Center Medicine and Molecular Biology Dallas TX
bws University of Virginia Departments of Biology and Cell Biology Charlottesville VA USA
bwt University of the District of Columbia Cancer Research Laboratory Washington DC USA
bwu University of Tokyo Bioimaging Center Graduate School of Frontier Sciences Chiba Japan
bww University of Tokyo Department of Biotechnology Tokyo Japan
bwx University of Tokyo Institute of Molecular and Cellular Biosciences Tokyo Japan
bwy University of Toledo Department of Biological Sciences Toledo OH USA
bwz University of Toronto Department of Cell and Systems Biology Toronto Ontario Canada
bx BIOSS Centre for Biological Signalling Studies Freiburg Germany
bxa University of Toronto Department of Laboratory Medicine and Pathobiology Toronto Ontario Canada
bxb University of Toronto Department of Molecular Genetics Toronto Ontario Canada
bxd University of Toronto Hospital for Sick Children Toronto Ontario Canada
bxh University of Toulouse INSERM UMR 1037 Cancer Research Center of Toulouse Toulouse France
bxi University of Toulouse INSERM UMR 1048 Toulouse France
bxl University of Tromsø The Arctic University of Norway Department of Medical Biology Tromsø Norway
bxo University of Tübingen Institute of Medical Genetics and Applied Genomics Tübingen Germany
bxp University of Turin Department of Clinical and Biological Sciences Turin TO Italy
bxr University of Turin Neuroscience Institute Cavalieri Ottolenghi Turin Italy
bxs University of Turin Turin Italy
bxu University of Udine Dipartimento di Scienze Mediche e Biologiche Udine Italy
bxv University of Ulm Institute of Applied Physiology Ulm Germany
bxx University of Ulsan College of Medicine Asan Medical Center Department of Surgery Seoul Korea
bxy University of Ulsan College of Medicine Department of Brain Science Seoul Korea
bxz University of Urbino Carlo Bo Department of Biomolecular Sciences Urbino Italy
by Medical Center of the Johannes Gutenberg University Mainz Germany
bya University of Utah School of Medicine Department of Biochemistry Salt Lake City UT USA
byb University of Utah School of Medicine Department of Pathology Salt Lake City UT USA
byc University of Valencia Departamento de Bioquimica y Biologia Molecular IATA CSIC Valencia Spain
byd University of Valencia Departamento de Biotecnología IATA CSIC Valencia Spain
bye University of Valencia Department of Pharmacology Valencia Spain
byf University of Valencia Department of Physiology Burjassot Valencia Spain
byg University of Verona Department of Neurological Biomedical and Movement Sciences Verona Italy
byh University of Vienna Department of Chromosome Biology Max F Perutz Laboratories Vienna Austria
byi University of Vienna Max F Perutz Laboratories Vienna Austria
byj University of Virginia Charlottesville VA USA
byk University of Virginia Department of Cell Biology Charlottesville VA USA
byl University of Warwick Life Sciences Coventry UK
bym University of Washington Department of Pathology Seattle WA
byn University of Waterloo Department of Biology Waterloo Ontario Canada
byo University of Waterloo Department of Kinesiology Waterloo Ontario Canada
byp University of Wisconsin Department of Dermatology Madison WI USA
byq Washington University in St Louis Department of Biology St Louis MO USA
byr University of Wisconsin Department of Medicine Madison WI USA
byv University of Wyoming School of Pharmacy College of Health Sciences Laramie WY USA
byx University of York Department of Biology Heslington York UK
byz University of Zürich Department of Radiation Oncology Zurich Switzerland
bz Boise State University Department of Biological Sciences Boise ID USA
bz Medical College of Wisconsin Department of Biochemistry Milwaukee WI USA
bza University of Zurich Epidemiology Biostatistics and Prevention Institute Zurich Switzerland
bzb University of Zurich Institute of Experimental Immunology Zurich Switzerland
bzc University of Zürich Institute of Physiology Zürich Switzerland
bzd University Paul Sabatier INSERM U1048 Toulouse France
bzf University Roma Tre Department of Science LIME Rome Italy
bzj VA Nebraska Western Iowa Health Care System Omaha NE USA
bzk VA Pittsburgh Health System University of Pittsburgh Medical Center Pittsburgh PA USA
bzl Vall d'Hebron Research Institute Neurodegenerative Diseases Lab Barcelona Spain
bzn Van Andel Institute Center for Neurodegenerative Science Grand Rapids MI USA
bzo Van Andel Research Institute Laboratory of Systems Biology Grand Rapids MI USA
bzp Vancouver Prostate Centre Vancouver BC Canada
bzq Vanderbilt University Medical Center Department of Pediatric Surgery Nashville TN USA
bzr Vanderbilt University Department of Neurology Nashville TN USA
bzu Vanderbilt University School of Medicine Pathology Microbiology and Immunology Nashville TN USA
bzv Venus Medicine Research Center Baddi Himachal Pradesh India
bzx Virginia Commonwealth University Department of Human and Molecular Genetics Richmond VA USA
bzz Virginia Commonwealth University Department of Internal Medicine Richmond VA USA
c Aarhus University Hospital Department of Nuclear Medicine and PET Center Aarhus Denmark
c Albert Einstein College of Medicine Department of Pathology Bronx NY USA
c Georgia Regents University Department of Orthopaedic Surgery Augusta GA USA
c Icahn School of Medicine at Mount Sinai Department of Medicine New York NY USA
c Lund University Biomedical Centre Department of Experimental Medical Science Lund Sweden
c Sapienza University of Rome Department of Molecular Medicine Rome Italy
ca Boston Children's Hospital F M Kirby Neuroscience Center Boston MA USA
ca Medical College of Wisconsin Department of Pediatrics Milwaukee WI USA
caa Virginia Commonwealth University Department of Microbiology and Immunology Richmond VA USA
cac Virginia Commonwealth University Internal Medicine VCU Pauley Heart Center Richmond VA USA
cae Virginia Commonwealth University Massey Cancer Center Department of Medicine Richmond VA USA
caf Virginia Commonwealth University Massey Cancer Center Richmond VA USA
cah San Raffaele Scientific Institute European Institute for Research in Cystic Fibrosis Milan Italy
caj San Raffaele Scientific Institute Milan Italy
cak VU University Medical Center Department of Medical Oncology Amsterdam The Netherlands
cam VU University Medical Center Department of Pathology Amsterdam The Netherlands
can University of Nevada School of Medicine Department of Pharmacology Reno NV USA
cap Department of Genome Analysis Amsterdam Netherlands
car Wake Forest University Department of Surgery and Cancer Biology Winston Salem NC USA
Catholic University of Korea College of Pharmacy Bucheon Korea
cav Washington State University Vancouver School of Molecular Biosciences Vancouver WA USA
caw Washington State University School of Molecular Biosciences Pullman WA USA
caz Washington University Department of Medicine St Louis MO USA
cb Boston University Department of Biology Boston MA USA
cb Medical Research Council Toxicology Unit Leicester UK
cbb Washington University School of Medicine Department of Developmental Biology St Louis MO USA
cbc Washington University School of Medicine Department of Neurology St Louis MO USA
cbd Washington University School of Medicine Department of Pathology and Immunology St Louis MO USA
cbh Wayne State University School of Medicine Cardiovascular Research Institute Detroit MI USA
cbj Wayne State University School of Medicine Departments of Oncology and Pathology Detroit MI USA
cbk Wayne State University School of Medicine Detroit MI USA
cbl Weill Cornell Medical College Department of Obstetrics and Gynecology New York NY USA
cbn Weill Cornell Medical College Joan and Sanford 1 Weill Department of Medicine New York NY USA
cbo Weill Cornell Medical College New York NY USA
cbp Weizmann Institute of Science Department of Biological Chemistry Rehovot Israel
cbq Weizmann Institute of Science Department of Chemical Biology Rehovot Israel
cbr Weizmann Institute of Science Department of Molecular Genetics Rehovot Israel
cbt Western University Department of Obstetrics and Gynaecology London ON Canada
cbv Whitehead Institute HHMI and Massachusetts Institute of Technology Cambridge MA USA
cbw Wonkwang University Department of Dental Pharmacology School of Dentistry Chonbuk Korea
cbx Wuhan University College of Life Science State Key Laboratory of Virology Wuhan Hubei China
cby Xiamen University School of Life Sciences Fujian China
cbz Xi'an Jiaotong University Health Center Department of Pharmacology Xi'an Shaanxi China
cc Boston University Department of Medicine Boston MA USA
cc Medical School Goethe University Institute of Biochemistry 2 Frankfurt Germany
ccb Xijing Hospital The 4th Military Medical University Xi'an China
ccc Xuzhou Medical College Department of Pathology Xuzhou Jiangsu China
ccg Yeshiva University New York NY USA
cch Yokohama City University Graduate School of Medicine Department of Human Genetics Yokohama Japan
cck Yonsei University College of Medicine Severance Biomedical Science Institute Seoul Korea
ccl Yonsei University Department of Biomedical Engineering College of Health Science Seoul Korea
ccm Yonsei University Division of Biological Science and Technology Wonju Korea
ccn York College The City University of New York Department of Biology Jamaica NY USA
cco York University School of Kinesiology and Health Science Toronto Ontario Canada
ccp Zhejiang Cancer Hospital Department of Medical Oncology Hangzhou China
ccs Zhejiang University Department of Food Science and Nutrition Hangzhou China
cct Zhejiang University Hangzhou China
ccu Zhejiang University Institute of Agriculture and Biotechnology Hangzhou China
ccw Zhejiang University Institute of Insect Science Hangzhou China
ccy Zhejiang University Life Sciences Institute Zhejiang China
ccz Zhejiang University School of Medicine Department of Biochemistry Hangzhou Zhejiang China
cd Brandeis University Department of Biology Waltham MA USA
cd Medical University of Graz Division of Cardiology Graz Austria
cda Zhejiang University Sir Run Run Shaw Hospital College of Medicine Hangzhou Zhejiang China
cdc Zhengzhou University Affiliated Cancer Hospital Zhengzhou China
ce Brescia University Department of Clinical and Experimental Sciences Brescia Italy
Cedars Sinai Heart Institute Barbra Streisand Women's Heart Center Los Angeles CA USA
Centre Antoine Lacassagne Nice France
cf Medical University of Lodz Department of Molecular Pathology and Neuropathology Lodz Poland
cg Brigham and Women's Hospital Harvard Medical School Boston MA USA
cg Medical University of Silesia Department of Pharmacology Katowice Poland
ch Brigham and Women's Hospital Harvard Medical School Department of Neurosurgery Boston MA
ch Medical University of South Carolina Biochemistry and Molecular Biology Charleston SC USA
Chulabhorn International College of Medicine Thammasat University Pathum Thani Thailand
ci British Columbia Cancer Agency Genome Sciences Centre Vancouver BC Canada
cj British Columbia Cancer Agency Terry Fox Laboratory Vancouver BC Canada
ck Broad Institute of MIT and Harvard Cambridge MA USA
ck Medical University of South Carolina Department of Ophthalmology Charleston SC USA
cl Brown University Department of Ecology and Evolutionary Biology Providence RI USA
cm Brown University Department of Molecular Biology Cell Biology and Biochemistry Providence RI USA
cm Medical University of Vienna Department of Dermatology CD Lab Skin Aging Vienna Austria
cn Medical University of Vienna Department of Dermatology Vienna Austria
co C S 1 C U A M Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
co Medical University of Vienna Internal Medicine 1 Vienna Austria
cp Cambridge University Department of Medicine Cambridge UK
cp MedImmune Respiratory Inflammation and Autoimmunity Research Department Gaithersburg MD USA
cq Capital Medical University Center for Medical Genetics Beijing Children's Hospital Beijing China
cq Meiji University Department of Life Sciences Kanagawa Japan
cr Capital Normal University Beijing China
cr Memorial Sloan Kettering Cancer Center New York NY USA
cs Cardiff University Heath Park Institute of Cancer and Genetics Cardiff Wales UK
cs Merck KGaA RandD Merck Serono Darmstadt Germany
ct Cardiff University Institute of Cancer and Genetics Cardiff Wales UK
ct Merck Research Laboratories Rahway NJ USA
cu Cardiff University Systems Immunity Research Institute Cardiff Wales UK
cv Case Western Reserve University Department of Ophthalmology and Visual Sciences Cleveland OH USA
cv Moffitt Cancer Center Department of Tumor Biology Tampa FL USA
cw Case Western Reserve University Molecular Biology and Microbiology Cleveland OH USA
cy Monash University Department of Biochemistry and Molecular Biology Victoria Australia
cz Catalan Institution for Research and Advanced Studies Barcelona Spain
cz Monash University Department of Microbiology Victoria Australia
e Aarhus University Department of Clinical Medicine Aarhus Denmark
e Cedars Sinai Medical Center Department of Medicine Los Angeles CA USA
e Georgia Regents University Medical College of Georgia Augusta GA USA
e Scientific Institute IRCCS Eugenio Medea Bosisio Parini Italy
ea Centro de Investigación Príncipe Felipe Valencia Spain
ea NARO Institute of Floricultural Science Tsukuba Japan
ec Centro de Investigaciones Biológicas Department of Cellular and Molecular Biology Madrid Spain
ed National Academy of Sciences of Ukraine Department of Biotechnology and Microbiology Lviv Ukraine
ee Centro de Pesquisas Aggeu Magalhães FIOCRUZ PE Departamento de Microbiologia Recife PE Brazil
ef Chang Gung Memorial Hospital Department of Pathology Chiayi Taiwan
ef National Brain Research Centre Manesar Gurgaon India
eh National Cancer Center Division of Cancer Biology Research Institute Gyeonggi Korea
ej Chang Gung University Department of Biochemistry College of Medicine Taoyuan Taiwan
ek Chang Gung University Department of Biomedical Sciences College of Medicine Taoyuan Taiwan
em Chang Jung Christian University Department of Bioscience Technology Tainan Taiwan
em National Cheng Kung University Department of Pharmacology Tainan Taiwan
en National Cheng Kung University Institute of Clinical Medicine Tainan Taiwan
ep National Chung Hsing University Graduate Institute of Biomedical Sciences Taichung Taiwan
eq National Chung Hsing University Institute of Molecular Biology Taichung Taiwan
es National Fisheries Research and Development Institute Busan Korea
et Chiba University Department of Nanobiology Chiba Japan
et National Health Research Institutes Institute of Molecular and Genomic Medicine Miaoli Taiwan
eu Chiba University Medical Mycology Research Center Chiba Japan
eu National Health Research Institutes Immunology Research Center Miaoli Taiwan
ev Children's Hospital of Philadelphia Research Institute Philadelphia PA USA
ew Children's Hospital Department of Neurology Boston MA USA
ew National Ilan University Department of Biotechnology and Animal Science Yilan City Taiwan
ex National Institute for Basic Biology Department of Cell Biology Okazaki Japan
ey National Institute for Basic Biology Sokendai Okazaki Japan
ez China Agricultural University Department of Animal Nutrition and Feed Science Beijing China
ez National Institute for Infectious Diseases L Spallanzani IRCCS Rome Italy
f Aarhus University Department of Molecular Biology and Genetics Aarhus Denmark
f Cedars Sinai Medical Center VAGLAHS UCLA Pancreatic Research Group Los Angeles CA USA
f Luxembourg Institute of Health Department of Oncology Luxembourg City Luxembourg
fa China Agricultural University Department of Nutrition and Food Safety Beijing China
fb China Medical University Department of Microbiology Taichung Taiwan
fb National Institute of Biological Sciences Beijing China
fc China Medical University School of Chinese Medicine Taichung Taiwan
fd National Institute of Infectious Diseases Department of Bacteriology 1 Tokyo Japan
ff National Institute of Technology Rourkela Department of Life Science Rourkela Odisha India
fi National Institutes of Health Cardiovascular Branch NHLB Bethesda MD USA
fm Chinese Academy of Sciences Institute of Hydrobiology Wuhan Hubei China
fn Chinese Academy of Sciences Institute of Microbiology Beijing China
fo National Institutes of Health National Cancer Institute Urologic Oncology Branch Bethesda MD USA
fp Chinese Academy of Sciences Institute of Zoology Beijing China
fp National Institutes of Health National Heart Lung and Blood Institute Bethesda MD USA
fr Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology Guangdong China
fs Chinese Academy of Sciences South China Botanical Garden Guangzhou China
ft National Institutes of Health NIAID Laboratory of Systems Biology Bethesda MD USA
fv National Institutes of Health NIDDK Genetics of Development and Disease Branch Bethesda MD USA
fw National Institutes of Health NIDDK LCMB Bethesda MD USA
fx Chinese University of Hong Kong Department of Anaesthesia and Intensive Care Hong Kong
fy Chinese University of Hong Kong Department of Anaesthesia and Intensive Care Shatin NT Hong Kong
fy National Jewish Health Denver CO USA
fz Freiburg Institute for Advanced Studies University of Freiburg Germany
g 2nd Hospital of Lanzhou University Key Laboratory of Digestive System Tumors Gansu China
g Aarhus University Medical Research Laboratory Institute for Clinical Medicine Aarhus Denmark
g Center for Dementia Research Nathan S Kline Institute Orangeburg NY USA
g Georgia Regents University Medical College of Georgia Department of Medicine Augusta GA USA
g Icahn School of Medicine at Mount Sinai Division of Liver Diseases New York NY USA
ga Chinese University of Hong Kong Institute of Digestive Diseases Shatin Hong Kong
ga National Neuroscience Institute Singapore
gb National Research Council Rome Italy
gc National Research Council Institute of Food Sciences Avellino Italy
gd National Sun Yat Sen University Department of Biological Sciences Kaohsiung Taiwan
ge Chonbuk National University Department of Pharmacology Medical School Chonbuk Korea
ge National Taiwan University Department of Life Science and Center for Biotechnology Taipei Taiwan
Georgia Regents University Cancer Center Department of Medicine Augusta GA USA
Georgia Regents University Institute for Regenerative and Reparative Medicine Augusta GA USA
gf Christian Albrechts University Institut für Biochemie Kiel Germany
gg Christian Albrechts University of Kiel Department of Nephrology and Hypertension Kiel Germany
gg National Taiwan University Department of Life Science Taipei Taiwan
gh National Taiwan University Department of Pharmacology College of Medicine Taipei Taiwan
gi Chungbuk National University College of Veterinary Medicine Cheongju Chungbuk Korea
gi National Taiwan University Department of Urology College of Medicine Taipei Taiwan
Girona Biomedical Research Institute Catalonia Spain
gk Chungnam National University School of Medicine Department of Pharmacology Daejeon Korea
gk National Taiwan University Institute of Molecular Medicine College of Medicine Taipei Taiwan
gm Chung Shan Medical University Institute of Medicine Taichung Taiwan
gm National Tsing Hua University Department of Chemical Engineering Hsinchu Taiwan
go CIBER de Enfermedades Raras Valencia Spain
go National University Cancer Institute National University Health System Singapore
gp CIBERER Spanish Network for Rare Diseases Madrid Spain
gp National University of Ireland Apoptosis Research Centre Galway Ireland
gq CIBERNED ISCIII Unidad Asociada Neurodeath Madrid Spain
gq National University of Ireland Pharmacology and Therapeutics Galway Ireland
gr Cincinnati Children's Hospital Medical Center Division of Clinical Pharmacology Cincinnati OH USA
gr National University of Ireland Regenerative Medicine Institute Galway Ireland
gs National University of Singapore Department of Biological Sciences Singapore
gt Cincinnati Children's Hospital Medical Center Division of Oncology Cincinnati OH USA
gt National University of Singapore Department of Pharmacy Singapore
gu City University of Hong Kong Department of Biomedical Sciences Kowloon Tong Hong Kong China
gu National University of Singapore Department of Physiology Singapore
gw Cleveland Clinic Cleveland OH USA
gx Cleveland Clinic Department of Cancer Biology Cleveland OH USA
gy Cleveland Clinic Department of Cellular and Molecular Medicine Cleveland OH USA
gy Nationwide Children's Hospital Center for Microbial Pathogenesis Columbus OH USA
gz Cleveland Clinic Taussig Cancer Institute Cleveland OH USA
gz INCI CNRS UPR3212 Institut des Neurosciences Cellulaires and Intégratives Strasbourg France
h Albert Einstein College of Medicine Montefiore Medical Center Bronx NY USA
h German Cancer Research Center Pediatric Oncology Heidelberg Germany
h MRC Cancer Unit University of Cambridge Hutchison MRC Research Centre Cambridge UK
ha CNR Institute of Cell Biology and Neurobiology and IRCCS Santa Lucia Foundation Rome Italy
ha NCI CCR Basic Research Laboratory Frederick MD USA
hb CNRS UM Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé Montpellier France
hd CNRS UMR 7280 Marseille France
he CNRS UMR 5534 Villeurbanne France
he Neuroscience Research Institute Santa Barbara CA USA
hf Neurounion Biomedical Foundation Santiago Chile
hg Colorado Mesa University Department of Biological Sciences Grand Junction CO USA
hg New York Blood Center Lindsley F Kimball Research Institute New York NY USA
hh Columbia University Medical Center Department of Neurology New York NY USA
hi Columbia University Medical Center Department of Pathology and Cell Biology New York NY USA
hi New York Medical College Department of Medicine Pharmacology and Physiology Valhalla NY USA
hj Columbia University Medical Center New York NY USA
hk Columbia University College of Physicians and Surgeons Department of Pediatrics New York NY USA
hl Columbia University Department of Biological Sciences New York NY USA
hm Columbia University Department of Chemistry New York NY USA
hn Columbia University Department of Medicine New York NY USA
hn New York University Department of Psychiatry New York NY USA
ho Columbia University Department of Neurology New York NY USA
ho New York University Nathan Kline Institute Orangeburg NY USA
hq Newcastle University The Medical School Institute of Cellular Medicine Newcastle upon Tyne UK
hr Complejo Hospitalario Universitario de Albacete Unidad de Neuropsicofarmacología Albacete Spain
hr New York Presbyterian Hospital Weill Cornell Medical Center New York NY USA
ht Concordia University Biology Department Montreal Quebec Canada
ht Niigata University School of Medicine Department of Biochemistry Niigata Japan
hu Concordia University Department of Biology Montreal Canada
hu NINDS National Institutes of Health Synaptic Function Section Bethesda MD USA
hv Consejo Superior de Investigaciones Científicas Centro de Investigaciones Biológicas Madrid Spain
hv Nippon Medical School Department of Cardiovascular Medicine Tokyo Japan
hw North Dakota State University Department of Chemistry and Biochemistry Fargo ND USA
hx North Shore University Hospital Department of Emergency Medicine Manhasset NY USA
hy Northeastern University Department of Bioengineering Boston MA USA
hz Northern Illinois University Department of Biological Sciences DeKalb IL USA
i 2nd Military Medical University Department of Pharmacology Shanghai China
i Academia Sinica Institute of Biological Chemistry Taipei Taiwan
i Albert Ludwigs University Renal Division Freiburg Germany
i Center of Investigation and Advanced Studies Cinvestav IPN Mexico City Mexico
i German Cancer Research Center Lysosomal Systems Biology Heidelberg Germany
i MRC Harwell Mammalian Genetics Unit Oxfordshire UK
ia Consiglio Nazionale delle Ricerche Core Research Laboratory Siena Italy
ib Northwestern University Department of Neurology Feinberg School of Medicine Chicago IL USA
ic CSIC UAM and CIBERER Institute for Biomedical Research Alberto Sols Madrid Spain
ic Northwestern University Division of Hematology Oncology Chicago IL USA
id CSIR Centre for Cellular and Molecular Biology Hyderabad India
id Northwestern University Feinberg School of Medicine Department of Neurology Chicago IL USA
ie CSIR Indian Institute of Chemical Technology Biomaterials Group Hyderabad India
ie Northwestern University Robert H Lurie Comprehensive Cancer Center Chicago IL USA
if CSS Mendel Institute Neurogenetics Unit Rome Italy
if Norwegian Veterinary Institute Oslo Norway
ig Curtin University School of Biomedical Sciences Perth Australia
ih Curtin University School of Pharmacy Bentley Australia
ih Ohio State University Department of Microbial Infection and Immunity Columbus OH USA
ii Dalhousie University Biochemistry and Molecular Biology Halifax NS Canada
ii Ohio State University Department of Molecular and Cellular Biochemistry Columbus OH USA
ij Dalhousie University Department of Microbiology and Immunology Halifax Nova Scotia Canada
ij Ohio State University Department of Molecular Genetics Columbus OH USA
ik Dalhousie University Department of Pediatrics Halifax Nova Scotia Canada
il Dalhousie University Department of Pharmacology Halifax Nova Scotia Canada
im Ohio State University DHLRI Department of Medicine Columbus OH USA
in Dalian Medical University Department of Environmental and Occupational Hygiene Dalian China
io Dalian Medical University Department of Food Nutrition and Safety Dalian China
io Ohio University Division of Physical Therapy Athens OH USA
ip Dalian Medical University Institute of Cancer Stem Cell Dalian China
ip Oregon Health and Science University Casey Eye Institute Portland OR USA
iq Oregon Health and Science University Knight Cardiovascular Institute Portland OR USA
ir Danish Cancer Society Research Center Cell Stress and Survival Unit Copenhagen Denmark
is Danish Cancer Society Research Center Unit of Cell Stress and Survival Copenhagen Denmark
is Osaka Prefecture University Graduate School of Life and Environmental Science Osaka Japan
it Danish Cancer Society Research Center Unit of Cell Stress and Survival Copenhagen Denmark
it Osaka University Graduate School of Dentistry Department of Preventive Dentistry Osaka Japan
iu Dartmouth College Department of Chemistry Hanover NH USA
iu Osaka University Graduate School of Medicine Department of Nephrology Osaka Japan
iv Democritus University of Thrace Department of Pathology Alexandroupolis Greece
iv Osaka University Graduate School of Medicine Department of Pediatrics Osaka Japan
iw Democritus University of Thrace Laboratory of Molecular Hematology Alexandroupolis Greece
ix Democritus University of Thrace Medical School Department of Pathology Alexandroupolis Greece
ix Osaka University Department of Genetics Graduate School of Medicine Osaka Japan
iy Democritus University of Thrace School of Medicine Alexandroupolis Greece
iy Osaka University Graduate School of Dentistry Osaka Japan
iz Osaka University Graduate School of Frontier Biosciences Osaka Japan
j 2nd University of Naples Department of Biochemistry and Biophysics Naples Italy
j Academia Sinica Institute of Biomedical Sciences Taipei Taiwan
j All India Institute of Medical Sciences Department of Anatomy New Delhi India
j College of Science Central China Normal University Wuhan China
j German Cancer Research Center Systems Biology of Cell Death Mechanisms Heidelberg Germany
j Mackay Memorial Hospital Department of Radiation Oncology Taipei Taiwan
ja Oslo University Hospital Center for Eye Research Oslo Norway
jb Department of Medical Chemistry Molecular Biology and Pathobiochemistry Budapest Hungary
jb Oslo University Hospital Centre for Cancer Biomedicine Oslo Norway
jc Oslo University Hospital Centre for Immune Regulation Oslo Norway
jd Dong Eui University Department of Chemistry Busan Korea
jd Oslo University Hospital Department of Biochemistry Institute for Cancer Research Oslo Norway
je Drexel University College of Medicine Department of Pathology Philadelphia PA USA
jf Duke University Department of Medicine Human Vaccine Institute Durham NC USA
jf Oslo University Hospital Institute for Microbiology Oslo Norway
jg Duke University Department of Molecular Genetics and Microbiology Durham NC USA
jh Duke University Department of Ophthalmology Durham NC USA
ji Duke University Medical Center Department of Immunology Durham NC USA
jj Duke University Medical Center Department of Medicine Durham NC USA
jj Oviedo University Morphology and Cellular Biology Department Oviedo Spain
jk Duke University Medical Center Department of Molecular Genetics and Microbiology Durham NC USA
jl Duke University Nicholas School of the Environment Durham NC USA
jl Paris Cardiovascular Research Center PARCC Clichy France
jm Duke NUS Graduate Medical School Cancer and Stem Cell Biology Program Singapore
jm Paris Descartes University Sorbonne Paris Cité Imagine Institute Paris France
jn Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine Naples Italy
jn Paris Diderot University Sorbonne Paris Cité INSERM CNRS Paris France
jo Durham VA Medical Center GRECC Durham NC USA
jo Peking University 1st Hospital Department of Internal Medicine Beijing China
jp DZNE German Center for Neurodegenerative Diseases and CAESAR Research Center Bonn Germany
jp Peking University 1st Hospital Renal Division Beijing China
jq East China Normal University School of Life Science Shanghai China
jq Peking University Department of Immunology Beijing China
jr East China Normal University Shanghai China
jr Peking University Department of Medicine Beijing China
js Eberhard Karls University Tübingen Interfaculty Institute of Cell Biology Tübingen Germany
js Peking University Health Science Center Center for Human Disease Genomics Beijing China
jv Edinburgh Napier University School of Life Sport and Social Sciences Edinburgh UK
jw Edinburgh University MRC Human Genetics Unit Edinburgh UK
jw Pennsylvania State University College of Medicine Department of Pediatrics Hershey PA USA
jx Ege University Faculty of Science Department of Biology Bornova Izmir Turkey
jx Pennsylvania State University College of Medicine Department of Pharmacology Hershey PA USA
jy Emory University Department of Biology Atlanta GA USA
jz Emory University Department of Cell Biology Atlanta GA USA
k 2nd University of Naples Department of Biochemistry Biophysics and General Pathology Naples Italy
k Academia Sinica Institute of Molecular Biology Taipei Taiwan
k All India Institute of Medical Sciences Department of Gastroenterology New Delhi India
k Central Michigan University College of Medicine Mt Pleasant MI USA
k German Center for Neurodegenerative Diseases Munich Germany
k MRC Laboratory of Molecular Biology Cambridge UK
ka Emory University Department of Hematology and Medical Oncology Atlanta GA USA
kb Emory University School of Medicine Department of Microbiology and Immunology Atlanta GA USA
kc Emory University School of Medicine Department of Pharmacology and Neurology Atlanta GA USA
kd Emory University School of Medicine Department of Pharmacology Atlanta GA USA
ke Emory University School of Medicine Division of Digestive Diseases Atlanta GA USA
ke Pfizer Inc Drug Safety Research and Development San Diego CA USA
kf Plymouth University Peninsula School of Medicine and Dentistry Plymouth UK
kg Emory University School of Medicine Winship Cancer Institute Atlanta GA USA
kg Polish Academy of Sciences Institute of Biochemistry and Biophysics Warsaw Poland
kh Polytechnic University of Marche Department of Clinical Science Faculty of Medicine Ancona Italy
ki Polytechnic University of Marche Department of Life and Environmental Sciences Ancona Italy
kj Eötvös Loránd University Department of Anatomy Cell and Developmental Biology Budapest Hungary
kj Pontificia Universidad Católica de Chile Physiology Department Santiago Chile
kk Eötvös Loránd University Department of Biological Anthropology Budapest Hungary
kl Eötvös Loránd University Department of Genetics Budapest Hungary
kl Post Graduate Institute of Medical Education and Research Department of Urology Chandigarh India
kn Erasmus MC University Medical Center Rotterdam Department of Surgery Rotterdam The Netherlands
kn Providence Portland Medical Center Earle A Chiles Research Institute Portland OR USA
ko Ernst Moritz Arndt University Institute of Pharmacy Greifswald Germany
ko Public Health England Health Protection Services Modelling and Economics Unit Colindale London UK
kp ETH Zurich Department of Biology Institute of Molecular Health Sciences Zurich Switzerland
kp Pusan National University Department of Biological Sciences Busan Korea
kq ETH Zurich Institute of Biochemistry Zurich Switzerland
kq Qilu Hospital of Shandong University Cardiology Jinan Shandong China
kr ETH Zurich Institute of Molecular Health Sciences Zurich Switzerland
kr Qilu Hospital of Shandong University Department of Traditional Chinese Medicine Jinan China
ks ETH Zurich Institute of Molecular Systems Biology Zurich Switzerland
kt ETH Zürich LFW D 18 1 Zürich Switzerland
kt Queen Elizabeth Hospital Department of Clinical Oncology Kowloon Hong Kong
ku ETH Zurich ScopeM Zurich Switzerland
kv European Institute of Oncology Department of Experimental Oncology Milan Italy
kv Queen Mary University of London Barts Cancer Institute Center for Molecular Oncology London UK
kw Queen Mary University of London Blizard Institute Department of Neuroscience and Trauma London UK
kx Queen Mary University of London Blizard Institute Flow Cytometry Core Facility London UK
ky Ewha W University Brain and Cognitive Sciences Pharmacy Seoul Korea
ky Queen Mary University of London Centre for Haemato Oncology Barts Cancer Institute London UK
kz Queens College of the City University of New York Department of Biology Flushing NY USA
l Academic Medical Center Department of Gastroenterology and Hepatology Amsterdam The Netherlands
l All India Institute of Medical Sciences Department of Physiology New Delhi India
l Central South University Department of Pediatrics Xiangya Hospital Changsha Hunan China
l German Institute of Human Nutrition Department of Molecular Toxicology Nuthetal Germany
l Magna Graecia University Department of Health Sciences Catanzaro Italy
l MRC Mitochondrial Biology Unit Cambridge UK
la Queen's University of Belfast Centre for Experimental Medicine Belfast UK
lc Federico 2 University Department of Translational Medicine Naples Italy
le 1st Hospital of Jilin University Changchun Jilin China
lf 1st Hospital of Jilin University Department of Neurosurgery Changchun China
lf Regina Elena National Cancer Institute Experimental Chemotherapy Laboratory Rome Italy
lg FISABIO Hospital Dr Peset Valencia Spain
lg Research Center Borstel Borstel Germany
lh Flinders University School of Biological Sciences Bedford Park South Australia Australia
lh Rice University Chemical and Biomolecular Engineering Houston TX USA
li Florida Atlantic University Department of Biological Sciences Jupiter FL USA
li Rice University Department of BioSciences Houston TX USA
lj RIKEN Brain Science Institute Laboratory for Developmental Neurobiology Saitama Japan
lk Florida International University Department of Dietetics and Nutrition Miami FL USA
lm Food and Drug Administration Jefferson AR USA
lm Ritsumeikan University Department of Biotechnology Shiga Japan
ln Forschungszentrum Juelich ICS 6 Structural Biochemistry Juelich Germany
ln Rockefeller University New York NY USA
lo George Washington University Department of Biochemistry and Molecular Medicine Washington DC USA
lo Roswell Park Cancer Institute Department of Pharmacology and Therapeutics Buffalo NY USA
Lovelace Respiratory Research Institute Molecular Biology and Lung Cancer Program Albuquerque NM USA
lp Foundation for Research and Technology Hellas Heraklion Crete Greece
lp Royal College of Surgeons in Ireland Department of Physiology and Medical Physics Dublin Ireland
lq 4th Military Medical University Department of Biochemistry and Molecular Biology Xi'an China
lq Royal Military College Chemistry and Chemical Engineering Kingston ON Canada
ls Ruhr University Bochum Biochemie Intrazellulärer Transportprozesse Bochum Germany
lt The Francis Crick Institute Mill Hill Laboratory London UK
lu Ruhr University Bochum Medical Faculty System Biochemistry Bochum Germany
Luxembourg Institute of Health and Centre Hospitalier de Luxembourg Luxembourg
lv Freie Universität Berlin Institute of Pharmacy Berlin Germany
lw Freshwater Aquaculture Collaborative Innovation Center of Hubei Province Wuhan China
lx Friedrich Alexander University Erlangen Nürnberg Department of Medicine 1 Erlangen Germany
lx Rush University Medical Center Department of Anatomy and Cell Biology Chicago IL USA
ly Russian Academy of Sciences Kazan Institute of Biochemistry and Biophysics Kazan Tatarstan Russia
lz Fudan University Shanghai Medical College Key Laboratory of Molecular Virology Shanghai China
lz Rutgers New Jersey Medical School Department of Cell Biology and Molecular Medicine Newark NJ USA
m Central University of Venezuela Institute for Anatomy Caracas Venezuela
m Mahidol University Department of Anatomy Faculty of Science Bangkok Thailand
m MRC Toxicology Unit Leicester UK
ma Fudan University Cancer Center Department of Integrative Oncology Shanghai China
ma Rutgers University Department of Cell Biology and Neuroscience Piscataway NJ USA
mb Rutgers University Molecular Biology and Biochemistry Piscataway NJ USA
md Fudan University Department of Neurosugery Shanghai China
me Fujian Provincial Hospital Department of Urology Fuzhou China
mf Rutgers University Robert Wood Johnson Medical School Pharmacology Department Piscataway NJ USA
mg Geisel School of Medicine at Dartmouth Department of Biochemistry Hanover NH USA
mh Geisel School of Medicine at Dartmouth Department of Microbiology and Immunology Lebanon NH USA
mh Sabanci University Molecular Biology Genetics and Bioengineering Program Istanbul Turkey
mi Geisinger Clinic Weis Center for Research Danville PA USA
mi SaBio Instituto de Investigación en Recursos Cinegéticos IREC CSIC UCLM JCCM Ciudad Real Spain
mj Genentech Inc Department of Cancer Immunology South San Francisco CA USA
mk Genentech Inc Department of Immunology South San Francisco CA USA
ml Genentech Inc Department of Neuroscience South San Francisco CA USA
ml Saitama University Graduate School of Science and Engineering Saitama Japan
mm Genentech Inc Department of Translational Oncology South San Francisco CA USA
mn Genentech Inc Immunology and Infectious Diseases South San Francisco CA USA
mn San Diego State University Department of Biology San Diego CA USA
mo San Paolo Hospital Medical School Unit of Obstetrics and Gynecology Milano Italy
Monash University School of Biological Sciences Melbourne Victoria Australia
mq Georg August University Göttingen Department of Nephrology and Rheumatology Göttingen Germany
mq Sanford Burnham Prebys NCI Cancer Center Cell Death and Survival Networks Program La Jolla CA USA
mr Georg August University Göttingen Institute of Cellular Biochemistry Göttingen Germany
mr Sanford Consortium for Regenerative Medicine La Jolla CA USA
ms George Mason University Manassas VA USA
mt George Washington University Department of Anatomy and Regenerative Biology Washington DC USA
mt Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
mu George Washington University Flow Cytometry Core Facility Washington DC USA
mu Sangamo Biosciences Richmond CA USA
mv Georgetown University Medical Center Department of Neuroscience Washington DC USA
mv Sanofi Vitry Sur Seine France
mw Georgetown University Medical Center Department of Oncology Washington DC USA
mx Georgetown University Department of Pharmacology and Physiology Washington DC USA
mx Sapienza University of Rome DAHFMO Section of Histology Rome Italy
my Sapienza University of Rome DAHFMO Section of Anatomy Rome Italy
mz Georgetown University Lombardi Comprehensive Cancer Center Washington DC USA
mz Sapienza University of Rome Department of Biochemical Sciences A Rossi Fanelli Rome Italy
o Aix Marseille Université CNRS UMR 7278 IRD198 INSERM U1095 Medicine Faculty Marseille France
o Centre de Recherche du CHU de Québec Faculty of Pharmacy Québec Canada
o Goethe University Medical School Experimental Neurology Frankfurt am Main Germany
o Mahidol University Salaya Campus Institute of Molecular Biosciences Nakorn Pathom Thailand
o Seoul National University College of Medicine Department of Ophthalmology Seoul Korea
oa Shandong University School of Chemistry and Chemical Engineering Jinan Shandong China
ob Shandong University School of Life Sciences Jinan China
oc Gustave Roussy Cancer Campus Villejuif France
oc Shandong University School of Medicine Department of Pharmacology Jinan Shandong Province China
od Gustave Roussy Comprehensive Cancer Center Villejuif France
od Shanghai Institute of Materia Medica Division of Antitumor Pharmacology Shanghai China
oe Gustave Roussy Institute Villejuif France
oe Shanghai Jiao Tong University Bio 10 Institutes Shanghai China
oh Hadassah Hebrew University Medical Center Department of Neurology Jerusalem Israel
oh Shanghai Jiao Tong University School of Life Sciences and Biotechnology Shanghai China
oi Hallym University Department of Anatomy and Neurobiology College of Medicine Kangwon Do Korea
ok Hallym University Department of Microbiology College of Medicine Chuncheon Gangwon Korea
ol Hallym University Ilsong Institute of Life Science Chuncheon Korea
om Hallym University School of Medicine Department of Physiology Chuncheon Korea
om Shanghai Jiao Tong University School of Medicine Renji Hospital Shanghai China
on Hampton University Department of Pharmaceutical Sciences School of Pharmacy Hampton VA USA
oo Hangzhou Normal University Department of Pharmacology School of Medicine Hangzhou China
oo Shanghai Jiao Tong University School of Medicine Shanghai Institute of Immunology Shanghai China
op Hannover Medical School Department for Clinical Immunology and Rheumotology Hannover Germany
oq Hannover Medical School Department of Biochemistry Hannover Germany
or University of Sharjah College of Medicine United Arab Emirates
os Hanyang University College of Pharmacy Ansan Korea
os Shanghai Jiao Tong University School of Medicine Renji Hospital Shanghai China
ou Shanghai University of Traditional Chinese Medicine Department of Biochemistry Shanghai China
ov Shanghai Veterinary Research Institute Shanghai China
ow Harvard Medical School and Broad Institute Boston MA USA
ow Shantou University Medical College Cancer Research Center Shantou Guangdong China
ox Harvard Medical School Boston MA USA
ox Shantou University Medical College Department of Biochemistry and Molecular Biology Shantou China
oy Shin Kong Wu Ho Su Memorial Hospital Department of Urology Taipei Taiwan
oz Harvard Medical School Dana Farber Cancer Institute Boston MA USA
p Aix Marseille Université U2M Centre d'Immunologie de Marseille Luminy Marseille France
p Applied Genetic Technologies Corporation Alachua FL USA
p Goethe University of Frankfurt Institute of Biophysical Chemistry Frankfurt am Main Germany
p Malaysian Institute of Pharmaceuticals and Nutraceuticals Pulau Pinang Malaysia
pb Harvard Medical School Department of Cell Biology Boston MA USA
pd Sichuan University West China Hospital State Key Labortary of Biotherapy Sichuan China
pe Harvard Medical School Ophthalmology Boston MA USA
pe Sidra Medical and Research Centre Doha Qatar
pf Harvard University Department of Statistics Cambridge MA USA
pf Simon Fraser University Department of Molecular Biology and Biochemistry Burnaby BC Canada
pg Singapore Eye Research Institute Singapore National Eye Center Singapore
ph Health Research Institute Germans Trias i Pujol Badalona Spain
pj Soochow University College of Pharmaceutical Sciences Jiangsu China
pl Soochow University Department of Pathogenic Biology Suzhou Jiangsu China
pm Heinrich Heine University Institut für Physikalische Biologie Duesseldorf Germany
pn Heinrich Heine University Institute of Molecular Medicine Düsseldorf Germany
po Soochow University School of Pharmaceutical Science Department of Pharmacology Suzhou China
pp Sorbonne Universités CNRS UPMC Univ Paris 06 UMR 7622 IBPS Paris France
pq Helsinki University Department of Medical Genetics Helsinki Finland
pq Sorbonne Universités UMR S1127 Paris France
pr Henan University of Technology College of Bioengineering Zhengzhou Henan Province China
ps Hirosaki University Graduate School of Medicine Hirosaki Japan
pu Hokkaido University Faculty of Pharmaceutical Sciences Sapporo Japan
pu South China Normal University College of Biophotonics Guangdong China
pv Hokkaido University Research Faculty of Agriculture Sapporo Japan
pv Southern Medical University Department of Cardiology Nanfang Hospital Guangzhou China
pw Hong Kong Baptist University School of Chinese Medicine Kowloon Tong Hong Kong
pw Southern Medical University School of Pharmaceutical Sciences Guangzhou Guangdong China
py Spanish National Cancer Research Centre Cell Division and Cancer Group Madrid Spain
py The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
pz Hôpital Beaujon Paris France
q Ajou University College of Pharmacy Gyeonggido Korea
q Asahi University Department of Internal Medicine Gifu Japan
q Centre de Recherche en Cancérologie de Nantes Angers CNRS UMR6299 INSERM U892 Nantes France
q Mannheim University of Applied Sciences Institute of Molecular and Cell Biology Mannheim Germany
q Nagoya University School of Medicine Nagoya Japan
qa Hôpital Européen Georges Pompidou AP HP Paris France
qb Hôpital Kirchberg Laboratoire de Biologie Moléculaire et Cellulaire du Cancer Luxembourg
qb St Jude Children's Research Hospital Department of Immunology Memphis TN USA
qc St Jude Children's Research Hospital Department of Pathology Memphis TN USA
qd Hospital for Sick Children Toronto ON Canada
qd St Jude Children's Research Hospital Department of Structural Biology Memphis TN USA
qe Hospital Universitario Ramón y Cajal CIBERNED Neurobiology Department Madrid Spain
qe St Jude Children's Research Hospital Memphis TN USA
qf Houston Methodist Research Institute Genomic Medicine Program Houston TX USA
qg Howard Hughes Medical Institute Boston MA USA
qg St Marianna University School of Medicine Department of Ophthalmology Kawasaki Kanagawa Japan
qh Howard Hughes Medical Institute Dallas TX
qh St Marianna University School of Medicine Department of Physiology Kanagawa Japan
qi Huazhong Agricultural University College of Animal Sciences and Technology Wuhan Hubei China
qi St Paul's Hospital Centre for Heart Lung Innovation Vancouver BC Canada
qj Stanford University Department of Microbiology and Immunology Stanford CA USA
qk Stanford University Department of Radiation Oncology Stanford CA USA
ql Stanford University School of Medicine Department of Pathology Stanford CA USA
qm Hungkuang University Department of Physical Therapy Taichung Taiwan
qn IATA CSIC Institute of Agrochemistry and Food Technology Paterna Spain
qn Stanford University School of Medicine Stanford CA USA
qo iBET Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
qp Icahn School of Medicine at Mount Sinai Department of Neuroscience New York NY USA
qq State University of New York College of Nanoscale Science and Engineering Albany NY USA
qr Stellenbosch University Department of Physiological Sciences Stellenbosch South Africa
qs Icahn School of Medicine at Mount Sinai Friedman Brain Institute New York NY USA
qs Stephen A Wynn Institute for Vision Research Iowa City IA USA
qt Icahn School of Medicine at Mount Sinai New York NY USA
qt Stockholm University Department of Neurochemistry Stockholm Sweden
qu ICM Institut de Recherche en Cancérologie de Montpellier Montpellier France
qu Stony Brook University Department of Molecular Genetics and Microbiology Stony Brook NY USA
qv ICREA Catalan Institution for Research and Advanced Studies Catalonia Spain
qv Stony Brook University Department of Pathology Stony Brook NY USA
qw IFOM The FIRC Institute of Molecular Oncology Milan Italy
qx IIT University School of Biotechnology Orissa India
qx Strathclyde Institute of Pharmacy and Biomedical Sciences Glasgow UK
qz Imperial College London MRC Centre for Molecular Bacteriology and Infection London UK
r Ajou University School of Medicine Department of Microbiology Gyeonggi do Korea
r Goethe University Institue of Pharmacology and Toxicology Frankfurt am Main Germany
r Masaryk University Department of Biology Faculty of Medicine Brno Czech Republic
r Nagoya University Research Institute of Environmental Medicine Nagoya Aichi Japan
r Seoul National University Hospital Department of Internal Medicine Seoul Korea
ra Imperial College London National Heart and Lung Institute London UK
rb Imperial College London Neurogenetics Group Division of Brain Sciences London UK
rb Sun Yat Sen University School of Chemistry and Chemical Engineering Guangzhou China
rc Sun Yat Sen University School of Life Sciences Guangzhou China
rd Incheon National University Division of Life Siences Incheon Korea
rd Sun Yat Sen University State Key Laboratory of Biocontrol School of Life Sciences Guangzhou China
re Indian Institute of Science Department of Microbiology and Cell Biology Bangalore India
rf Indian Institute of Science Microbiology and Cell Biology Bangalore India
rh Indian Institute of Technology Kharagpur Department of Biotechnology Kharagpur India
ri Indiana University School of Medicine Biochemistry and Molecular Biology Denver CO USA
ri Taichung Veterans General Hospital Department of Medical Research Taichung City Taiwan
rj Taipei Medical University Department of Biochemistry College of Medicine Taipei City Taiwan
rk Indiana University School of Medicine Department of Dermatology Indianapolis IN USA
rm Indiana University School of Medicine Department of Ophthalmology Indianapolis IN USA
rm Tamkang University Department of Chemistry Tamsui New Taipei City Taiwan
ro Technical University Munich Institute of Human Genetics Munich Bavaria Germany
rq INMI IRCCS L Spallanzani Rome Italy
rr INRA UMR 1019 Nutrition Humaine Centre de Clermont Theix Saint Genès Champanelle France
rr Technische Universität Braunschweig Biozentrum Braunschweig Germany
rs INRA UMR866 Dynamique Musculaire et Métabolisme Montpellier France
rs Technische Universität München Department of Neurology Munich Germany
rt INRA UR1067 Nutrion Métabolisme Aquaculture St Pée sur Nivelle France
rt Technische Universität München 2 Medizinische Klinik Klinikum rechts der Isar Munich Germany
ru INSERM U1065 C3M Team 2 Nice France
ru Technische Universität München Plant Systems Biology Freising Germany
rv INSERM U1081 CNRS UMR7284 Institute of Research on Cancer and Ageing of Nice Nice France
rw Centre Scientifique de Monaco Biomedical Department Monaco Principality of Monaco
rw Tel Aviv University Department of Neurobiology Tel Aviv Israel
ry INSERM U1118 Mécanismes Centraux et Périphétiques de la Neurodégénérescence Strasbourg France
rz Tel Aviv University Sackler Faculty of Medicine Tel Aviv Israel
s Akershus University Hospital Oslo Norway
s Centre for Research in Agricultural Genomics Bellaterra Catalonia Spain
s Goethe University Institute for Experimental Cancer Research in Pediatrics Frankfurt Germany
s Nanchang University Institute of Life Science Nanchang China
sa Telethon Institute of Genetics and Medicine Pozzuoli Naples Italy
Sapienza University of Rome Department of Clinical and Molecular Medicine Rome Italy
Sapporo Medical University School of Medicine Department of Pharmacology Sapporo Japan
sb INSERM U830 Stress and Cancer Laboratory Institut Curie Paris France
sb Temasek Life Sciences Laboratory Singapore
sc INSERM U862 Neurocentre Magendie Bordeaux France
sd INSERM U896 Montpellier France
se INSERM U916 Université de Bordeaux Institut Européen de Chimie et Biologie Pessac France
sf INSERM U955 Faculté de Médecine de Créteil UMR S955 Créteil France
sf Texas A and M Health Science Center Institute of Biosciences and Technology Houston TX USA
sh INSERM UMR1037 Centre de Recherches en Cancérologie de Toulouse Toulouse France
si Texas A and M University Department of Biochemistry and Biophysics College Station TX USA
sj INSERM Cordeliers Research Cancer Paris France
sk INSERM U1081 UMR CNRS 7284 Nice France
sl INSERM U1104 Marseille France
sl Texas A and M University The Norman Borlaug Center College Station TX USA
sm INSERM U1127 CNRS UMR 7225 Paris France
sq Institut de Cancérologie de Lorraine Vandoeuvre Lès Nancy Cedex France
sr Institut du Cancer de Montpellier Montpellier France
sr The 4th Military Medical University Institute of Orthopaedics Xijing Hospital Xi'an Shanxi China
ss Istituto Zooprofilattico Sperimentale del Mezzogiorno Department of Chemistry Portici Italy
st The 4th Military Medical University Xi'an China
sv The Helen F Graham Cancer Center Newark DE USA
sw Institut Pasteur Department of Immunology Paris France
sw The Hospital for Sick Children Department of Paediatrics Toronto Ontario Canada
sx Institut Pasteur INSERM Biology of Infection Unit Paris France
sy The Norwegian Radium Hospital Faculty of Medicine Oslo Norway
sz Institute for Integrative Biology of the Cell Université Paris Saclay Gif sur Yvette France
t Akita University Graduate School of Medicine Akita Japan
t Asan Medical Center Asan Institute for Life Sciences Seoul Korea
t Nanjing Medical University Center for Kidney Disease 2nd Affiliated Hospital Jiangsu China
t Seoul National University Department of Biological Sciences Seoul Korea
ta The People's Hospital of Hainan Province Medical Care Center Haikou Hainan China
tb The Scripps Research Institute Department of Immunology and Microbial Science La Jolla CA USA
tc Institute of Biochemistry and Biophysics Kazan Russia
tc The Scripps Research Institute Department of Metabolism and Aging Jupiter FL USA
td Institute of Biomedical Investigation Aging Inflamation and Regenerative Medicine Coruña Spain
td The Scripps Research Institute Department of Neuroscience Jupiter FL USA
te Institute of Cancer Research Divisions of Molecular Pathology and Cancer Therapeutics London UK
tf Institute of Environmental Medicine Division of Toxicology Karolinska Institute Stockholm Sweden
tg Institute of Life Sciences Bhubaneshwar Odisa India
th Institute of Microbial Technology Cell Biology and Immunology Division Chandigarh India
th The Weizmann Institute of Science Department of Plant Sciences Rehovot Israel
ti Institute of Microbiology ASCR v v i Prague Czech Republic
ti The Wistar Institute Philadelphia PA USA
tj Institute of Molecular Biotechnology of the Austrian Academy of Sciences Vienna Austria
tj The Wistar Institute Program in Molecular and Cellular Oncogenesis Philadelphia PA USA
tk 3rd Military Medical University Department of Biochemistry and Molecular Biology Chongqing China
tk Institute of Molecular Genetics National Research Council Pavia Italy
tl Institute of Molecular Pathology and Biology FMHS UO Hradec Kralove Czech Republic
tm 3rd Military Medical University Department of Occupational Health Chongqing China
tn Instituto de Biología Molecular y Celular de Rosario Rosario Argentina
to Thomas Jefferson University Hospitals Department of Radiation Oncology Philadelphia PA USA
tp Thomas Jefferson University Department of Biochemistry and Molecular Biology Philadelphia PA USA
tq Instituto de Investigaciones Biomédicas Alberto Sols CSIC UAM Madrid Spain
tq Thomas Jefferson University Department of Pathology Anatomy and Cell Biology Philadelphia PA USA
ts Instituto de Parasitología y Biomedicina López Neyra CSIC Granada Spain
ts Thomas Jefferson University Philadelphia PA USA
tt Thomas Jefferson University Sidney Kimmel Medical College Philadelphia PA USA
tu Instituto Gulbenkian de Ciência Oeiras Portugal
tw Instituto Leloir Buenos Aires Argentina
tw Tianjin Medical University School of Pharmaceutical Sciences Tianjin China
tx Toho University School of Medicine Department of Biochemistry Tokyo Japan
ty Instituto Nacional de Neurología y Neurocirugía Neurochemistry Unit Mexico City Mexico
tz Tohoku University Department of Neurology Sendai Japan
u Al Jalila Foundation Research Centre Dubai UAE
u Asia University Department of Biotechnology Taichung Taiwan
u Nanjing Medical University Department of Neurology Nanjing 1st Hospital Nanjing China
u Seoul National University College of Pharmacy Seoul Korea
ua Instituto Oswaldo Cruz FIOCRUZ Laboratório de Biologia Celular Rio de Janeiro Brazil
ua Tohoku University Division of Biomedical Engineering for Health and Welfare Sendai Japan
ub International Center for Genetic Engineering and Biotechnology Immunology Group New Delhi India
ub Tohoku University Graduate School of Agricultural Sciences Sendai Japan
uc Tohoku University Graduate School of Life Sciences Sendai Miyagi Japan
ud Iowa State University Department of Genetics Development and Cell Biology Ames IA USA
ue Tohoku University School of Medicine Department of Orthopaedic Surgery Miyagi Japan
uf IRCCS Casa Sollievo della Sofferenza Medical Genetics Unit San Giovanni Rotondo Italy
uf Tokai University School of Medicine Department of Molecular Life Sciences Kanagawa Japan
ug IRCCS Neuromed Pozzilli IS Italy
uh IRCCS San Raffaele Pisana Laboratory of Skeletal Muscle Development and Metabolism Rome Italy
uh Tokushima University Division of Molecular Genetics Institute for Enzyme Research Tokushima Japan
ui IRCCS Santa Lucia Foundation Rome Italy
ui Tokyo Denki University Division of Life Science and Engineering Hatoyama Hiki gun Saitama Japan
uj IRCCS Santa Lucia Foundation Department of Experimental Neurosciences Rome Italy
uj Tokyo Institute of Technology Frontier Research Center Yokohama Japan
uk IRCCS Santa Lucia Foundation Rome Italy
uk Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology Tokyo Japan
ul IRCCS C Mondino National Neurological Institute Experimental Neurobiology Lab Pavia Italy
ul Tokyo Medical and Dental University Center for Brain Integration Research Bunkyo Tokyo Japan
um IRCCS Istituto Dermopatico dell'Immacolata Rome Italy
um Tokyo Medical and Dental University Department of Gastroenterology and Hepatology Tokyo Japan
uo IRCCS Istituto di Ricerche Farmacologiche Mario Negri Department of Neuroscience Milan Italy
uo Tokyo Medical University Department of Biochemistry Tokyo Japan
up IRCCS MultiMedica Milan Italy
up Tokyo Metropolitan Institute of Medical Science Laboratory of Protein Metabolism Tokyo Japan
uq IRCE Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
ur IRCM INSERM U896 Institut de Recherche en Cancérologie de Montpellier Montpellier France
ur Tokyo Women's Medical University Department of Endocrinology and Hypertension Tokyo Japan
us IRCM Institut de Recherche en Cancérologie de Montpellier Montpellier France
ut IRO Institute for Research in Ophthalmology Sion Switzerland
ut Tongji University School of Life Science and Technology Shanghai China
uu Istituto di Fisiologia Clinica Siena Italy
uv Istituto Giannina Gaslini UOC Medical Genetics Genova Italy
uv Tottori University Research Center for Bioscience and Technology Yonago Japan
ux Cancer Pharmacology Lab AIRC Start Up Unit University of Pisa Pisa Italy
uy Istituto Ortopedico Rizzoli IOR IRCCS Laboratory of Musculoskeletal Cell Biology Bologna Italy
uy Trinity College Dublin Department of Genetics The Smurfit Institute Dublin Ireland
uz Istituto Superiore di Sanità Department of Cell Biology and Neurosciences Rome Italy
v Albany Medical College Center for Neuropharmacology and Neuroscience Albany NY USA
v Atlanta Department of Veterans Affairs Medical Center Decatur GA
v Graduate School of Cancer Science and Policy Department of System Cancer Science Goyang Korea
v Nanjing University School of Medicine Jinling Hospital Department of Neurology Nanjing China
v Seoul National University Department of Plant Science Seoul Korea
va Istituto Superiore di Sanità Department of Haematology Oncology and Molecular Medicine Rome Italy
va Trinity College Dublin Smurfit Institute of Genetics Dublin Ireland
vb Tsinghua University School of Life Sciences Beijing China
vd Istituto Superiore di Sanità Rome Italy
vd Tsinghua University Zhou Pei Yuan Center for Applied Mathematics Beijing China
ve Istituto Toscano Tumori Siena Italy
ve Tufts University USDA Human Nutrition Research Center on Aging Boston MA USA
vf Italian National Institute of Health Department of Technology and Health Rome Italy
vg IUF Leibniz Research Institute for Environmental Medicine Duesseldorf Germany
vh U S Food and Drug Administration Center for Drug Evaluation and Research Silver Spring MD USA
vi Jadavpur University Life Science and Biotechnology Kolkata West Bengal India
vj James J Peters VA Medical Center Bronx NY USA
vj UCL Cancer Institute London UK
vk Jawaharlal Nehru University School of Life Sciences New Delhi India
vk UCL Cancer Institute Samantha Dickson Brain Cancer Unit London UK
vl Jesse Brown VA Medical Center Department of Medicine Chicago IL USA
vm UCL Institute of Neurology Department of Molecular Neuroscience London UK
vn UCL Institute of Neurology London UK
vo Jewish General Hospital Department of Oncology Montreal Quebec Canada
vo UCL Institute of Ophthalmology London UK
vp Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China
vp UCLA David Geffen School of Medicine Brain Research Institute Los Angeles CA USA
vq Jiangsu University Department of Immunology Zhenjiang Jiangsu China
vq UFRJ Instituto de Biofisica Carlos Chagas Filho Rio de Janeiro Brazil
vr Jiangsu University School of Pharmacy Zhenjiang Jiangsu China
vs Umeå University Department of Medical Biochemistry and Biophysics Umeå Sweden
vu Jilin Medical University Medical Research Laboratory Jilin City Jilin Province China
vu UMR CNRS 5286 INSERM 1052 Cancer Research Center of Lyon Lyon France
vv Jinan University Anti stress and Health Center College of Pharmacy Guangzhou China
vv UMRS 1138 Centre de Recherche des Cordeliers Paris France
vw Uniformed Services University of the Health Sciences Department of Anesthesiology Bethesda MD USA
vx Jinan University Medical College Division of Histology and Embryology Guangzhou Guangdong China
vz Jinshan Hospital of Fudan University Department of Urology Shanghai China
vz Universidad Austral de Chile Department of Physiology Valdivia Chile
w Albert Einstein Cancer Center New York NY USA
w Austral University CONICET Gene and Cell Therapy Laboratory Pilar Buenos Aires Argentina
w Graduate School of Hallym University Chuncheon Kangwon do Korea
w Massachusetts General Hospital Division of Infectious Disease Boston MA USA
wa Universidad Autónoma de Madrid Centro de Biología Molecular Severo Ochoa CIBERER Madrid Spain
wb John Wayne Cancer Institute Department of Neurosciences Santa Monica CA USA
wc Universidad Autonoma de Madrid Departamento de Biologia Molecular Madrid Spain
wd Johns Hopkins University School of Medicine Baltimore MD USA
wd Universidad Autónoma de Madrid Departamento de Biología Madrid Spain
wf Universidad de Buenos Aires Inmunología Facultad de Farmacia y Bioquímica Buenos Aires Argentina
wg Universidad de Castilla La Mancha Albacete Spain
wi Johns Hopkins University School of Medicine Wilmer Eye Institute Baltimore MD USA
wk Johns Hopkins School of Medicine Wilmer Eye Institute Baltimore MD USA
wk Universidad de Chile Advanced Center for Chronic Diseases Santiago Chile
wl Juntendo University Department of Research for Parkinson's Disease Tokyo Japan
wn Universidad de Chile Instituto de Nutrición y Tecnología de los Alimentos Santiago Chile
wp Universidad de Costa Rica CIET San José Costa Rica
wq Juntendo University School of Medicine Department of Cell Biology and Neuroscience Tokyo Japan
wr Juntendo University School of Medicine Department of Gastroenterology Tokyo Japan
wr Universidad de León Área de Biología Celular Instituto de Biomedicina León Spain
ws Juntendo University Tokyo Japan
ws Universidad de Navarra Centro de Investigacion Medica Aplicada Pamplona Spain
wt Universidad de Oviedo Departamento de Biología Funcional Oviedo Spain
wv KAIST Department of Biological Sciences Daejon Korea
ww Kanazawa Medical University Department of Medicine Ishikawa Japan
wx Kanazawa Medical University Diabetology and Endocrinology Ishikawa Japan
wy Universidad de Sevilla Instituto de Biomedicina de Sevilla Sevilla Spain
wz Universidad de Sevilla Instituto de Bioquímica Vegetal y Fotosíntesis CSIC Sevilla Spain
x Albert Einstein College of Medicine Bronx NY USA
x Centro de Biologia Molecular Severo Ochoa Madrid Spain
x Griffith University Menzies Health Institute Queensland Australia
x Seoul St Mary's Hospital Department of Internal Medicine Seoul Korea
xa Kansas State University Division of Biology Manhattan KS USA
xa Universidad de Valparaíso Instituto de Biología Facultad de Ciencias Valparaíso Chile
xb Kaohsiung Medical University Hospital Department of Pathology Kaohsiung City Taiwan
xc Kaohsiung Medical University Graduate Institute of Medicine Kaohsiung Taiwan
xd Kaohsiung Medical University Faculty of Medicine Department of Pathology Kaohsiung City Taiwan
xd Universidad Nacional de Cuyo Facultad de Ciencias Medicas Mendoza Argentina
xe Kaohsiung Veterans General Hospital Department of Medical Education and Research Kaohsiung Taiwan
xf Karlsruhe Institute of Technology Institute of Toxicology and Genetics Karlsruhe Germany
xf Universidade de Brasília Departamento de Biologia Celular Brasília DF Brazil
xg Karolinska Institute Cancer Center Karolinska Department of Oncology Pathology Stockholm Sweden
xg Universidade de Lisboa Research Institute for Medicines Faculty of Pharmacy Lisboa Portugal
xi Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo São Paulo Brazil
xi Karolinska Institute Department of Microbiology Tumor and Cell Biology Stockholm Sweden
xj Karolinska Institute Department of Physiology and Pharmacology Stockholm Sweden
xk Karolinska Institute Institute of Environmental Medicine Stockholm Sweden
xl Kawasaki Medical School Department of General Internal Medicine 4 Okayama Japan
xm Kawasaki Medical School Department of Hepatology and Pancreatology Kurashiki Okayama Japan
xn Keimyung University Daegu Korea
xo Universidade Nova de Lisboa CEDOC NOVA Medical School Lisboa Portugal
xp Keio University Graduate School of Pharmaceutical Sciences Department of Biochemistry Tokyo Japan
xq Keio University School of Medicine Medical Education Center Tokyo Japan
xr KERBASQUE Basque Foundation for Sciences Bilbao Spain
xs King Saud University College of Science Department of Zoology Riyadh Saudi Arabia
xs Università del Piemonte Orientale A Avogadro Dipartimento di Scienze della Salute Novara Italy
xt King's College London Cardiovascular Division London UK
xt Università del Piemonte Orientale Novara Italy
xu King's College London Department of Basic and Clinical Neuroscience IoPPN London UK
xu Università di Salerno Dipartimento di Medicina e Chirurgia Baronissi Salerno Italy
xv Università Politecnica delle Marche Department of Clinical and Molecular Sciences Ancona Italy
xw Università Vita Salute San Raffaele Milan Italy
xx Kobe University Graduate School of Medicine Department of Orthopaedic Surgery Hyogo Japan
xz Konkuk University Department of Animal Biotechnology Seoul Korea
y Albert Einstein College of Medicine Department of Developmental and Molecular Biology Bronx NY USA
y Babraham Institute Cambridge UK
y Max Planck Institute for Biology of Ageing Cologne Germany
y Nankai University College of Life Sciences Tianjin China
y Shandong Agricultural University State Key Laboratory of Crop Science Tai'an China
ya Konkuk University Department of Veterinary Medicine Seoul Korea
yb Konkuk University School of Medicine Department of Ophthalmology Seoul Korea
yb Universitat Politècnica de València COMAV Institute Valencia Spain
yc Konkuk University School of Medicine Department of Anatomy Seoul Korea
yd Korea Cancer Center Hospital Department of Internal Medicine Seoul Korea
yf Korea University Department of Life Science and Biotechnology Seoul Korea
yg Université Bordeaux CNRS Institut de Biochimie et Génétique Cellulaires UMR 5095 Bordeaux France
yh Korea University Division of Life Sciences Seoul Korea
yi KU Leuven and VIB Vesalius Research Center Laboratory of Neurobiology Leuven Belgium
yi Université Catholique de Louvain Brussels Belgium
yj Université Catholique de Louvain Institut des Sciences de la Vie Louvain la Neuve Belgium
yk KU Leuven Department of Abdominal Transplant Surgery Leuven Belgium
yk Université Catholique de Louvain Institute of Neuroscience Louvain la Neuve Belgium
yl KU Leuven Department of Cellular and Molecular Medicine Leuven Belgium
yl Université Catholique de Louvain Laboratory of Cell Physiology Brussels Belgium
ym KU Leuven Department of Imaging and Pathology Leuven Belgium
ym Université Clermont 1 UFR Médecine UMR1019 Nutrition Humaine Clermont Ferrand France
yo Université de Bordeaux INSERM U916 Institut Bergonié Bordeaux cedex France
yp Kumamoto University Institute of Resource Development and Analysis Kumamoto Japan
yp Université de Bordeaux Institut des Maladies Neurodégénératives CNRS UMR 5293 Bordeaux France
yq Kunming University of Science and Technology Medical School Kunmimg Yunnan China
yr Kyoto Prefectural University of Medicine Department of Basic Geriatrics Kyoto Japan
ys Université de Franche Comté UFR Sciences et Techniques Laboratoire de Biochimie Besançon France
yt Kyoto Prefectural University of Medicine Department of Basic Geriatrics Kyoto Japan
yt Université de Limoges EA 3842 LHCP Faculté de Médecine Limoges France
yu Kyoto Sangyo University Department of Life Sciences Kyoto Japan
yv Kyoto Sangyo University Department of Molecular Biosciences Faculty of Life Sciences Kyoto Japan
yv Université de Lyon Faculty of Medicine Saint Etienne France
yw Kyoto University Department of Botany Kyoto Japan
yx Kyoto University Department of Cardiovascular Medicine Kyoto Japan
yy Kyoto University Graduate School of Medicine Medical Innocation Center Kyoto Japan
yy Université de Montpellier DIMNP UMR 5235 CNRS Montpellier France
yz Kyung Hee University Graduate School of East West Medical Science Seoul Korea
z Babraham Institute Signalling Program Cambridge UK
z Centro de Biologia Molecular Severo Ochoa Department of Virology and Microbiology Madrid Spain
z Max Planck Institute of Biochemistry Group Maintenance of Genome Stability Martinsried Germany
z Nanyang Technological University School of Biological Sciences Singapore
z Shandong University Department of Toxicology Jinan Shandong China
za Kyungpook National University Department of Physiology School of Medicine Jung gu Daegu Korea
za Université de Montpellier Montpellier France
zb Kyushu University Department of Surgery and Science Fukuoka Japan
zb Université de Montréal Department of Medicine Montréal Quebec Canada
zc Olivia Newton John Cancer Research Institute Melbourne Victoria Australia
zc Université de Montréal Department of Pharmacology Faculty of Medicine Montreal QC Canada
zd Université de Montréal Faculty of Pharmacy Montréal Québec Canada
ze La Trobe University Department of Chemistry and Physics Melbourne Victoria Australia
ze Université de Montréal Institute for Research in Immunology and Cancer Montréal Québec Canada
zf La Trobe University School of Cancer Medicine Melbourne Victoria Australia
zf Université de Nantes CRCNA UMRINSERM 892 CNRS 6299 Nantes France
zh Laboratory for Proteolytic Neuroscience RIKEN Brain Science Institute Wako Saitama Japan
zi Université de Strasbourg Faculté de Médecine UMRS 1118 Strasbourg France
zk Latvian Biomedical Research and Study Centre Riga Latvia
zl Leiden University Institute of Biology Leiden The Netherlands
zl Université Grenoble Alpes CEA DSV iRTSV BGE GenandChem INSERM U1038 Grenoble France
zm Université Laval Neurosciences Axis Québec Canada
zn Medical University of Silesia ENT Department School of Medicine Katowice Poland
zn Universite Libre de Bruxelles ULB Center for Diabetes Research Brussels Belgium
zo Linköping University Department of Clinical and Experimental Medicine Linköping Sweden
zo Université Lyon Ecole Normale Supérieure de Lyon Lyon France
zp Linköping University Department of Medical and Health Sciences Linköping Sweden
zq Université Nice Sophia Antipolis UMR E 4320TIRO MATOs CEA iBEB Faculté de Médecine Nice France
zr Liverpool School of Tropical Medicine Department of Parasitology Liverpool Merseyside UK
zs Université Paris Descartes Institut Cochin Faculté de Médecine Sorbonne Paris Cité Paris France
zt Lomonosov Moscow State University Faculty of Basic Medicine Moscow Russia
zt Université Paris Descartes Institut Necker Enfants Malades INSERM U1151 Paris France
zu London Research Institute Cancer Research UK London UK
zu Université Paris Descartes Paris France
zv Université Paris Descartes Paris 5 Paris France
zv University College London Cancer Institute London UK
zw Lorraine University CITHéFOR EA3452 Faculté de Pharmacie Nancy France
zx Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center Torrance CA
zy Université Paris Diderot Unité Biologie Fonctionnelle et Adaptative CNRS UMR 8251 Paris France
PubMed Selliez, Iban [corrected to Seiliez, Iban]
Zobrazit více v PubMed
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al.. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8:445-544; http://dx.doi.org/10.4161/auto.19496. PubMed DOI PMC
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al.. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4:151-75; http://dx.doi.org/10.4161/auto.5338. PubMed DOI PMC
Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy 2007; 3:181-206; http://dx.doi.org/10.4161/auto.3678. PubMed DOI
Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, Shan B, Zhang Y, Norberg E, Zhang T, et al.. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol 2015; 210:705-16; http://dx.doi.org/10.1083/jcb.201503044. PubMed DOI PMC
Klionsky DJ. The autophagosome is overrated! Autophagy 2011; 7:353-4; http://dx.doi.org/10.4161/auto.7.4.14730. PubMed DOI PMC
Eskelinen E-L, Reggiori F, Baba M, Kovacs AL, Seglen PO. Seeing is believing: The impact of electron microscopy on autophagy research. Autophagy 2011; 7:935-56; http://dx.doi.org/10.4161/auto.7.9.15760. PubMed DOI
Seglen PO. Regulation of autophagic protein degradation in isolated liver cells In: Glaumann H and Ballard FJ, eds. Lysosomes: Their Role in Protein Breakdown. London: Academic Press, 1987:369-414.
de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966; 28:435-92; http://dx.doi.org/10.1146/annurev.ph.28.030166.002251. PubMed DOI
Gordon PB, Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun 1988; 151:40-7; http://dx.doi.org/10.1016/0006-291X(88)90556-6. PubMed DOI
Dice JF, Klionsky DJ. Artophagy, the art of autophagy–macroautophagy. Autophagy 2010; 6. PubMed
Lucocq JM, Hacker C. Cutting a fine figure: On the use of thin sections in electron microscopy to quantify autophagy. Autophagy 2013; 9:1443-8; http://dx.doi.org/10.4161/auto.25570. PubMed DOI
Kovács J, Fellinger E, Karpati AP, Kovács AL, Laszlo L, Réz G. Morphometric evaluation of the turnover of autophagic vacuoles after treatment with Triton X-100 and vinblastine in murine pancreatic acinar and seminal vesicle epithelial cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1987; 53:183-90; http://dx.doi.org/10.1007/BF02890242. PubMed DOI
Kovács J, Fellinger E, Karpati PA, Kovács AL, Laszlo L. The turnover of autophagic vacuoles: evaluation by quantitative electron microscopy. Biomed Biochim Acta 1986; 45:1543-7. PubMed
Kovács J, Laszlo L, Kovács AL. Regression of autophagic vacuoles in pancreatic acinar, seminal vesicle epithelial, and liver parenchymal cells: a comparative morphometric study of the effect of vinblastine and leupeptin followed by cycloheximide treatment. Exp Cell Res 1988; 174:244-51; http://dx.doi.org/10.1016/0014-4827(88)90158-9. PubMed DOI
CT Chu. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 2006; 65:423-32; http://dx.doi.org/10.1097/01.jnen.0000229233.75253.be. PubMed DOI PMC
Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 2006; 281:36303-16; http://dx.doi.org/10.1074/jbc.M607031200. PubMed DOI
Kovács AL, Reith A, Seglen PO. Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp Cell Res 1982; 137:191-201; http://dx.doi.org/10.1016/0014-4827(82)90020-9. PubMed DOI
Bestebroer J, V'Kovski P, Mauthe M, Reggiori F. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 2013; 14:1029-41; http://dx.doi.org/10.1111/tra.12091. PubMed DOI PMC
Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY. Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci USA 2013; 110:13038-43; http://dx.doi.org/10.1073/pnas.1303231110. PubMed DOI PMC
Politi Y, Gal L, Kalifa Y, Ravid L, Elazar Z, Arama E. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev Cell 2014; 29:305-20; http://dx.doi.org/10.1016/j.devcel.2014.04.005. PubMed DOI
Toth S, Nagy K, Palfia Z, Rez G. Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas. Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation. Cell Tissue Res 2002; 309:409-16; http://dx.doi.org/10.1007/s00441-001-0506-7. PubMed DOI
Loos B, Engelbrecht AM. Cell death: a dynamic response concept. Autophagy 2009; 5:590-603; http://dx.doi.org/10.4161/auto.5.5.8479. PubMed DOI
Seglen PO, Gordon PB, Grinde B, Solheim A, Kovacs AL, Poli A. Inhibitors and pathways of hepatocytic protein degradation. Acta Biol Med Ger 1981; 40:1587-98. PubMed
Ktistakis NT, Andrews S, Long J. What is the advantage of a transient precursor in autophagosome biogenesis? Autophagy 2011; 7:118-22; http://dx.doi.org/10.4161/auto.7.1.13697. PubMed DOI
Kovács AL, Réz G, Pálfia Z, Kovács J. Autophagy in the epithelial cells of murine seminal vesicle in vitro. Formation of large sheets of nascent isolation membranes, sequestration of the nucleus and inhibition by wortmannin and 3-ethyladenine. Cell Tissue Res 2000; 302:253-61; http://dx.doi.org/10.1007/s004410000275. PubMed DOI
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3:542-5; http://dx.doi.org/10.4161/auto.4600. PubMed DOI
Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461:654-8; http://dx.doi.org/10.1038/nature08455. PubMed DOI
Kanki T, Kang D, Klionsky DJ. Monitoring mitophagy in yeast: the Om45-GFP processing assay. Autophagy 2009; 5:1186-9; http://dx.doi.org/10.4161/auto.5.8.9854. PubMed DOI PMC
Grander D, Kharaziha P, Laane E, Pokrovskaja K, Panaretakis T. Autophagy as the main means of cytotoxicity by glucocorticoids in hematological malignancies. Autophagy 2009; 5:1198-200; http://dx.doi.org/10.4161/auto.5.8.10122. PubMed DOI
Welter E, Thumm M, Krick R. Quantification of nonselective bulk autophagy in S. cerevisiae using Pgk1-GFP. Autophagy 2010; 6:794-7; http://dx.doi.org/10.4161/auto.6.6.12348. PubMed DOI
Raju D, Jones NL. Methods to monitor autophagy in H. pylori vacuolating cytotoxin A (VacA)-treated cells. Autophagy 2010; 6:138-43; http://dx.doi.org/10.4161/auto.6.1.10222. PubMed DOI
Geng J, Klionsky DJ. Determining Atg protein stoichiometry at the phagophore assembly site by fluorescence microscopy. Autophagy 2010; 6:144-7; http://dx.doi.org/10.4161/auto.6.1.10249. PubMed DOI PMC
Swanlund JM, Kregel KC, Oberley TD. Investigating autophagy: quantitative morphometric analysis using electron microscopy. Autophagy 2010; 6:270-7; http://dx.doi.org/10.4161/auto.6.2.10439. PubMed DOI PMC
Zhang J, Ney PA. Reticulocyte mitophagy: monitoring mitochondrial clearance in a mammalian model. Autophagy 2010; 6:405-8; http://dx.doi.org/10.4161/auto.6.3.11245. PubMed DOI
Seglen PO, Brinchmann MF. Purification of autophagosomes from rat hepatocytes. Autophagy 2010; 6:542-7; http://dx.doi.org/10.4161/auto.6.4.11272. PubMed DOI
He C, Klionsky DJ. Analyzing autophagy in zebrafish. Autophagy 2010; 6. PubMed PMC
Calvo-Garrido J, Carilla-Latorre S, Mesquita A, Escalante R. A proteolytic cleavage assay to monitor autophagy in Dictyostelium discoideum. Autophagy 2011; 7:1063-8; http://dx.doi.org/10.4161/auto.7.9.16629. PubMed DOI
Xu F, Liu XH, Zhuang FL, Zhu J, Lin FC. Analyzing autophagy in Magnaporthe oryzae. Autophagy 2011; 7:525-30; http://dx.doi.org/10.4161/auto.7.5.15020. PubMed DOI
Klionsky DJ. Autophagy: Lower Eukaryotes and Non-Mammalian Systems, Part A. Amsterdam: Academic Press/Elsevier, 2008.
Klionsky DJ. Autophagy in Disease and Clinical Applications, Part C. Amsterdam: Academic Press/Elsevier, 2008.
Klionsky DJ. Autophagy in Mammalian Systems, Part B. Amsterdam: Academic Press/Elsevier, 2008.
Zhu J, Dagda RK, Chu CT. Monitoring mitophagy in neuronal cell cultures. Methods Mol Biol 2011; 793:325-39; http://dx.doi.org/10.1007/978-1-61779-328-8. PubMed DOI PMC
Klionsky DJ. Protocol URL.
Chu CT, Plowey ED, Dagda RK, Hickey RW, Cherra SJ 3rd, Clark RS. Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol 2009; 453:217-49; http://dx.doi.org/10.1016/S0076-6879(08)04011-1. PubMed DOI PMC
Singh PK, Singh S. Changing shapes of glycogen-autophagy nexus in neurons: perspective from a rare epilepsy. Front Neurol 2015; 6:14; http://dx.doi.org/10.3389/fneur.2015.00014. PubMed DOI PMC
Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy. Microscopy Res Tech 2004; 64:10-20; http://dx.doi.org/10.1002/jemt.20046. PubMed DOI
Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pract 2006; 202:631-8; http://dx.doi.org/10.1016/j.prp.2006.04.001. PubMed DOI
Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452:143-64; http://dx.doi.org/10.1016/S0076-6879(08)03610-0. PubMed DOI
Eskelinen E-L. Maturation of autophagic vacuoles in mammalian cells. Autophagy 2005; 1:1-10; http://dx.doi.org/10.4161/auto.1.1.1270. PubMed DOI
Eskelinen E-L. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 2008; 4:257-60; http://dx.doi.org/10.4161/auto.5179. PubMed DOI
Eskelinen E-L, Kovacs AL. Double membranes vs. lipid bilayers, and their significance for correct identification of macroautophagic structures. Autophagy 2011; 7:931-2; http://dx.doi.org/10.4161/auto.7.9.16679. PubMed DOI
Biazik J, Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 2015; 11:439-51; http://dx.doi.org/10.1080/15548627.2015.1017178. PubMed DOI PMC
Eskelinen E-L. Fine structure of the autophagosome In: Deretic V, ed. Autophagosome and Phagosome. Totowa, NJ: Humana Press, 2008:11-28; http://dx.doi.org/10.1007/978-1-59745-157-4. DOI
Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 1998; 273:21883-92; http://dx.doi.org/10.1074/jbc.273.34.21883. PubMed DOI
Eskelinen E-L. Macroautophagy in mammalian cells In: Saftig P, ed. Lysosomes. Georgetown, TX: LandesBioscience/Eurekah.com, 2005.
Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Phys 2014; 306:C621-33; http://dx.doi.org/10.1152/ajpcell.00228.2013. PubMed DOI
Yang DS, Lee JH, Nixon RA. Monitoring autophagy in Alzheimer's disease and related neurodegenerative diseases. Methods Enzymol 2009; 453:111-44; http://dx.doi.org/10.1016/S0076-6879(08)04006-8. PubMed DOI
Yokota S, Himeno M, Kato K. Immunocytochemical localization of acid phosphatase in rat liver. Cell Struct Funct 1989; 14:163-71; http://dx.doi.org/10.1247/csf.14.163. PubMed DOI
Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 2008; 28:6926-37; http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008. PubMed DOI PMC
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropath Exp Neuro 2005; 64:113-22. PubMed
Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, et al.. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141:1146-58; http://dx.doi.org/10.1016/j.cell.2010.05.008. PubMed DOI PMC
Lee JH, McBrayer MK, Wolfe DM, Haslett LJ, Kumar A, Sato Y, Lie PP, Mohan P, Coffey EE, Kompella U, et al.. Presenilin 1 maintains lysosomal Ca2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep 2015; 12:1430-44. PubMed PMC
Sonati T, Reimann RR, Falsig J, Baral PK, O'Connor T, Hornemann S, Yaganoglu S, Li B, Herrmann US, Wieland B, et al.. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 2013; 501:102-6; http://dx.doi.org/10.1038/nature12402. PubMed DOI
Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nature Rev Mol Cell Biol 2007; 8:622-32; http://dx.doi.org/10.1038/nrm2217. PubMed DOI
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27:107-32; http://dx.doi.org/10.1146/annurev-cellbio-092910-154005. PubMed DOI
Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011; 31:7817-30; http://dx.doi.org/10.1523/JNEUROSCI.6412-10.2011. PubMed DOI PMC
Rabouille C, Strous GJ, Crapo JD, Geuze HJ, Slot JW. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol 1993; 120:897-908; http://dx.doi.org/10.1083/jcb.120.4.897. PubMed DOI PMC
Kovács AL, Pálfia Z, Réz G, Vellai T, Kovács J. Sequestration revisited: integrating traditional electron microscopy, de novo assembly and new results. Autophagy 2007; 3:655-62; http://dx.doi.org/10.4161/auto.4590. PubMed DOI
Gao W, Kang JH, Liao Y, Ding WX, Gambotto AA, Watkins SC, Liu YJ, Stolz DB, Yin XM. Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem 2010; 285:1371-83; http://dx.doi.org/10.1074/jbc.M109.054197. PubMed DOI PMC
Lajoie P, Guay G, Dennis JW, Nabi IR. The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. J Cell Sci 2005; 118:1991-2003; http://dx.doi.org/10.1242/jcs.02324. PubMed DOI
Mayhew TM. Quantitative immunoelectron microscopy: alternative ways of assessing subcellular patterns of gold labeling. Methods Mol Biol 2007; 369:309-29; http://dx.doi.org/10.1007/978-1-59745-294-6. PubMed DOI
Mayhew TM, Lucocq JM, Griffiths G. Relative labelling index: a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections. J Microsc 2002; 205:153-64; http://dx.doi.org/10.1046/j.0022-2720.2001.00977.x. PubMed DOI
Isidoro C, Biagioni F, Giorgi FS, Fulceri F, Paparelli A, Fornai F. The role of autophagy on the survival of dopamine neurons. Curr Top Med Chem 2009; 9:869-79. PubMed
Schmid D, Pypaert M, Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 2007; 26:79-92; http://dx.doi.org/10.1016/j.immuni.2006.10.018. PubMed DOI PMC
Subramani S, Malhotra V. Non-autophagic roles of autophagy-related proteins. EMBO Rep 2013; 14:143-51; http://dx.doi.org/10.1038/embor.2012.220. PubMed DOI PMC
Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. Secretory autophagy. Curr Opin Cell Biol 2015; 35:106-16; http://dx.doi.org/10.1016/j.ceb.2015.04.016. PubMed DOI PMC
Saito T, Asai K, Sato S, Takano H, Adach A, Sasaki Y, Namimatsu S, Mizuno K. Proof of myocardial autophagy by combining antigen retrieval and the avidin-biotin peroxidase complex method. Int J Cardiol 2013; 168:4843-4; http://dx.doi.org/10.1016/j.ijcard.2013.07.032. PubMed DOI
Kovács J. Regression of autophagic vacuoles in seminal vesicle cells following cycloheximide treatment. Exp Cell Res 1983; 144:231-4; http://dx.doi.org/10.1016/0014-4827(83)90460-3. PubMed DOI
Réz G, Csak J, Fellinger E, Laszlo L, Kovács AL, Oliva O, Kovács J. Time course of vinblastine-induced autophagocytosis and changes in the endoplasmic reticulum in murine pancreatic acinar cells: a morphometric and biochemical study. Eur J Cell Biol 1996; 71:341-50. PubMed
Kovács AL, Grinde B, Seglen PO. Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp Cell Res 1981; 133:431-6; http://dx.doi.org/10.1016/0014-4827(81)90336-0. PubMed DOI
Mortimore GE, Hutson NJ, Surmacz CA. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA 1983; 80:2179-83; http://dx.doi.org/10.1073/pnas.80.8.2179. PubMed DOI PMC
Mortimore GE, Lardeux BR, Adams CE. Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem 1988; 263:2506-12. PubMed
Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Amer J Pathol 2007; 170:75-86; http://dx.doi.org/10.2353/ajpath.2007.060524. PubMed DOI PMC
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005; 171:603-14; http://dx.doi.org/10.1083/jcb.200507002. PubMed DOI PMC
Orvedahl A, Sumpter R Jr., Xiao G, Ng A, Zou Z, Tang Y, Narimatsu M, Gilpin C, Sun Q, Roth M, et al.. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011; 480:113-7; http://dx.doi.org/10.1038/nature10546. PubMed DOI PMC
Razi M, Tooze SA. Correlative light and electron microscopy. Methods Enzymol 2009; 452:261-75; http://dx.doi.org/10.1016/S0076-6879(08)03617-3. PubMed DOI
Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 2011; 9:e1001041. PubMed PMC
Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court F, Schuck S, Ibar C, Walter P, Sierralta J, et al.. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response. EMBO J 2011; 30:4465-78. PubMed PMC
Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009; 5:1180-5; http://dx.doi.org/10.4161/auto.5.8.10274. PubMed DOI
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Auto-phagy 2010; 6:301-3; http://dx.doi.org/10.4161/auto.6.2.11134. PubMed DOI
Duke EM, Razi M, Weston A, Guttmann P, Werner S, Henzler K, Schneider G, Tooze SA, Collinson LM. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 2014; 143:77-87; http://dx.doi.org/10.1016/j.ultramic.2013.10.006. PubMed DOI PMC
Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA 2006; 103:5805-10; http://dx.doi.org/10.1073/pnas.0507436103. PubMed DOI PMC
Baba M, Osumi M, Ohsumi Y. Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct Funct 1995; 20:465-71; http://dx.doi.org/10.1247/csf.20.465. PubMed DOI
Rez G, Meldolesi J. Freeze-fracture of drug-induced autophagocytosis in the mouse exocrine pancreas. Lab Investig 1980; 43:269-77. PubMed
Punnonen E-L, Pihakaski K, Mattila K, Lounatmaa K, Hirsimaki P. Intramembrane particles and filipin labelling on the membranes of autophagic vacuoles and lysosomes in mouse liver. Cell Tissue Res 1989; 258:269-76; http://dx.doi.org/10.1007/BF00239447. PubMed DOI
Fengsrud M, Erichsen ES, Berg TO, Raiborg C, Seglen PO. Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol 2000; 79:871-82; http://dx.doi.org/10.1078/0171-9335-00125. PubMed DOI
Dickey JS, Gonzalez Y, Aryal B, Mog S, Nakamura AJ, Redon CE, Baxa U, Rosen E, Cheng G, Zielonka J, et al.. Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PloS One 2013; 8:e70575. PubMed PMC
Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS, Keller PW, Joseph J, Kalyanaraman B, Shacter E. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem 2010; 285:34447-59; http://dx.doi.org/10.1074/jbc.M110.133579. PubMed DOI PMC
Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Rev Mol Cell Biol 2007; 8:931-7; http://dx.doi.org/10.1038/nrm2245. PubMed DOI
Krick R, M(u)he Y, Prick T, Bredschneider M, Bremer S, Wenzel D, Eskelinen E-L, Thumm M. Piecemeal microautophagy of the nucleus: genetic and morphological traits. Autophagy 2009; 5:270-2; http://dx.doi.org/10.4161/auto.5.2.7639. PubMed DOI
Meschini S, Condello M, Calcabrini A, Marra M, Formisano G, Lista P, De Milito A, Federici E, Arancia G. The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy 2008; 4:1020-33; http://dx.doi.org/10.4161/auto.6952. PubMed DOI
Proikas-Cezanne T, Robenek H. Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes. J Cell Mol Med 2011; 15:2007-10; http://dx.doi.org/10.1111/j.1582-4934.2011.01339.x. PubMed DOI PMC
Kovacs J, Rez G, Kovacs AL, Csak J, Zboray G. Autophagocytosis: freeze-fracture morphology, effects of vinblastine and influence of transcriptional and translational inhibitors. Acta Biol Med Germanica 1982; 41:131-5. PubMed
Hirsimaki Y, Hirsimaki P, Lounatmaa K. Vinblastine-induced autophagic vacuoles in mouse liver and Ehrlich ascites tumor cells as assessed by freeze-fracture electron microscopy. Eur J Cell Biol 1982; 27:298-301. PubMed
Backues SK, Chen D, Ruan J, Xie Z, Klionsky DJ. Estimating the size and number of autophagic bodies by electron microscopy. Autophagy 2014; 10:155-64; http://dx.doi.org/10.4161/auto.26856. PubMed DOI PMC
Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, Klionsky DJ. Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 2005; 16:3438-53; http://dx.doi.org/10.1091/mbc.E04-10-0894. PubMed DOI PMC
Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 2008; 19:3290-8; http://dx.doi.org/10.1091/mbc.E07-12-1292. PubMed DOI PMC
Sigmond T, Feher J, Baksa A, Pasti G, Palfia Z, Takacs-Vellai K, Kovacs J, Vellai T, Kovacs AL. Qualitative and quantitative characterization of autophagy in Caenorhabditis elegans by electron microscopy. Methods Enzymol 2008; 451:467-91; http://dx.doi.org/10.1016/S0076-6879(08)03228-X. PubMed DOI
Kovács AL, Vellai T, Müller F. Autophagy in Caenorhabditis elegans In: Klionsky DJ, ed. Autophagy. Georgetown, Texas: Landes Bioscience, 2004:217-23.
Weibel ER. Practical Methods for Biological Morphometry. Academic Press, New York, 1979.
Williams MA. Quantitative methods in biology: Practical methods in electron microscopy. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1977.
Howard V, Reed MG. Unbiased stereology; three dimensional measurement in microscopy. U Bios Scientific Publishers, 1998.
AL Kovacs. A simple method to estimate the number of autophagic elements by electron microscopic morphometry in real cellular dimensions. BioMed Res Intl 2014; 2014:578698. PubMed PMC
Xie Z, Nair U, Geng J, Szefler MB, Rothman ED, Klionsky DJ. Indirect estimation of the area density of Atg8 on the phagophore. Autophagy 2009; 5:217-20; http://dx.doi.org/10.4161/auto.5.2.7201. PubMed DOI PMC
Punnonen EL, Reunanen H. Effects of vinblastine, leucine, and histidine, and 3-methyladenine on autophagy in Ehrlich ascites cells. Exp Mol Pathol 1990; 52:87-97; http://dx.doi.org/10.1016/0014-4800(90)90061-H. PubMed DOI
Kovacs AL, Laszlo L, Fellinger E, Jakab A, Orosz A, Rez G, Kovacs J. Combined effects of fasting and vinblastine treatment on serum insulin level, the size of autophagic-lysosomal compartment, protein content and lysosomal enzyme activities of liver and exocrine pancreatic cells of the mouse. Comp Biochem Phys B Comp Biochem 1989; 94:505-10; http://dx.doi.org/10.1016/0305-0491(89)90189-2. PubMed DOI
Griffiths G. Fine structure immunocytochemistry Heidelberg, Germany: Springer-Verlag, 1993; http://dx.doi.org/10.1007/978-3-642-77095-1. DOI
Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS. Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 2011; 23:769-84; http://dx.doi.org/10.1105/tpc.110.082156. PubMed DOI PMC
Dunn WA Jr., Cregg JM, Kiel JAKW, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M. Pexophagy: the selective autophagy of peroxisomes. Autophagy 2005; 1:75-83; http://dx.doi.org/10.4161/auto.1.2.1737. PubMed DOI
Wang K, Klionsky DJ. Mitochondria removal by autophagy. Autophagy 2011; 7:297-300; http://dx.doi.org/10.4161/auto.7.3.14502. PubMed DOI PMC
Belanger M, Rodrigues PH, Dunn WA Jr., Progulske-Fox A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2006; 2:165-70; http://dx.doi.org/10.4161/auto.2828. PubMed DOI
Birmingham CL, Brumell JH. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2006; 2:156-8; http://dx.doi.org/10.4161/auto.2825. PubMed DOI
Colombo MI, Gutierrez MG, Romano PS. The two faces of autophagy: Coxiella and Mycobacterium. Autophagy 2006; 2:162-4; http://dx.doi.org/10.4161/auto.2827. PubMed DOI
Ogawa M, Sasakawa C. Shigella and autophagy. Autophagy 2006; 2:171-4; http://dx.doi.org/10.4161/auto.2829. PubMed DOI
Vergne I, Singh S, Roberts E, Kyei G, Master S, Harris J, de Haro S, Naylor J, Davis A, Delgado M, et al.. Autophagy in immune defense against Mycobacterium tuberculosis. Autophagy 2006; 2:175-8; http://dx.doi.org/10.4161/auto.2830. PubMed DOI
Yoshimori T. Autophagy vs. Group A Streptococcus. Autophagy 2006; 2:154-5; http://dx.doi.org/10.4161/auto.2822. PubMed DOI
Gorbunov NV, McDaniel DP, Zhai M, Liao PJ, Garrison BR, Kiang JG. Autophagy and mitochondrial remodelling in mouse mesenchymal stromal cells challenged with Staphylococcus epidermidis. J Cell Mol Med 2015; 19:1133-50; http://dx.doi.org/10.1111/jcmm.12518. PubMed DOI PMC
Lynch-Day MA, Klionsky DJ. The Cvt pathway as a model for selective autophagy. FEBS Lett 2010; 584:1359-66; http://dx.doi.org/10.1016/j.febslet.2010.02.013. PubMed DOI PMC
Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 2007; 3:442-51; http://dx.doi.org/10.4161/auto.4450. PubMed DOI
Klionsky DJ. Protein transport from the cytoplasm into the vacuole. J Membr Biol 1997; 157:105-15; http://dx.doi.org/10.1007/s002329900220. PubMed DOI
Baba M, Osumi M, Scott SV, Klionsky DJ, Ohsumi Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol 1997; 139:1687-95; http://dx.doi.org/10.1083/jcb.139.7.1687. PubMed DOI PMC
Dini L, Pagliara P, Carla EC. Phagocytosis of apoptotic cells by liver: a morphological study. Micros Res Tech 2002; 57:530-40; http://dx.doi.org/10.1002/jemt.10107. PubMed DOI
Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, et al.. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005; 12:1463-7; http://dx.doi.org/10.1038/sj.cdd.4401724. PubMed DOI
Rez G, Palfia Z, Fellinger E. Occurrence and inhibition by cycloheximide of apoptosis in vinblastine-treated murine pancreas. A role for autophagy? Acta Biol Hungarica 1991; 42:133-40. PubMed
Nagy P, Varga A, Kovács AL, Takáts S, Juhász G. How and why to study autophagy in Drosophila: It's more than just a garbage chute. Methods 2015; 75:151-61; http://dx.doi.org/10.1016/j.ymeth.2014.11.016. PubMed DOI PMC
Giammarioli AM, Gambardella L, Barbati C, Pietraforte D, Tinari A, Alberton M, Gnessi L, Griffin RJ, Minetti M, Malorni W. Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response. Intl J Cancer 2012; 131:E337-47. PubMed
Sou YS, Tanida I, Komatsu M, Ueno T, Kominami E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 2006; 281:3017-24; http://dx.doi.org/10.1074/jbc.M505888200. PubMed DOI
Le Grand JN, Chakrama FZ, Seguin-Py S, Fraichard A, Delage-Mourroux R, Jouvenot M, Boyer-Guittaut M. GABARAPL1 (GEC1): Original or copycat? Autophagy 2011; 7:1098-107; http://dx.doi.org/10.4161/auto.7.10.15904. PubMed DOI
Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 2003; 278:51841-50; http://dx.doi.org/10.1074/jbc.M308762200. PubMed DOI
Tanida I, Sou YS, Ezaki J, Minematsu-Ikeguchi N, Ueno T, Kominami E. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. J Biol Chem 2004; 279:36268-76; http://dx.doi.org/10.1074/jbc.M401461200. PubMed DOI
Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004; 117:2805-12; http://dx.doi.org/10.1242/jcs.01131. PubMed DOI
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 2010; 29:1792-802; http://dx.doi.org/10.1038/emboj.2010.74. PubMed DOI PMC
Szalai P, Hagen LK, Saetre F, Luhr M, Sponheim M, Overbye A, Mills IG, Seglen PO, Engedal N. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 2015; 333:21-38; http://dx.doi.org/10.1016/j.yexcr.2015.02.003. PubMed DOI
Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 2004; 9:611-8; http://dx.doi.org/10.1111/j.1356-9597.2004.00750.x. PubMed DOI
Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, et al.. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 2013; 15:1197-205; http://dx.doi.org/10.1038/ncb2837. PubMed DOI PMC
Lystad AH, Ichimura Y, Takagi K, Yang Y, Pankiv S, Kanegae Y, Kageyama S, Suzuki M, Saito I, Mizushima T, et al.. Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep 2014; 15:557-65; http://dx.doi.org/10.1002/embr.201338003. PubMed DOI PMC
von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein A, Bloor S, Rutherford TJ, Freund SM, Komander D, Randow F. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell 2012; 48:329-42; http://dx.doi.org/10.1016/j.molcel.2012.08.024. PubMed DOI PMC
Huang W-P, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 2000; 275:5845-51; http://dx.doi.org/10.1074/jbc.275.8.5845. PubMed DOI
Cai Q, Lu L, Tian J-H, Zhu Y-B, Qiao H, Sheng Z-H. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons. Neuron 2010; 68:73-86; http://dx.doi.org/10.1016/j.neuron.2010.09.022. PubMed DOI PMC
Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C. Chelation of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicol Sci 2011:523-41; http://dx.doi.org/10.1093/toxsci/kfr179. PubMed DOI PMC
Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R, Nerini-Molteni S, Sale P, Vago R, Arena G, et al.. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 2010; 17:962-74; http://dx.doi.org/10.1038/cdd.2009.200. PubMed DOI
Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, et al.. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 2011; 134:258-77; http://dx.doi.org/10.1093/brain/awq341. PubMed DOI PMC
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15:1101-11; http://dx.doi.org/10.1091/mbc.E03-09-0704. PubMed DOI PMC
Padman BS, Bach M, Lucarelli G, Prescott M, Ramm G. The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells. Autophagy 2013; 9:1862-75; http://dx.doi.org/10.4161/auto.26557. PubMed DOI
Jahreiss L, Menzies FM, Rubinsztein DC. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 2008; 9:574-87; http://dx.doi.org/10.1111/j.1600-0854.2008.00701.x. PubMed DOI PMC
Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008; 4:849-950; http://dx.doi.org/10.4161/auto.6845. PubMed DOI
Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 1998; 23:33-42; http://dx.doi.org/10.1247/csf.23.33. PubMed DOI
Ahlberg J, Berkenstam A, Henell F, Glaumann H. Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors. J Biol Chem 1985; 260:5847-54. PubMed
Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci 2010; 51:6030-7; http://dx.doi.org/10.1167/iovs.10-5278. PubMed DOI
Thomas G, Hall MN. TOR signalling and control of cell growth. Curr Opin Cell Biol 1997; 9:782-7; http://dx.doi.org/10.1016/S0955-0674(97)80078-6. PubMed DOI
G Juhasz. Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations. Autophagy 2012; 8:1875-6; http://dx.doi.org/10.4161/auto.21544. PubMed DOI PMC
Li M, Khambu B, Zhang H, Kang JH, Chen X, Chen D, Vollmer L, Liu PQ, Vogt A, Yin XM. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J Biol Chem 2013; 288:35769-80; http://dx.doi.org/10.1074/jbc.M113.511212. PubMed DOI PMC
Seglen PO, Grinde B, Solheim AE. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem 1979; 95:215-25; http://dx.doi.org/10.1111/j.1432-1033.1979.tb12956.x. PubMed DOI
Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 1991; 266:17707-12. PubMed
McLeland CB, Rodriguez J, Stern ST. Autophagy monitoring assay: qualitative analysis of MAP LC3-I to II conversion by immunoblot. Methods Mol Biol 2011; 697:199-206; http://dx.doi.org/10.1007/978-1-60327-198-1. PubMed DOI
Chakrama FZ, Seguin-Py S, Le Grand JN, Fraichard A, Delage-Mourroux R, Despouy G, Perez V, Jouvenot M, Boyer-Guittaut M. GABARAPL1 (GEC1) associates with autophagic vesicles. Auto-phagy 2010; 6:495-505; http://dx.doi.org/10.4161/auto.6.4.11819. PubMed DOI
Maynard S, Ghosh R, Wu Y, Yan S, Miyake T, Gagliardi M, Rethoret K, Bedard PA. GABARAP is a determinant of apoptosis in growth-arrested chicken embryo fibroblasts. J Cell Physiol 2015; 230:1475-88; http://dx.doi.org/10.1002/jcp.24889. PubMed DOI
Kim J, Huang W-P, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 2001; 152:51-64; http://dx.doi.org/10.1083/jcb.152.1.51. PubMed DOI PMC
Shu CW, Drag M, Bekes M, Zhai D, Salvesen GS, Reed JC. Synthetic substrates for measuring activity of autophagy proteases: autophagins (Atg4). Autophagy 2010; 6:936-47; http://dx.doi.org/10.4161/auto.6.7.13075. PubMed DOI PMC
Li M, Chen X, Ye Q-Z, Vogt A, Yin X-M. A High-throughput FRET-based Assay for Determination of Atg4 Activity. Autophagy 2012; 8:401-12. PubMed PMC
Ketteler R, Seed B. Quantitation of autophagy by luciferase release assay. Autophagy 2008; 4:801-6; http://dx.doi.org/10.4161/auto.6401. PubMed DOI PMC
Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin X-M. Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 2011; 286:7327-38; http://dx.doi.org/10.1074/jbc.M110.199059. PubMed DOI PMC
Klionsky DJ. For the last time, it is GFP-Atg8, not Atg8-GFP (and the same goes for LC3). Autophagy 2011; 7:1093-4; http://dx.doi.org/10.4161/auto.7.10.15492. PubMed DOI PMC
Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 2005; 1:84-91; http://dx.doi.org/10.4161/auto.1.2.1697. PubMed DOI
Castino R, Lazzeri G, Lenzi P, Bellio N, Follo C, Ferrucci M, Fornai F, Isidoro C. Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 2008; 106:1426-39; http://dx.doi.org/10.1111/j.1471-4159.2008.05488.x. PubMed DOI
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007; 100:914-22; http://dx.doi.org/10.1161/01.RES.0000261924.76669.36. PubMed DOI
Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 2001; 20:5971-81; http://dx.doi.org/10.1093/emboj/20.21.5971. PubMed DOI PMC
Hanson HH, Kang S, Fernandez-Monreal M, Oung T, Yildirim M, Lee R, Suyama K, Hazan RB, Phillips GR. LC3-dependent intracellular membrane tubules induced by gamma-protocadherins A3 and B2: a role for intraluminal interactions. J Biol Chem 2010; 285:20982-92; http://dx.doi.org/10.1074/jbc.M109.092031. PubMed DOI PMC
Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 2011; 13:1335-43; http://dx.doi.org/10.1038/ncb2363. PubMed DOI PMC
Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, Hengartner MO, Green DR. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 2011; 108:17396-401; http://dx.doi.org/10.1073/pnas.1113421108. PubMed DOI PMC
Choi J, Park S, Biering SB, Selleck E, Liu CY, Zhang X, Fujita N, Saitoh T, Akira S, Yoshimori T, et al.. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 2014; 40:924-35; http://dx.doi.org/10.1016/j.immuni.2014.05.006. PubMed DOI PMC
Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, et al.. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007; 450:1253-7; http://dx.doi.org/10.1038/nature06421. PubMed DOI
Sanjuan MA, Milasta S, Green DR. Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 2009; 227:203-20; http://dx.doi.org/10.1111/j.1600-065X.2008.00732.x. PubMed DOI
Ushio H, Ueno T, Kojima Y, Komatsu M, Tanaka S, Yamamoto A, Ichimura Y, Ezaki J, Nishida K, Komazawa-Sakon S, et al.. Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol 2011; 127:1267-76 e6; http://dx.doi.org/10.1016/j.jaci.2010.12.1078. PubMed DOI
Ishibashi K, Uemura T, Waguri S, Fukuda M. Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol Biol Cell 2012; 23:3193-202; http://dx.doi.org/10.1091/mbc.E12-01-0010. PubMed DOI PMC
DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 2011; 21:966-74; http://dx.doi.org/10.1016/j.devcel.2011.08.016. PubMed DOI PMC
Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell K, Guan JL, Saitoh T, Akira S, Seglen PO, et al.. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J 2013; 32:3130-44; http://dx.doi.org/10.1038/emboj.2013.233. PubMed DOI PMC
Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009; 6:137-49; http://dx.doi.org/10.1016/j.chom.2009.07.005. PubMed DOI
Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, Britton P, Ktistakis NT, Wileman T. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 2011; 7:1335-47; http://dx.doi.org/10.4161/auto.7.11.16642. PubMed DOI PMC
Reggiori F, Monastyrska I, Verheije MH, Cali T, Ulasli M, Bianchi S, Bernasconi R, de Haan CA, Molinari M. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 2010; 7:500-8; http://dx.doi.org/10.1016/j.chom.2010.05.013. PubMed DOI PMC
Sharma M, Bhattacharyya S, Nain M, Kaur M, Sood V, Gupta V, Khasa R, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes. Autophagy 2014; 10:1637-51; http://dx.doi.org/10.4161/auto.29455. PubMed DOI PMC
English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, Alexander D, Leib D, Norbury C, Lippe R, et al.. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 2009; 10:480-7; http://dx.doi.org/10.1038/ni.1720. PubMed DOI PMC
Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe 2014; 15:239-47; http://dx.doi.org/10.1016/j.chom.2014.01.006. PubMed DOI PMC
Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB, Whitton JL. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol 2010; 84:12110-24; http://dx.doi.org/10.1128/JVI.01417-10. PubMed DOI PMC
Alirezaei M, Flynn CT, Wood MR, Whitton JL. Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host Microbe 2012; 11:298-305; http://dx.doi.org/10.1016/j.chom.2012.01.014. PubMed DOI PMC
Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 2008; 105:1048-56; http://dx.doi.org/10.1111/j.1471-4159.2008.05217.x. PubMed DOI PMC
Nicotra G, Mercalli F, Peracchio C, Castino R, Follo C, Valente G, Isidoro C. Autophagy-active beclin-1 correlates with favourable clinical outcome in non-Hodgkin lymphomas. Modern pathology: Pathol 2010; 23:937-50; http://dx.doi.org/10.1038/modpathol.2010.80. PubMed DOI
Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol 2008; 445:77-88; http://dx.doi.org/10.1007/978-1-59745-157-4. PubMed DOI
Gros F, Arnold J, Page N, Decossas M, Korganow AS, Martin T, Muller S. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy 2012; 8:1113-23; http://dx.doi.org/10.4161/auto.20275. PubMed DOI PMC
Welinder C, Ekblad L. Coomassie staining as loading control in Western blot analysis. J Proteome Res 2011; 10:1416-9; http://dx.doi.org/10.1021/pr1011476. PubMed DOI
Colella AD, Chegenii N, Tea MN, Gibbins IL, Williams KA, Chataway TK. Comparison of Stain-Free gels with traditional immunoblot loading control methodology. Anal Biochem 2012; 430:108-10; http://dx.doi.org/10.1016/j.ab.2012.08.015. PubMed DOI
Ghosh R, Gilda JE, Gomes AV. The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteomics 2014; 11:549-60; http://dx.doi.org/10.1586/14789450.2014.939635. PubMed DOI PMC
Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 2005; 102:13807-12; http://dx.doi.org/10.1073/pnas.0506843102. PubMed DOI PMC
Russ DW, Boyd IM, McCoy KM, McCorkle KW. Muscle-specificity of age-related changes in markers of autophagy and sphingolipid metabolism. Biogerontology 2015; 16:747-59. PubMed
Russ DW, Krause J, Wills A, Arreguin R. “SR stress” in mixed hindlimb muscles of aging male rats. Biogerontology 2012; 13:547-55; http://dx.doi.org/10.1007/s10522-012-9399-y. PubMed DOI
He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, et al.. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278:29278-87; http://dx.doi.org/10.1074/jbc.M303800200. PubMed DOI
Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 2011; 12:226; http://dx.doi.org/10.1186/gb-2011-12-7-226. PubMed DOI PMC
Zois CE, Koukourakis MI. Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies? Autophagy 2009; 5:442-50; http://dx.doi.org/10.4161/auto.5.4.7667. PubMed DOI
Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S. Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 2001; 74:408-13; http://dx.doi.org/10.1006/geno.2001.6555. PubMed DOI
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A, et al.. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010; 11:45-51; http://dx.doi.org/10.1038/embor.2009.256. PubMed DOI PMC
Schwarten M, Mohrluder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold D. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 2009; 5:690-8; http://dx.doi.org/10.4161/auto.5.5.8494. PubMed DOI
Gassmann M, Grenacher B, Rohde B, Vogel J. Quantifying Western blots: pitfalls of densitometry. Electrophoresis 2009; 30:1845-55; http://dx.doi.org/10.1002/elps.200800720. PubMed DOI
Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151:263-76; http://dx.doi.org/10.1083/jcb.151.2.263. PubMed DOI PMC
Chung T, Phillips AR, Vierstra RD. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J 2010; 62:483-93; http://dx.doi.org/10.1111/j.1365-313X.2010.04166.x. PubMed DOI
Chung T, Suttangkakul A, Vierstra RD. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 2009; 149:220-34; http://dx.doi.org/10.1104/pp.108.126714. PubMed DOI PMC
Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Saetre F, Hagen LK, Patterson JB, Proikas-Cezanne T, Seglen PO, et al.. Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 2013; 9:1475-90; http://dx.doi.org/10.4161/auto.25900. PubMed DOI
Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L, Shai I, Golan R, Harman-Boehm I, Schon MR, et al.. Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 2011; 96:E268-77; http://dx.doi.org/10.1210/jc.2010-1681. PubMed DOI
Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X. Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 2010; 6:126-37; http://dx.doi.org/10.4161/auto.6.1.10928. PubMed DOI
King JS, Veltman DM, Insall RH. The induction of autophagy by mechanical stress. Autophagy 2011; 7:1490-9; http://dx.doi.org/10.4161/auto.7.12.17924. PubMed DOI PMC
Roberts R, Al-Jamal WT, Whelband M, Thomas P, Jefferson M, van den Bossche J, Powell PP, Kostarelos K, Wileman T. Autophagy and formation of tubulovesicular autophagosomes provide a barrier against nonviral gene delivery. Autophagy 2013; 9:667-82; http://dx.doi.org/10.4161/auto.23877. PubMed DOI PMC
Schmidt RS, Butikofer P. Autophagy in Trypanosoma brucei: amino acid requirement and regulation during different growth phases. PloS One 2014; 9:e93875; http://dx.doi.org/10.1371/journal.pone.0093875. PubMed DOI PMC
Bernard M, Dieude M, Yang B, Hamelin K, Underwood K, Hebert MJ. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. Autophagy 2014; 10:2193-207. PubMed PMC
Saetre F, Hagen LK, Engedal N, Seglen PO. Novel steps in the autophagic-lysosomal pathway. FEBS J 2015; 282:2202-14; http://dx.doi.org/10.1111/febs.13268. PubMed DOI
Ju JS, Varadhachary AS, Miller SE, Weihl CC. Quantitation of “autophagic flux” in mature skeletal muscle. Autophagy 2010; 6:929-35; http://dx.doi.org/10.4161/auto.6.7.12785. PubMed DOI PMC
Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior WW, van Dijk S, Wu H, Gray DC, et al.. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 2008; 183:101-16; http://dx.doi.org/10.1083/jcb.200801099. PubMed DOI PMC
Mauvezin C, Nagy P, Juhasz G, Neufeld TP. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun 2015; 6:7007; http://dx.doi.org/10.1038/ncomms8007. PubMed DOI PMC
Xie R, Nguyen S, McKeehan WL, Liu L. Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 2010; 11:89; http://dx.doi.org/10.1186/1471-2121-11-89. PubMed DOI PMC
Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 2005; 118: 3091-102; http://dx.doi.org/10.1242/jcs.02447. PubMed DOI
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant {alpha}-synuclein by chaperone-mediated autophagy. Science 2004; 305:1292-5; http://dx.doi.org/10.1126/science.1101738. PubMed DOI
Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C. Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 2008; 29:381-9; http://dx.doi.org/10.1093/carcin/bgm271. PubMed DOI
Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, Klionsky DJ. In search of an “autophagomometer”. Autophagy 2009; 5:585-9; http://dx.doi.org/10.4161/auto.5.5.8823. PubMed DOI
Sarkar S, Ravikumar B, Rubinsztein DC. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol 2009; 453:83-110; http://dx.doi.org/10.1016/S0076-6879(08)04005-6. PubMed DOI
Sarkar S, Korolchuk V, Renna M, Winslow A, Rubinsztein DC. Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates. Autophagy 2009; 5:307-13; http://dx.doi.org/10.4161/auto.5.3.7664. PubMed DOI
Martins WK, Severino D, Souza C, Stolf BS, Baptista MS. Rapid screening of potential autophagic inductor agents using mammalian cell lines. Biotechnol J 2013; 8:730-7; http://dx.doi.org/10.1002/biot.201200306. PubMed DOI
Martins WK, Costa ET, Cruz MC, Stolf BS, Miotto R, Cordeiro RM, Baptista MS. Parallel damage in mitochondrial and lysosomal compartments promotes efficient cell death with autophagy: The case of the pentacyclic triterpenoids. Sci Rep 2015; 5:12425; http://dx.doi.org/10.1038/srep12425. PubMed DOI PMC
Shintani T, Klionsky DJ. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 2004; 279:29889-94; http://dx.doi.org/10.1074/jbc.M404399200. PubMed DOI PMC
Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3:553-60; http://dx.doi.org/10.4161/auto.4615. PubMed DOI
Kim CH, Kim KH, Yoo YM. Melatonin protects against apoptotic and autophagic cell death in C2C12 murine myoblast cells. J Pineal Res 2011; 50:241-9; http://dx.doi.org/10.1111/j.1600-079X.2010.00833.x. PubMed DOI
Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3:553-60. PubMed
Tsvetkov AS, Arrasate M, Barmada S, Ando DM, Sharma P, Shaby BA, Finkbeiner S. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat Chem Biol 2013; 9:586-92; http://dx.doi.org/10.1038/nchembio.1308. PubMed DOI PMC
Loos B, du Toit A, Hofmeyr JH. Defining and measuring autophagosome flux-concept and reality. Autophagy 2014:0. PubMed PMC
Farkas T, Hoyer-Hansen M, Jaattela M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy 2009; 5:1018-25; http://dx.doi.org/10.4161/auto.5.7.9443. PubMed DOI
Frankel LB, Wen J, Lees M, H(o)yer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH. microRNA-101 is a potent inhibitor of autophagy. EMBO J 2011:4628-41; http://dx.doi.org/10.1038/emboj.2011.331. PubMed DOI PMC
Farkas T, Daugaard M, Jaattela M. Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy. J Biol Chem 2011; 286:38904-12; http://dx.doi.org/10.1074/jbc.M111.269134. PubMed DOI PMC
Szyniarowski P, Corcelle-Termeau E, Farkas T, Hoyer-Hansen M, Nylandsted J, Kallunki T, Jaattela M. A comprehensive siRNA screen for kinases that suppress macroautophagy in optimal growth conditions. Autophagy 2011; 7:892-903; http://dx.doi.org/10.4161/auto.7.8.15770. PubMed DOI
Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F, Darfeuille-Michaud A. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014; 146:508-19; http://dx.doi.org/10.1053/j.gastro.2013.10.021. PubMed DOI
Frankel LB, Di Malta C, Wen J, Eskelinen EL, Ballabio A, Lund AH. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun 2014; 5:5840; http://dx.doi.org/10.1038/ncomms6840. PubMed DOI
Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis 2012; 33:2018-25; http://dx.doi.org/10.1093/carcin/bgs266. PubMed DOI
Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E. Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 2006; 281:4035-41; http://dx.doi.org/10.1074/jbc.M512283200. PubMed DOI
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183:795-803; http://dx.doi.org/10.1083/jcb.200809125. PubMed DOI PMC
Nogalska A, Terracciano C, D'Agostino C, King Engel W, Askanas V. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol 2009; 118:407-13; http://dx.doi.org/10.1007/s00401-009-0564-6. PubMed DOI
Chahory S, Keller N, Martin E, Omri B, Crisanti P, Torriglia A. Light induced retinal degeneration activates a caspase-independent pathway involving cathepsin D. Neurochem Int 2010; 57:278-87; http://dx.doi.org/10.1016/j.neuint.2010.06.006. PubMed DOI
Padron-Barthe L, Courta J, Lepretre C, Nagbou A, Torriglia A. Leukocyte Elastase Inhibitor, the precursor of L-DNase II, inhibits apoptosis by interfering with caspase-8 activation. Biochim Biophys Acta 2008; 1783:1755-66; http://dx.doi.org/10.1016/j.bbamcr.2008.06.018. PubMed DOI
Gutierrez MG, Saka HA, Chinen I, Zoppino FC, Yoshimori T, Bocco JL, Colombo MI. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci USA 2007; 104:1829-34; http://dx.doi.org/10.1073/pnas.0601437104. PubMed DOI PMC
Hosokawa N, Hara Y, Mizushima N. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett 2006; 580:2623-9; http://dx.doi.org/10.1016/j.febslet.2006.04.008. PubMed DOI
Suttangkakul A, Li F, Chung T, Vierstra RD. The ATG1/13 protein kinase complex is both a regulator and a substrate of autophagic recycling in Arabidopsis. Plant Cell 2011; 23: 3761-79; http://dx.doi.org/10.1105/tpc.111.090993. PubMed DOI PMC
Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM, Ding WX. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 2011; 7:188-204; http://dx.doi.org/10.4161/auto.7.2.14181. PubMed DOI PMC
Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, Nabi IR, Roberge M. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PloS One 2009; 4:e7124; http://dx.doi.org/10.1371/journal.pone.0007124. PubMed DOI PMC
Patterson GH, Lippincott-Schwartz J. Selective photolabeling of proteins using photoactivatable GFP. Methods 2004; 32:445-50; http://dx.doi.org/10.1016/j.ymeth.2003.10.006. PubMed DOI
Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 2006; 281:29776-87; http://dx.doi.org/10.1074/jbc.M603783200. PubMed DOI
Noda T, Klionsky DJ. The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol 2008; 451:33-42; http://dx.doi.org/10.1016/S0076-6879(08)03203-5. PubMed DOI
DJ Klionsky. Monitoring autophagy in yeast: the Pho8Delta60 assay. Methods Mol Biol 2007; 390:363-71; http://dx.doi.org/10.1007/978-1-59745-466-7. PubMed DOI
Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 1997; 73:2782-90; http://dx.doi.org/10.1016/S0006-3495(97)78307-3. PubMed DOI PMC
Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3:452-60; http://dx.doi.org/10.4161/auto.4451. PubMed DOI
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004; 22:1567-72; http://dx.doi.org/10.1038/nbt1037. PubMed DOI
Strack RL, Keenan RJ, Glick BS. Noncytotoxic DsRed derivatives for whole-cell labeling. Methods Mol Biol 2011; 699:355-70; http://dx.doi.org/10.1007/978-1-61737-950-5. PubMed DOI PMC
Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 2006; 24:461-5; http://dx.doi.org/10.1038/nbt1191. PubMed DOI
Rekas A, Alattia JR, Nagai T, Miyawaki A, Ikura M. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem 2002; 277:50573-8; http://dx.doi.org/10.1074/jbc.M209524200. PubMed DOI
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19:5720-8; http://dx.doi.org/10.1093/emboj/19.21.5720. PubMed DOI PMC
Badr CE, Wurdinger T, Nilsson J, Niers JM, Whalen M, Degterev A, Tannous BA. Lanatoside C sensitizes glioblastoma cells to tumor necrosis factor-related apoptosis-inducing ligand and induces an alternative cell death pathway. Neuro-oncology 2011; 13:1213-24; http://dx.doi.org/10.1093/neuonc/nor067. PubMed DOI PMC
Meléndez A, Tallóczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003; 301:1387-91; http://dx.doi.org/10.1126/science.1087782. PubMed DOI
Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 2003; 278:17636-45; http://dx.doi.org/10.1074/jbc.M212467200. PubMed DOI
Liu XH, Liu TB, Lin FC. Monitoring autophagy in Magnaporthe oryzae. Methods Enzymol 2008; 451:271-94; http://dx.doi.org/10.1016/S0076-6879(08)03219-9. PubMed DOI
Pinan-Lucarre B, Paoletti M, Dementhon K, Coulary-Salin B, Clave C. Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 2003; 47:321-33; http://dx.doi.org/10.1046/j.1365-2958.2003.03208.x. PubMed DOI
Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 2006; 312:580-3; http://dx.doi.org/10.1126/science.1124550. PubMed DOI
Kikuma T, Ohneda M, Arioka M, Kitamoto K. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot Cell 2006; 5:1328-36; http://dx.doi.org/10.1128/EC.00024-06. PubMed DOI PMC
Nolting N, Bernhards Y, Poggeler S. SmATG7 is required for viability in the homothallic ascomycete Sordaria macrospora. Fungal Genet Biol 2009; 46:531-42; http://dx.doi.org/10.1016/j.fgb.2009.03.008. PubMed DOI
Baghdiguian S, Martinand-Mari C, Mangeat P. Using Ciona to study developmental programmed cell death. Semin Cancer Biol 2007; 17:147-53; http://dx.doi.org/10.1016/j.semcancer.2006.11.005. PubMed DOI
Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 2004; 7:179-92; http://dx.doi.org/10.1016/j.devcel.2004.07.005. PubMed DOI
Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004; 7:167-78; http://dx.doi.org/10.1016/j.devcel.2004.07.009. PubMed DOI
Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 2009; 19:1741-6; http://dx.doi.org/10.1016/j.cub.2009.08.042. PubMed DOI PMC
Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 2004; 16:2967-83; http://dx.doi.org/10.1105/tpc.104.025395. PubMed DOI PMC
Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD. Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 2015; 27:1389-408; http://dx.doi.org/10.1105/tpc.15.00158. PubMed DOI PMC
Brennand A, Rico E, Rigden DJ, Van Der Smissen P, Courtoy PJ, Michels PA. ATG24 Represses Autophagy and Differentiation and Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma brucei. PloS One 2015; 10:e0130365. PubMed PMC
Li FJ, Shen Q, Wang C, Sun Y, Yuan AY, He CY. A role of autophagy in Trypanosoma brucei cell death. Cell Microbiol 2012; 14:1242-56; http://dx.doi.org/10.1111/j.1462-5822.2012.01795.x. PubMed DOI
Besteiro S, Williams RA, Morrison LS, Coombs GH, Mottram JC. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 2006; 281:11384-96; http://dx.doi.org/10.1074/jbc.M512307200. PubMed DOI
Williams RA, Tetley L, Mottram JC, Coombs GH. Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 2006; 61:655-74; http://dx.doi.org/10.1111/j.1365-2958.2006.05274.x. PubMed DOI
Williams RA, Woods KL, Juliano L, Mottram JC, Coombs GH Characterization of unusual families of ATG8-like proteins and ATG12 in the protozoan parasite Leishmania major. Autophagy 2009; 5:159-72. PubMed PMC
Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W, Bode C, Hamm C, Schaper J. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 2004; 43:2191-9; http://dx.doi.org/10.1016/j.jacc.2004.02.053. PubMed DOI
Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM. Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 2001; 51:304-12; http://dx.doi.org/10.1016/S0008-6363(01)00290-5. PubMed DOI
Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, et al.. Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003; 92:715-24; http://dx.doi.org/10.1161/01.RES.0000067471.95890.5C. PubMed DOI
Perez-Perez ME, Florencio FJ, Crespo JL. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 2010; 152:1874-88; http://dx.doi.org/10.1104/pp.109.152520. PubMed DOI PMC
Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, et al.. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Amer J Pathol 2005; 167:1713-28; http://dx.doi.org/10.1016/S0002-9440(10)61253-9. PubMed DOI PMC
O]st A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H, Sandstrom P, Kjolhede P, Stralfors P. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16:235-46; http://dx.doi.org/10.1007/s00894-009-0539-5. PubMed DOI PMC
Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, et al.. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190:881-92; http://dx.doi.org/10.1083/jcb.200911078. PubMed DOI PMC
Gniadek TJ, Warren G. WatershedCounting3D: a new method for segmenting and counting punctate structures from confocal image data. Traffic 2007; 8:339-46; http://dx.doi.org/10.1111/j.1600-0854.2007.00538.x. PubMed DOI
Decuypere J-P, Welkenhuyzen K, Luyten Y, Ponsaerts R, Dewaele M, Molgó J, Agostinis P, Missiaen L, De Smedt H, Parys JB, et al.. IP3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 2011; 7:1472-89; http://dx.doi.org/10.4161/auto.7.12.17909. PubMed DOI PMC
Xu Y, Yuan J, Lipinski MM. Live imaging and single-cell analysis reveal differential dynamics of autophagy and apoptosis. Autophagy 2013; 9:1418-30; http://dx.doi.org/10.4161/auto.25080. PubMed DOI PMC
Amer AO, Swanson MS. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 2005; 7:765-78; http://dx.doi.org/10.1111/j.1462-5822.2005.00509.x. PubMed DOI PMC
Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119:753-66; http://dx.doi.org/10.1016/j.cell.2004.11.038. PubMed DOI
Ogawa M, Sasakawa C. Intracellular survival of Shigella. Cell Microbiol 2006; 8:177-84; http://dx.doi.org/10.1111/j.1462-5822.2005.00652.x. PubMed DOI
Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM, Belanger M, Barrett AG, Alvarez S, Akin D, Dunn WA Jr., et al.. Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83 reduces gingipain activity and alters trafficking in and response by host cells. PloS One 2013; 8:e74230; http://dx.doi.org/10.1371/journal.pone.0074230. PubMed DOI PMC
Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE. Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 2011; 27:1179-80; http://dx.doi.org/10.1093/bioinformatics/btr095. PubMed DOI PMC
Wu JQ, Pollard TD. Counting cytokinesis proteins globally and locally in fission yeast. Science 2005; 310:310-4; http://dx.doi.org/10.1126/science.1113230. PubMed DOI
Geng J, Baba M, Nair U, Klionsky DJ. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J Cell Biol 2008; 182:129-40; http://dx.doi.org/10.1083/jcb.200711112. PubMed DOI PMC
Lipinski MM, Hoffman G, Ng A, Zhou W, Py BF, Hsu E, Liu X, Eisenberg J, Liu J, Blenis J, et al.. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev Cell 2010; 18:1041-52; http://dx.doi.org/10.1016/j.devcel.2010.05.005. PubMed DOI PMC
Brady NR, Hamacher-Brady A, Yuan H, Gottlieb RA The autophagic response to nutrient deprivation in the HL-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J 2007; 274:3184-97; http://dx.doi.org/10.1111/j.1742-4658.2007.05849.x. PubMed DOI
Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, Gorski SM. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Tr 2008; 112:389-403; http://dx.doi.org/10.1007/s10549-007-9873-4. PubMed DOI
Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, Shen Y, Rameh L, Yankner B, Tsai LH, et al.. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 2010; 38:500-11; http://dx.doi.org/10.1016/j.molcel.2010.05.009. PubMed DOI PMC
Dolloff NG, Ma X, Dicker DT, Humphreys RC, Li LZ, El-Deiry WS. Spectral imaging-based methods for quantifying autophagy and apoptosis. Cancer Biol Ther 2011; 12:349-56; http://dx.doi.org/10.4161/cbt.12.4.17175. PubMed DOI PMC
Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007; 315:1398-401; http://dx.doi.org/10.1126/science.1136880. PubMed DOI
Phadwal K, Alegre-Abarrategui J, Watson AS, Pike L, Anbalagan S, Hammond EM, Wade-Martins R, McMichael A, Klenerman P, Simon AK. A novel method for autophagy detection in primary cells: Impaired levels of macroautophagy in immunosenescent T cells. Autophagy 2012; 8:677-89; http://dx.doi.org/10.4161/auto.18935. PubMed DOI PMC
Davey HM, Hexley P. Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 2011; 13:163-71; http://dx.doi.org/10.1111/j.1462-2920.2010.02317.x. PubMed DOI
Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 2007; 3:323-8; http://dx.doi.org/10.4161/auto.4012. PubMed DOI
Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N, Yoshimori T, Bazett-Jones DP, Brumell JH. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2006; 2:189-99; http://dx.doi.org/10.4161/auto.2731. PubMed DOI
Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH. Ubiquitinated-protein aggregates form in pancreatic [beta]-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 2007; 56:930-9. PubMed
Fujita K, Maeda D, Xiao Q, Srinivasula SM. Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proc Natl Acad Sci USA 2011; 108:1427-32; http://dx.doi.org/10.1073/pnas.1014156108. PubMed DOI PMC
Pierre P. Dendritic cells, DRiPs, and DALIS in the control of antigen processing. Immunol Rev 2005; 207:184-90; http://dx.doi.org/10.1111/j.0105-2896.2005.00300.x. PubMed DOI
Pankiv S, Høyvarde Clausen T, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282:24131-45; http://dx.doi.org/10.1074/jbc.M702824200. PubMed DOI
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, et al.. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441:885-9; http://dx.doi.org/10.1038/nature04724. PubMed DOI
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, et al.. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441:880-4; http://dx.doi.org/10.1038/nature04723. PubMed DOI
Calvo-Garrido J, Escalante R. Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy 2010; 6:100-9; http://dx.doi.org/10.4161/auto.6.1.10697. PubMed DOI
Bjorkoy G, Lamark T, Johansen T. p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Auto-phagy 2006; 2:138-9; http://dx.doi.org/10.4161/auto.2.2.2405. PubMed DOI
Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine 403 Phosphorylation of p62/SQSTM1 Regulates Selective Autophagic Clearance of Ubiquitinated Proteins. Mol Cell 2011; 44:279-89; http://dx.doi.org/10.1016/j.molcel.2011.07.039. PubMed DOI
Lerner C, Bitto A, Pulliam D, Nacarelli T, Konigsberg M, Van Remmen H, Torres C, Sell C. Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell 2013; 12:966-77; http://dx.doi.org/10.1111/acel.12122. PubMed DOI PMC
Köchl R, Hu XW, EYW Chan, Tooze SA. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 2006; 7:129-45; http://dx.doi.org/10.1111/j.1600-0854.2005.00368.x. PubMed DOI
Eng KE, Panas MD, Karlsson Hedestam GB, McInerney GM. A novel quantitative flow cytometry-based assay for autophagy. Autophagy 2010; 6:634-41; http://dx.doi.org/10.4161/auto.6.5.12112. PubMed DOI
Ciechomska IA, Tolkovsky AM. Non-autophagic GFP-LC3 puncta induced by saponin and other detergents. Autophagy 2007; 3:586-90; http://dx.doi.org/10.4161/auto.4843. PubMed DOI
Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 1982; 79:1889-92; http://dx.doi.org/10.1073/pnas.79.6.1889. PubMed DOI PMC
Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen H-M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 2010; 285:10850-61; http://dx.doi.org/10.1074/jbc.M109.080796. PubMed DOI PMC
Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 2005; 1:23-36; http://dx.doi.org/10.4161/auto.1.1.1495. PubMed DOI
Tormo D, Checinska A, Alonso-Curbelo D, Perez-Guijarro E, Canon E, Riveiro-Falkenbach E, Calvo TG, Larribere L, Megias D, Mulero F, et al.. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 2009; 16:103-14; http://dx.doi.org/10.1016/j.ccr.2009.07.004. PubMed DOI PMC
Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 2010; 32:227-39; http://dx.doi.org/10.1016/j.immuni.2009.12.006. PubMed DOI PMC
Tamura N, Oku M, Sakai Y. Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. J Cell Sci 2010; 123:4107-16; http://dx.doi.org/10.1242/jcs.070045. PubMed DOI
Stromhaug PE, Reggiori F, Guan J, Wang C-W, Klionsky DJ. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 2004; 15:3553-66; http://dx.doi.org/10.1091/mbc.E04-02-0147. PubMed DOI PMC
Baens M, Noels H, Broeckx V, Hagens S, Fevery S, Billiau AD, Vankelecom H, Marynen P. The dark side of EGFP: defective polyubiquitination. PloS One 2006; 1:e54; http://dx.doi.org/10.1371/journal.pone.0000054. PubMed DOI PMC
Cali T, Galli C, Olivari S, Molinari M. Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun 2008; 371:405-10; http://dx.doi.org/10.1016/j.bbrc.2008.04.098. PubMed DOI
Al-Younes HM, Al-Zeer MA, Khalil H, Gussmann J, Karlas A, Machuy N, Brinkmann V, Braun PR, Meyer TF. Autophagy-independent function of MAP-LC3 during intracellular propagation of Chlamydia trachomatis. Autophagy 2011; 7:814-28; http://dx.doi.org/10.4161/auto.7.8.15597. PubMed DOI
Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 2007; 104:20308-13; http://dx.doi.org/10.1073/pnas.0710517105. PubMed DOI PMC
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al.. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136:521-34; http://dx.doi.org/10.1016/j.cell.2008.11.044. PubMed DOI PMC
Nyfeler B, Bergman P, Triantafellow E, Wilson CJ, Zhu Y, Radetich B, Finan PM, Klionsky DJ, Murphy LO. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol Cell Biol 2011; 31:2867-76; http://dx.doi.org/10.1128/MCB.05430-11. PubMed DOI PMC
Singh K, Sharma A, Mir MC, Drazba JA, Heston WD, Magi-Galluzzi C, Hansel D, Rubin BP, Klein EA, Almasan A. Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin). Mol Cancer 2014; 13:70; http://dx.doi.org/10.1186/1476-4598-13-70. PubMed DOI PMC
Cherra SJ III, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW, Chu CT. Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 2010; 190:533-9; http://dx.doi.org/10.1083/jcb.201002108. PubMed DOI PMC
Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR, et al.. Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 2011; 43:19-32; http://dx.doi.org/10.1016/j.molcel.2011.04.029. PubMed DOI PMC
Nazarko TY, Ozeki K, Till A, Ramakrishnan G, Lotfi P, Yan M, Subramani S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol 2014; 204:541-57; http://dx.doi.org/10.1083/jcb.201307050. PubMed DOI PMC
Kim SJ, Syed GH, Khan M, Chiu WW, Sohail MA, Gish RG, Siddiqui A. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci USA 2014; 111:6413-8; http://dx.doi.org/10.1073/pnas.1321114111. PubMed DOI PMC
Allen GF, Toth R, James J, Ganley IG. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 2013; 14:1127-35; http://dx.doi.org/10.1038/embor.2013.168. PubMed DOI PMC
Rosado CJ, Mijaljica D, Hatzinisiriou I, Prescott M, Devenish RJ. Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast. Autophagy 2008; 4:205-13; http://dx.doi.org/10.4161/auto.5331. PubMed DOI
Mijaljica D, Rosado CJ, Devenish RJ, Prescott M. Biosensors for monitoring autophagy In: Serra PA, ed. Biosensors-Emerging Materials and Applications Croatia: InTech, 2011:383-400.
Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 2007; 14:1647-56; http://dx.doi.org/10.1038/sj.cdd.4402167. PubMed DOI
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010; 90:1103-63; http://dx.doi.org/10.1152/physrev.00038.2009. PubMed DOI
Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, Chen Y, Deng X, Xia B, Lin J. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 2012; 8:1215-26; http://dx.doi.org/10.4161/auto.20284. PubMed DOI
Zhou J, Lin J, Zhou C, Deng X, Xia B. Cytotoxicity of red fluorescent protein DsRed is associated with the suppression of Bcl-xL translation. FEBS Lett 2011; 585:821-7; http://dx.doi.org/10.1016/j.febslet.2011.02.013. PubMed DOI
Wen Y, Zand B, Ozpolat B, Szczepanski MJ, Lu C, Yuca E, Carroll AR, Alpay N, Bartholomeusz C, Tekedereli I, et al.. Antagonism of tumoral prolactin receptor promotes autophagy-related cell death. Cell Rep 2014; 7:488-500; http://dx.doi.org/10.1016/j.celrep.2014.03.009. PubMed DOI PMC
Loos B, Genade S, Ellis B, Lochner A, Engelbrecht AM. At the core of survival: autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res 2011; 317:1437-53; http://dx.doi.org/10.1016/j.yexcr.2011.03.011. PubMed DOI
Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic Control of Autophagy. Cell 2014; 159:1263-76; http://dx.doi.org/10.1016/j.cell.2014.11.006. PubMed DOI PMC
Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility: Unanswered questions. Autophagy 2013; 9:1270-85; http://dx.doi.org/10.4161/auto.25560. PubMed DOI PMC
Shvets E, Fass E, Elazar Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 2008; 4:621-8; http://dx.doi.org/10.4161/auto.5939. PubMed DOI
Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high-content screen for inducers of autophagy. BMC Biol 2011; 9:38; http://dx.doi.org/10.1186/1741-7007-9-38. PubMed DOI PMC
de la Calle C, Joubert PE, Law HK, Hasan M, Albert ML. Simultaneous assessment of autophagy and apoptosis using multispectral imaging cytometry. Autophagy 2011; 7:1045-51; http://dx.doi.org/10.4161/auto.7.9.16252. PubMed DOI
Degtyarev M, Reichelt M, Lin K. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication. PloS One 2014; 9:e87707; http://dx.doi.org/10.1371/journal.pone.0087707. PubMed DOI PMC
Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer PC, Lee M, Strowig T, Arrey F, Conenello G, et al.. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009; 6:367-80; http://dx.doi.org/10.1016/j.chom.2009.09.005. PubMed DOI PMC
Kaminskyy V, Abdi A, Zhivotovsky B. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy 2011; 7:83-90; http://dx.doi.org/10.4161/auto.7.1.13893. PubMed DOI
Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, et al.. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 2009; 33:505-16; http://dx.doi.org/10.1016/j.molcel.2009.01.020. PubMed DOI
Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjorkoy G. A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 2010; 6:784-93; http://dx.doi.org/10.4161/auto.6.6.12510. PubMed DOI
Huang JJ, Li HR, Huang Y, Jiang WQ, Xu RH, Huang HQ, Lv Y, Xia ZJ, Zhu XF, Lin TY, et al.. Beclin 1 expression: a predictor of prognosis in patients with extranodal natural killer T-cell lymphoma, nasal type. Autophagy 2010; 6:777-83; http://dx.doi.org/10.4161/auto.6.6.12784. PubMed DOI
Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris AL, Gatter KC, Giatromanolaki A. LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Amer J Pathol 2010; 176:2477-89; http://dx.doi.org/10.2353/ajpath.2010.090049. PubMed DOI PMC
Sivridis E, Giatromanolaki A, Liberis V, Koukourakis MI. Auto-phagy in endometrial carcinomas and prognostic relevance of ‘stone-like’ structures (SLS): what is destined for the atypical endometrial hyperplasia? Autophagy 2011; 7:74-82; http://dx.doi.org/10.4161/auto.7.1.13947. PubMed DOI
Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Chloropoulou P, Liberis V, Sivridis E. High Beclin 1 expression defines a poor prognosis in endometrial adenocarcinomas. Gynecol Oncol 2011; 123:147-51; http://dx.doi.org/10.1016/j.ygyno.2011.06.023. PubMed DOI
Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression. Pathol Oncol Res 2009; 15:487-93; http://dx.doi.org/10.1007/s12253-008-9143-8. PubMed DOI PMC
Wan XB, Fan XJ, Chen MY, Xiang J, Huang PY, Guo L, Wu XY, Xu J, Long ZJ, Zhao Y, et al.. Elevated Beclin 1 expression is correlated with HIF-1[a] in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy 2010; 6:395-404; http://dx.doi.org/10.4161/auto.6.3.11303. PubMed DOI
Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chikamatsu K. Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma. Cancer Sci 2015; 106:1-8; http://dx.doi.org/10.1111/cas.12559. PubMed DOI PMC
Shi YH, Ding ZB, Zhou J, Qiu SJ, Fan J. Prognostic significance of Beclin 1-dependent apoptotic activity in hepatocellular carcinoma. Autophagy 2009; 5:380-2; http://dx.doi.org/10.4161/auto.5.3.7658. PubMed DOI
Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, Shi GM, Wang XY, Ke AW, Wu B, et al.. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008; 68:9167-75; http://dx.doi.org/10.1158/0008-5472.CAN-08-1573. PubMed DOI
Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, Mourmouras V, Rubino G, Miracco C. The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy 2009; 5:930-6; http://dx.doi.org/10.4161/auto.5.7.9227. PubMed DOI
Karpathiou G, Sivridis E, Koukourakis MI, Mikroulis D, Bouros D, Froudarakis ME, Giatromanolaki A. Light-chain 3A autophagic activity and prognostic significance in non-small cell lung carcinomas. Chest 2011; 140:127-34; http://dx.doi.org/10.1378/chest.10-1831. PubMed DOI
Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, Kinoshita T, Ueno T, Esumi H, Ochiai A. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 2008; 99:1813-9; http://dx.doi.org/10.1111/j.1349-7006.2008.00743.x. PubMed DOI PMC
Li BX, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, Zhu XF, Zhang XS. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009; 5:303-6; http://dx.doi.org/10.4161/auto.5.3.7491. PubMed DOI
Koukourakis MI, Giatromanolaki A, Sivridis E, Pitiakoudis M, Gatter KC, Harris AL. Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Brit J Cancer 2010; 103:1209-14; http://dx.doi.org/10.1038/sj.bjc.6605904. PubMed DOI PMC
Giatromanolaki A, Koukourakis MI, Harris AL, Polychronidis A, Gatter KC, Sivridis E. Prognostic relevance of light chain 3 (LC3A) autophagy patterns in colorectal adenocarcinomas. J Clin Pathol 2010; 63:867-72; http://dx.doi.org/10.1136/jcp.2010.079525. PubMed DOI
Sivridis E, Koukourakis MI, Mendrinos SE, Karpouzis A, Fiska A, Kouskoukis C, Giatromanolaki A. Beclin-1 and LC3A expression in cutaneous malignant melanomas: a biphasic survival pattern for beclin-1. Melanoma Res 2011; 21:188-95; http://dx.doi.org/10.1097/CMR.0b013e328346612c. PubMed DOI
Giatromanolaki AN, Charitoudis G St, Bechrakis NE, Kozobolis VP, Koukourakis MI, Foerster MH, Sivridis EL. Autophagy patterns and prognosis in uveal melanomas. Modern Pathol 2011; 24:1036-45; http://dx.doi.org/10.1038/modpathol.2011.63. PubMed DOI
McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 2005; 97:1180-4; http://dx.doi.org/10.1093/jnci/dji237. PubMed DOI
Kuwahara Y, Oikawa T, Ochiai Y, Roudkenar MH, Fukumoto M, Shimura T, Ohtake Y, Ohkubo Y, Mori S, Uchiyama Y. Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis 2011; 2:e177. PubMed PMC
Hou YJ, Dong LW, Tan YX, Yang GZ, Pan YF, Li Z, Tang L, Wang M, Wang Q, Wang HY. Inhibition of active autophagy induces apoptosis and increases chemosensitivity in cholangiocarcinoma. Lab Invest 2011; 91:1146-57; http://dx.doi.org/10.1038/labinvest.2011.97. PubMed DOI
O'Donovan TR, O'Sullivan GC, McKenna SL. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 2011; 7:509-24; http://dx.doi.org/10.4161/auto.7.5.15066. PubMed DOI PMC
Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe M, Uchiyama Y. Effects of RNA interference of Atg4B on the limited proteolysis of LC3 in PC12 cells and expression of Atg4B in various rat tissues. Autophagy 2006; 2:200-8; http://dx.doi.org/10.4161/auto.2744. PubMed DOI
Tamura H, Shibata M, Koike M, Sasaki M, Uchiyama Y. Atg9A protein, an autophagy-related membrane protein, is localized in the neurons of mouse brains. J Histochem Cytochem 2010; 58:443-53; http://dx.doi.org/10.1369/jhc.2010.955690. PubMed DOI PMC
Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X. Age-related changes in the function of autophagy in rat kidneys. Age 2011; 10.1007/s11357-011-9237-1. PubMed DOI PMC
Marinelli S, Nazio F, Tinari A, Ciarlo L, D'Amelio M, Pieroni L, Vacca V, Urbani A, Cecconi F, Malorni W, et al.. Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain 2014; 155:93-107; http://dx.doi.org/10.1016/j.pain.2013.09.013. PubMed DOI
Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, Glickman JN, Tschurtschenthaler M, Hartwig J, Hosomi S, et al.. Paneth cells as a site of origin for intestinal inflammation. Nature 2013; 503:272-6. PubMed PMC
Thachil E, Hugot JP, Arbeille B, Paris R, Grodet A, Peuchmaur M, Codogno P, Barreau F, Ogier-Denis E, Berrebi D, et al.. Abnormal activation of autophagy-induced crinophagy in Paneth cells from patients with Crohn's disease. Gastroenterology 2012; 142:1097-9 e4; http://dx.doi.org/10.1053/j.gastro.2012.01.031. PubMed DOI
Mellén MA, de la Rosa EJ, Boya P. The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ 2008; 15:1279-90; http://dx.doi.org/10.1038/cdd.2008.40. PubMed DOI
Mellén MA, de la Rosa EJ, Boya P. Autophagy is not universally required for phosphatidyl-serine exposure and apoptotic cell engulfment during neural development. Autophagy 2009; 5:964-72; http://dx.doi.org/10.4161/auto.5.7.9292. PubMed DOI
Aburto MR, Sanchez-Calderon H, Hurle JM, Varela-Nieto I, Magarinos M. Early otic development depends on autophagy for apoptotic cell clearance and neural differentiation. Cell Death Dis 2012; 3:e394; http://dx.doi.org/10.1038/cddis.2012.132. PubMed DOI PMC
Morais RD, Thome RG, Lemos FS, Bazzoli N, Rizzo E. Autophagy and apoptosis interplay during follicular atresia in fish ovary: a morphological and immunocytochemical study. Cell Tissue Res 2012; 347:467-78; http://dx.doi.org/10.1007/s00441-012-1327-6. PubMed DOI
Shibata M, Yoshimura K, Furuya N, Koike M, Ueno T, Komatsu M, Arai H, Tanaka K, Kominami E, Uchiyama Y. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun 2009; 382:419-23; http://dx.doi.org/10.1016/j.bbrc.2009.03.039. PubMed DOI
Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, Mizushima N, Iwata J-I Ezaki J, Murata S, et al.. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131:1149-63; http://dx.doi.org/10.1016/j.cell.2007.10.035. PubMed DOI
Germain M, Nguyen AP, Le Grand JN, Arbour N, Vanderluit JL, Park DS, Opferman JT, Slack RS. MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. EMBO J 2011; 30:395-407; http://dx.doi.org/10.1038/emboj.2010.327. PubMed DOI PMC
Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr., Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 2007; 104:14489-94; http://dx.doi.org/10.1073/pnas.0701311104. PubMed DOI PMC
Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 2006; 26:8057-68; http://dx.doi.org/10.1523/JNEUROSCI.2261-06.2006. PubMed DOI PMC
Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE, Stenmark H, Brech A. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol 2008; 180:1065-71; http://dx.doi.org/10.1083/jcb.200711108. PubMed DOI PMC
Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, et al.. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 2011; 7:572-83; http://dx.doi.org/10.4161/auto.7.6.14943. PubMed DOI PMC
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10:507-15; http://dx.doi.org/10.1016/j.cmet.2009.10.008. PubMed DOI
El-Khoury V, Pierson S, Szwarcbart E, Brons NH, Roland O, Cherrier-De Wilde S, Plawny L, Van Dyck E, Berchem G. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia 2014; 28:1636-46; http://dx.doi.org/10.1038/leu.2014.19. PubMed DOI PMC
Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y, Yasui K, Araga S, Yanagawa T, Ishii T, Nakashima K. Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson's disease. Brain Res 2004; 1012:42-51; http://dx.doi.org/10.1016/j.brainres.2004.03.029. PubMed DOI
Trocoli A, Bensadoun P, Richard E, Labrunie G, Merhi F, Schlafli AM, Brigger D, Souquere S, Pierron G, Pasquet JM, et al.. p62/SQSTM1 upregulation constitutes a survival mechanism that occurs during granulocytic differentiation of acute myeloid leukemia cells. Cell Death Differ 2014; 21:1852-61. PubMed PMC
B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 2013; 41:7683-99; http://dx.doi.org/10.1093/nar/gkt563. PubMed DOI PMC
Cnop M, Abdulkarim B, Bottu G, Cunha DA, Igoillo-Esteve M, Masini M, Turatsinze JV, Griebel T, Villate O, Santin I, et al.. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 2014; 63:1978-93; http://dx.doi.org/10.2337/db13-1383. PubMed DOI
Colosetti P, Puissant A, Robert G, Luciano F, Jacquel A, Gounon P, Cassuto JP, Auberger P. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 2009; 5:1092-8; http://dx.doi.org/10.4161/auto.5.8.9889. PubMed DOI
Toepfer N, Childress C, Parikh A, Rukstalis D, Yang W. Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biol Ther 2011; 12:691-9; http://dx.doi.org/10.4161/cbt.12.8.15978. PubMed DOI
Zheng Q, Su H, Ranek MJ, Wang X. Autophagy and p62 in cardiac proteinopathy. Circ Res 2011; 109:296-308; http://dx.doi.org/10.1161/CIRCRESAHA.111.244707. PubMed DOI PMC
Trocoli A, Mathieu J, Priault M, Reiffers J, Souquere S, Pierron G, Besancon F, Djavaheri-Mergny M. ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells. Autophagy 2011; 7:1108-14; http://dx.doi.org/10.4161/auto.7.10.16623. PubMed DOI PMC
Kim JH, Hong SK, Wu PK, Richards AL, Jackson WT, Park JI. Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels. Exp Cell Res 2014; 327:340-52; http://dx.doi.org/10.1016/j.yexcr.2014.08.001. PubMed DOI PMC
Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 2014; 10:431-41; http://dx.doi.org/10.4161/auto.27344. PubMed DOI PMC
B'Chir W, Chaveroux C, Carraro V, Averous J, Maurin AC, Jousse C, Muranishi Y, Parry L, Fafournoux P, Bruhat A. Dual role for CHOP in the crosstalk between autophagy and apoptosis to determine cell fate in response to amino acid deprivation. Cell Signal 2014; 26:1385-91; http://dx.doi.org/10.1016/j.cellsig.2014.03.009. PubMed DOI
Jamart C, Naslain D, Gilson H, Francaux M. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol Endocrinol Metab 2013; 305:E964-74; http://dx.doi.org/10.1152/ajpendo.00270.2013. PubMed DOI
Sanchez AM, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol 2014; 307:R956-69; http://dx.doi.org/10.1152/ajpregu.00187.2014. PubMed DOI
Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol 2012; 8:608; http://dx.doi.org/10.1038/msb.2012.40. PubMed DOI PMC
Tang YC, Williams BR, Siegel JJ, Amon A. Identification of aneuploidy-selective antiproliferation compounds. Cell 2011; 144:499-512; http://dx.doi.org/10.1016/j.cell.2011.01.017. PubMed DOI PMC
Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P. Autophagic degradation contributes to muscle wasting in cancer cachexia. Amer J Pathol 2013; 182:1367-78; http://dx.doi.org/10.1016/j.ajpath.2012.12.023. PubMed DOI
BenYounes A, Tajeddine N, Tailler M, Malik SA, Shen S, Metivier D, Kepp O, Vitale I, Maiuri MC, Kroemer G. A fluorescence-microscopic and cytofluorometric system for monitoring the turnover of the autophagic substrate p62/SQSTM1. Autophagy 2011; 7:883-91; http://dx.doi.org/10.4161/auto.7.8.15538. PubMed DOI
Chang Y-Y, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 2009; 20:2004-14; http://dx.doi.org/10.1091/mbc.E08-12-1250. PubMed DOI PMC
Jiang Y, Zhu J, Wu L, Xu G, Dai J, Liu X. Tetracycline inhibits local inflammation induced by cerebral ischemia via modulating autophagy. PloS One 2012; 7:e48672; http://dx.doi.org/10.1371/journal.pone.0048672. PubMed DOI PMC
Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452:181-97; http://dx.doi.org/10.1016/S0076-6879(08)03612-4. PubMed DOI
Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 2009; 137:1001-4; http://dx.doi.org/10.1016/j.cell.2009.05.023. PubMed DOI PMC
Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 2011; 44:134-46; http://dx.doi.org/10.1016/j.molcel.2011.06.038. PubMed DOI PMC
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et al.. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12:213-23. PubMed
Gonzalez Y, Aryal B, Chehab L, Rao VA. Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress. Oncotarget 2014; 5:1526-37; http://dx.doi.org/10.18632/oncotarget.1715. PubMed DOI PMC
Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 2010; 285:22576-91; http://dx.doi.org/10.1074/jbc.M110.118976. PubMed DOI PMC
Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 2010; 584:1393-8; http://dx.doi.org/10.1016/j.febslet.2009.12.047. PubMed DOI
Bardag-Gorce F, Francis T, Nan L, Li J, He Lue Y, French BA, French SW. Modifications in p62 occur due to proteasome inhibition in alcoholic liver disease. Life Sci 2005; 77:2594-602; http://dx.doi.org/10.1016/j.lfs.2005.04.020. PubMed DOI
Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 2011; 286:22426-40; http://dx.doi.org/10.1074/jbc.M110.149252. PubMed DOI PMC
Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 2009; 33:517-27; http://dx.doi.org/10.1016/j.molcel.2009.01.021. PubMed DOI PMC
Monick MM, Powers LS, Walters K, Lovan N, Zhang M, Gerke A, Hansdottir S, Hunninghake GW. Identification of an autophagy defect in smokers' alveolar macrophages. J Immunol 2010; 185:5425-35; http://dx.doi.org/10.4049/jimmunol.1001603. PubMed DOI PMC
Vallelian F, Deuel JW, Opitz L, Schaer CA, Puglia M, Lonn M, Engelsberger W, Schauer S, Karnaukhova E, Spahn DR, et al.. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death Differ 2015; 22:597-611; http://dx.doi.org/10.1038/cdd.2014.154. PubMed DOI PMC
Long J, Garner TP, Pandya MJ, Craven CJ, Chen P, Shaw B, Williamson MP, Layfield R, Searle MS. Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling. J Mol Biol 2010; 396:178-94; http://dx.doi.org/10.1016/j.jmb.2009.11.032. PubMed DOI
Norman JM, Cohen GM, Bampton ET. The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 2010; 6:1042-56; http://dx.doi.org/10.4161/auto.6.8.13337. PubMed DOI
Lelouard H, Schmidt EK, Camosseto V, Clavarino G, Ceppi M, Hsu HT, Pierre P. Regulation of translation is required for dendritic cell function and survival during activation. J Cell Biol 2007; 179:1427-39; http://dx.doi.org/10.1083/jcb.200707166. PubMed DOI PMC
Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 2009; 6:275-7; http://dx.doi.org/10.1038/nmeth.1314. PubMed DOI
Lim J, Kim HW, Youdim MB, Rhyu IJ, Choe KM, Oh YJ. Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy 2011; 7:51-60; http://dx.doi.org/10.4161/auto.7.1.13909. PubMed DOI
Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M, Touret M, Nataf S, et al.. ER stress inhibits neuronal death by promoting autophagy. Autophagy 2012; 8:915-26; http://dx.doi.org/10.4161/auto.19716. PubMed DOI PMC
Waguri S, Komatsu M. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice. Methods Enzymol 2009; 453:181-96; http://dx.doi.org/10.1016/S0076-6879(08)04009-3. PubMed DOI
Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson GC, Ward L, Bennett ST, Wuyts W, et al.. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet 2002; 11:2735-9; http://dx.doi.org/10.1093/hmg/11.22.2735. PubMed DOI
Kara NZ, Toker L, Agam G, Anderson GW, Belmaker RH, Einat H. Trehalose induced antidepressant-like effects and autophagy enhancement in mice. Psychopharmacology 2013; 229:367-75; http://dx.doi.org/10.1007/s00213-013-3119-4. PubMed DOI
Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 2006; 6:3414-25; http://dx.doi.org/10.1002/pmic.200500069. PubMed DOI
Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatr 2009; 14:601-13; http://dx.doi.org/10.1038/mp.2008.7. PubMed DOI
Chetcuti A, Adams LJ, Mitchell PB, Schofield PR. Microarray gene expression profiling of mouse brain mRNA in a model of lithium treatment. Psychiat Genet 2008; 18:64-72; http://dx.doi.org/10.1097/YPG.0b013e3282fb0051. PubMed DOI
Focking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR. Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiat 2011; 68:477-88; http://dx.doi.org/10.1001/archgenpsychiatry.2011.43. PubMed DOI
Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA. Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 2008; 105:3634-9; http://dx.doi.org/10.1073/pnas.0800001105. PubMed DOI PMC
Lu K, Psakhye I, Jentsch S. Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. Cell 2014; 158:549-63; http://dx.doi.org/10.1016/j.cell.2014.05.048. PubMed DOI
Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol 2010; 12:823-30; http://dx.doi.org/10.1038/ncb0910-823. PubMed DOI PMC
Maloverjan A, Piirsoo M, Michelson P, Kogerman P, Osterlund T. Identification of a novel serine/threonine kinase ULK3 as a positive regulator of Hedgehog pathway. Exp Cell Res 2010; 316:627-37; http://dx.doi.org/10.1016/j.yexcr.2009.10.018. PubMed DOI
Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavaré S, Arakawa S, Shimizu S, Watt FM. Autophagy mediates the mitotic senescence transition. Genes Dev 2009; 23:798-803; http://dx.doi.org/10.1101/gad.519709. PubMed DOI PMC
Chan EY, Tooze SA. Evolution of Atg1 function and regulation. Autophagy 2009; 5:758-65; http://dx.doi.org/10.4161/auto.8709. PubMed DOI
Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 2007; 282:25464-74; http://dx.doi.org/10.1074/jbc.M703663200. PubMed DOI
Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, Saxty B, Ganley IG. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem 2015; 290:11376-83; http://dx.doi.org/10.1074/jbc.C114.627778. PubMed DOI PMC
Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, et al.. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 2011; 43:572-85; http://dx.doi.org/10.1016/j.molcel.2011.06.018. PubMed DOI PMC
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25:1895-908; http://dx.doi.org/10.1101/gad.17420111. PubMed DOI PMC
Carling D, Mayer FV, Sanders MJ, Gamblin SJ. AMP-activated protein kinase: nature's energy sensor. Nat Chem Biol 2011; 7:512-8; http://dx.doi.org/10.1038/nchembio.610. PubMed DOI
Samari HR, Moller MT, Holden L, Asmyhr T, Seglen PO. Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. Biochem J 2005; 386:237-44; http://dx.doi.org/10.1042/BJ20040609. PubMed DOI PMC
Dando I, Donadelli M, Costanzo C, Dalla Pozza E, D'Alessandro A, Zolla L, Palmieri M. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis 2013; 4:e664. PubMed PMC
Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, et al.. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 2010; 11:554-65; http://dx.doi.org/10.1016/j.cmet.2010.04.001. PubMed DOI PMC
Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466:68-76; http://dx.doi.org/10.1038/nature09204. PubMed DOI PMC
Chiacchiera F, Matrone A, Ferrari E, Ingravallo G, Lo Sasso G, Murzilli S, Petruzzelli M, Salvatore L, Moschetta A, Simone C. p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription. Cell Death Differ 2009; 16:1203-14; http://dx.doi.org/10.1038/cdd.2009.36. PubMed DOI
Kovács AL, Seglen PO. Inhibition of hepatocytic protein degradation by methylaminopurines and inhibitors of protein synthesis. Biochim Biophys Acta 1981; 676:213-20; http://dx.doi.org/10.1016/0304-4165(81)90189-6. PubMed DOI
Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z, Cao W. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 2009; 284:31484-92; http://dx.doi.org/10.1074/jbc.M109.033936. PubMed DOI PMC
Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al.. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6:458-71; http://dx.doi.org/10.1016/j.cmet.2007.11.001. PubMed DOI
Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011; 145:607-21; http://dx.doi.org/10.1016/j.cell.2011.03.043. PubMed DOI PMC
Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 2011; 80: 1066-75; http://dx.doi.org/10.1124/mol.111.071761. PubMed DOI
Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 2008; 582:46-53; http://dx.doi.org/10.1016/j.febslet.2007.11.034. PubMed DOI PMC
Samari HR, Seglen PO. Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J Biol Chem 1998; 273:23758-63; http://dx.doi.org/10.1074/jbc.273.37.23758. PubMed DOI
Sanchez AM, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H, Candau R. AMPK promotes skeletal muscle autophagy through activation of Forkhead FoxO3a and interaction with Ulk1. J Cell Biochem 2011. PubMed
Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115:577-90; http://dx.doi.org/10.1016/S0092-8674(03)00929-2. PubMed DOI
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30:214-26; http://dx.doi.org/10.1016/j.molcel.2008.03.003. PubMed DOI PMC
Egan D, Kim J, Shaw RJ, Guan K-L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011; 7:643-4; http://dx.doi.org/10.4161/auto.7.6.15123. PubMed DOI PMC
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al.. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011; 331:456-61; http://dx.doi.org/10.1126/science.1196371. PubMed DOI PMC
Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132-41; http://dx.doi.org/10.1038/ncb2152. PubMed DOI PMC
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al.. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167-74; http://dx.doi.org/10.1172/JCI13505. PubMed DOI PMC
Sharma A, Singh K, Mazumder S, Hill BT, Kalaycio M, Almasan A. BECN1 and BIM interactions with MCL-1 determine fludarabine resistance in leukemic B cells. Cell Death Dis 2013; 4:e628; http://dx.doi.org/10.1038/cddis.2013.155. PubMed DOI PMC
Emerling BM, Viollet B, Tormos KV, Chandel NS. Compound C inhibits hypoxic activation of HIF-1 independent of AMPK. FEBS Lett 2007; 581:5727-31; http://dx.doi.org/10.1016/j.febslet.2007.11.038. PubMed DOI PMC
Vucicevic L, Misirkic M, Janjetovic K, Vilimanovich U, Sudar E, Isenovic E, Prica M, Harhaji-Trajkovic L, Kravic-Stevovic T, Bumbasirevic V, et al.. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 2011; 7:40-50; http://dx.doi.org/10.4161/auto.7.1.13883. PubMed DOI
Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 2006; 281:34870-9; http://dx.doi.org/10.1074/jbc.M605488200. PubMed DOI
Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S, Proikas-Cezanne T, Stork B. AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 2010; 22:914-25; http://dx.doi.org/10.1016/j.cellsig.2010.01.015. PubMed DOI
Williams T, Forsberg LJ, Viollet B, Brenman JE. Basal autophagy induction without AMP-activated protein kinase under low glucose conditions. Autophagy 2009; 5:1155-65; http://dx.doi.org/10.4161/auto.5.8.10090. PubMed DOI PMC
Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci USA 2011; 108:4788-93; http://dx.doi.org/10.1073/pnas.1100844108. PubMed DOI PMC
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science 2011; 334:678-83; http://dx.doi.org/10.1126/science.1207056. PubMed DOI PMC
Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, et al.. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 2010; 191:155-68; http://dx.doi.org/10.1083/jcb.201002100. PubMed DOI PMC
Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J 2011; 30:636-51; http://dx.doi.org/10.1038/emboj.2010.338. PubMed DOI PMC
Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, Kundu M, Kim D-H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009; 20:1992-2003; http://dx.doi.org/10.1091/mbc.E08-12-1249. PubMed DOI PMC
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al.. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20:1981-91; http://dx.doi.org/10.1091/mbc.E08-12-1248. PubMed DOI PMC
Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 2009; 29:157-71; http://dx.doi.org/10.1128/MCB.01082-08. PubMed DOI PMC
Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes CA, Maiolica A, Hansmann I, Pfaffenwimmer T, Kijanska M, Stoffel I, et al.. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol Cell 2014; 53:471-83; http://dx.doi.org/10.1016/j.molcel.2013.12.011. PubMed DOI PMC
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013; 15:741-50; http://dx.doi.org/10.1038/ncb2757. PubMed DOI PMC
Jung CH, Seo M, Otto NM, Kim DH. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 2011; 7:1212-21; http://dx.doi.org/10.4161/auto.7.10.16660. PubMed DOI PMC
Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, Campbell DG, Wesselborg S, Alessi DR, Stork B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 2011; 7:696-706; http://dx.doi.org/10.4161/auto.7.7.15451. PubMed DOI
Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neuobiol Dis 2007; 26:86-93; http://dx.doi.org/10.1016/j.nbd.2006.12.003. PubMed DOI
Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J, Codogno P. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 2006; 281:8518-27; http://dx.doi.org/10.1074/jbc.M506182200. PubMed DOI
Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr., Abraham RT. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277:99-101; http://dx.doi.org/10.1126/science.277.5322.99. PubMed DOI
Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 2010; 38:768-74; http://dx.doi.org/10.1016/j.molcel.2010.05.017. PubMed DOI PMC
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM, et al.. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013; 15:406-16; http://dx.doi.org/10.1038/ncb2708. PubMed DOI
Cheong H, Nair U, Geng J, Klionsky DJ. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:668-81; http://dx.doi.org/10.1091/mbc.E07-08-0826. PubMed DOI PMC
Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 2005; 16:2544-53; http://dx.doi.org/10.1091/mbc.E04-08-0669. PubMed DOI PMC
Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 2000; 150:1507-13; http://dx.doi.org/10.1083/jcb.150.6.1507. PubMed DOI PMC
Scott SV, Nice DC III, Nau JJ, Weisman LS, Kamada Y, Keizer-Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 2000; 275:25840-9; http://dx.doi.org/10.1074/jbc.M002813200. PubMed DOI
Miller-Fleming L, Cheong H, Antas P, Klionsky DJ. Detection of Saccharomyces cerevisiae Atg13 by western blot. Autophagy 2014; 10:514-7; http://dx.doi.org/10.4161/auto.27707. PubMed DOI PMC
Yeh YY, Wrasman K, Herman PK. Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 2010; 185:871-82; http://dx.doi.org/10.1534/genetics.110.116566. PubMed DOI PMC
Mao K, Wang K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 2011; 193:755-67; http://dx.doi.org/10.1083/jcb.201102092. PubMed DOI PMC
Kim M, Park HL, Park HW, Ro SH, Nam SG, Reed JM, Guan JL, Lee JH. Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging. Autophagy 2013; 9:1201-13; http://dx.doi.org/10.4161/auto.24811. PubMed DOI PMC
Nagy P, Karpati M, Varga A, Pircs K, Venkei Z, Takats S, Varga K, Erdi B, Hegedus K, Juhasz G. Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. Autophagy 2014; 10:453-67; http://dx.doi.org/10.4161/auto.27442. PubMed DOI PMC
Singh K, Matsuyama S, Drazba JA, Almasan A. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy 2012; 8:236-51. PubMed PMC
Shang L, Wang X. AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy 2011; 7:924-6; http://dx.doi.org/10.4161/auto.7.8.15860. PubMed DOI
Ruck A, Attonito J, Garces KT, Nunez L, Palmisano NJ, Rubel Z, Bai Z, Nguyen KC, Sun L, Grant BD, et al.. The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 2011; 7:386-400; http://dx.doi.org/10.4161/auto.7.4.14391. PubMed DOI PMC
Li W, Zou W, Yang Y, Chai Y, Chen B, Cheng S, Tian D, Wang X, Vale RD, Ou G. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell. J Cell Biol 2012; 197:27-35; http://dx.doi.org/10.1083/jcb.201111053. PubMed DOI PMC
Abnave P, Mottola G, Gimenez G, Boucherit N, Trouplin V, Torre C, Conti F, Ben Amara A, Lepolard C, Djian B, et al.. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2014; 16:338-50; http://dx.doi.org/10.1016/j.chom.2014.08.002. PubMed DOI
Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P. NF- [kappa]B activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 2006; 281:30373-82. PubMed
Liu Z, Lenardo MJ. Reactive oxygen species regulate autophagy through redox-sensitive proteases. Dev Cell 2007; 12:484-5; http://dx.doi.org/10.1016/j.devcel.2007.03.016. PubMed DOI
Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R, Codogno P. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 2004; 279:18384-91; http://dx.doi.org/10.1074/jbc.M313561200. PubMed DOI
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26:1749-60; http://dx.doi.org/10.1038/sj.emboj.7601623. PubMed DOI PMC
Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell 2012; 46:436-48; http://dx.doi.org/10.1016/j.molcel.2012.04.001. PubMed DOI
Zeng X, Kinsella TJ. Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer Res 2008; 68:2384-90; http://dx.doi.org/10.1158/0008-5472.CAN-07-6163. PubMed DOI
Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012; 338:956-9; http://dx.doi.org/10.1126/science.1225967. PubMed DOI PMC
Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, et al.. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013; 154:1269-84; http://dx.doi.org/10.1016/j.cell.2013.08.015. PubMed DOI PMC
Yasugi M, Takigawa N, Ochi N, Ohashi K, Harada D, Ninomiya T, Murakami T, Honda Y, Ichihara E, Tanimoto M, et al.. Everolimus prolonged survival in transgenic mice with EGFR-driven lung tumors. Exp Cell Res 2014; 326:201-9; http://dx.doi.org/10.1016/j.yexcr.2014.04.012. PubMed DOI
Castets P, Lin S, Rion N, Di Fulvio S, Romanino K, Guridi M, Frank S, Tintignac LA, Sinnreich M, Ruegg MA. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab 2013; 17:731-44; http://dx.doi.org/10.1016/j.cmet.2013.03.015. PubMed DOI
Castets P, Ruegg MA. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. Autophagy 2013; 9:1435-7; http://dx.doi.org/10.4161/auto.25722. PubMed DOI
Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, et al.. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010; 465:942-6; http://dx.doi.org/10.1038/nature09076. PubMed DOI PMC
Holla S, Kurowska-Stolarska M, Bayry J, Balaji KN. Selective inhibition of IFNG-induced autophagy by Mir155- and Mir31-responsive WNT5A and SHH signaling. Autophagy 2014; 10:311-30; http://dx.doi.org/10.4161/auto.27225. PubMed DOI PMC
Mochizuki H, Toda H, Ando M, Kurusu M, Tomoda T, Furukubo-Tokunaga K. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain. PloS One 2011; 6:e19632; http://dx.doi.org/10.1371/journal.pone.0019632. PubMed DOI PMC
Wairkar YP, Toda H, Mochizuki H, Furukubo-Tokunaga K, Tomoda T, Diantonio A. Unc-51 controls active zone density and protein composition by downregulating ERK signaling. J Neurosci 2009; 29:517-28; http://dx.doi.org/10.1523/JNEUROSCI.3848-08.2009. PubMed DOI PMC
Loh SH, Francescut L, Lingor P, Bahr M, Nicotera P. Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen. Cell Death Differ 2008; 15:283-98; http://dx.doi.org/10.1038/sj.cdd.4402258. PubMed DOI
Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, Wang F. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci USA 2007; 104:5842-7; http://dx.doi.org/10.1073/pnas.0701402104. PubMed DOI PMC
Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 2004; 18:541-58; http://dx.doi.org/10.1101/gad.1151204. PubMed DOI PMC
Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga H, Muramatsu M. Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Mol Brain Res 2000; 85:1-12; http://dx.doi.org/10.1016/S0169-328X(00)00218-7. PubMed DOI
Young ARJ, EYW Chan, Hu XW, Köchl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 2006; 119:3888-900; http://dx.doi.org/10.1242/jcs.03172. PubMed DOI
Reggiori F, Shintani T, Nair U, Klionsky DJ. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 2005; 1:101-9; http://dx.doi.org/10.4161/auto.1.2.1840. PubMed DOI PMC
Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 2010; 190:1005-22; http://dx.doi.org/10.1083/jcb.200912089. PubMed DOI PMC
Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 2004; 6:79-90; http://dx.doi.org/10.1016/S1534-5807(03)00402-7. PubMed DOI
Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116:1679-88; http://dx.doi.org/10.1242/jcs.00381. PubMed DOI
Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152:657-68; http://dx.doi.org/10.1083/jcb.152.4.657. PubMed DOI PMC
Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, Gallo CA, Plas DR, Biesiada J, Meller J, et al.. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 2012; 21:532-46; http://dx.doi.org/10.1016/j.ccr.2012.02.019. PubMed DOI PMC
Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Phys 2005; 138:2097-110; http://dx.doi.org/10.1104/pp.105.060673. PubMed DOI PMC
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006; 8:1124-32; http://dx.doi.org/10.1038/ncb1482. PubMed DOI
Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon HU. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 2013; 4:2130; http://dx.doi.org/10.1038/ncomms3130. PubMed DOI PMC
Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 2001; 152:519-30; http://dx.doi.org/10.1083/jcb.152.3.519. PubMed DOI PMC
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, et al.. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009; 11:385-96; http://dx.doi.org/10.1038/ncb1846. PubMed DOI
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009; 11:468-76; http://dx.doi.org/10.1038/ncb1854. PubMed DOI PMC
Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 2008; 105:19211-6; http://dx.doi.org/10.1073/pnas.0810452105. PubMed DOI PMC
Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008; 19:5360-72; http://dx.doi.org/10.1091/mbc.E08-01-0080. PubMed DOI PMC
Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA 2011; 108:7769-74; http://dx.doi.org/10.1073/pnas.1016472108. PubMed DOI PMC
Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 2010; 190:511-21; http://dx.doi.org/10.1083/jcb.200911141. PubMed DOI PMC
Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 2010; 12:747-57; http://dx.doi.org/10.1038/ncb2078. PubMed DOI PMC
Guan J, Stromhaug PE, George MD, Habibzadegah-Tari P, Bevan A, Dunn WA Jr., Klionsky DJ. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 2001; 12:3821-38; http://dx.doi.org/10.1091/mbc.12.12.3821. PubMed DOI PMC
Barth H, Meiling-Wesse K, Epple UD, Thumm M. Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett 2001; 508:23-8; http://dx.doi.org/10.1016/S0014-5793(01)03016-2. PubMed DOI
Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 2004; 23:9314-25; http://dx.doi.org/10.1038/sj.onc.1208331. PubMed DOI
Monastyrska I, Klionsky DJ. Autophagy in organelle homeostasis: peroxisome turnover. Mol Aspects Med 2006; 27:483-94; http://dx.doi.org/10.1016/j.mam.2006.08.004. PubMed DOI PMC
Nair U, Klionsky DJ. Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem 2005; 280:41785-8; http://dx.doi.org/10.1074/jbc.R500016200. PubMed DOI
Tallóczy Z, Virgin HW IV, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2006; 2:24-9; http://dx.doi.org/10.4161/auto.2176. PubMed DOI
Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, Tooze SA. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010; 6:506-22; http://dx.doi.org/10.4161/auto.6.4.11863. PubMed DOI
Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, Nordheim A. Human WIPI-1 puncta-formation: A novel assay to assess mammalian autophagy. FEBS Lett 2007; 581:3396-404; http://dx.doi.org/10.1016/j.febslet.2007.06.040. PubMed DOI
Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010; 6:764-76; http://dx.doi.org/10.4161/auto.6.6.12709. PubMed DOI PMC
Mauthe M, Jacob A, Freiberger S, Hentschel K, Stierhof YD, Codogno P, Proikas-Cezanne T. Resveratrol-mediated autophagy requires WIPI-1 regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy 2011; 7:1448-61; http://dx.doi.org/10.4161/auto.7.12.17802. PubMed DOI PMC
Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, Lin L, Kovacs AL, Yu L, Zhang H. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 2011; 21:343-57; http://dx.doi.org/10.1016/j.devcel.2011.06.024. PubMed DOI
Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22:124-31; http://dx.doi.org/10.1016/j.ceb.2009.11.014. PubMed DOI PMC
Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 2007; 17: 839-49; http://dx.doi.org/10.1038/cr.2007.78. PubMed DOI
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122:927-39; http://dx.doi.org/10.1016/j.cell.2005.07.002. PubMed DOI
Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 2009; 10:285-92; http://dx.doi.org/10.1038/embor.2008.246. PubMed DOI PMC
Wei Y, Sinha S, Levine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 2008; 4:949-51; http://dx.doi.org/10.4161/auto.6788. PubMed DOI PMC
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30:678-88; http://dx.doi.org/10.1016/j.molcel.2008.06.001. PubMed DOI PMC
Lossi L, Gambino G, Ferrini F, Alasia S, Merighi A. Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival. Dev Neurobiol 2009; 69:855-70; http://dx.doi.org/10.1002/dneu.20744. PubMed DOI
Lossi L, Gambino G, Salio C, Merighi A. Autophagy regulates the post-translational cleavage of BCL-2 and promotes neuronal survival. Sci World J 2010; 10:924-9; http://dx.doi.org/10.1100/tsw.2010.82. PubMed DOI PMC
Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 2008; 15:1318-29; http://dx.doi.org/10.1038/cdd.2008.51. PubMed DOI
Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18:571-80; http://dx.doi.org/10.1038/cdd.2010.191. PubMed DOI PMC
Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2:330-5; http://dx.doi.org/10.1093/embo-reports/kve061. PubMed DOI PMC
Amritraj A, Peake K, Kodam A, Salio C, Merighi A, Vance JE, Kar S. Increased activity and altered subcellular distribution of lysosomal enzymes determine neuronal vulnerability in Niemann-Pick type C1-deficient mice. Am J Pathol 2009; 175:2540-56; http://dx.doi.org/10.2353/ajpath.2009.081096. PubMed DOI PMC
Castino R, Bellio N, Follo C, Murphy D, Isidoro C. Inhibition of PI3k class III-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicol Sci 2010; 117:152-62; http://dx.doi.org/10.1093/toxsci/kfq170. PubMed DOI
Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 2002; 35:921-33; http://dx.doi.org/10.1016/S0896-6273(02)00861-9. PubMed DOI
Luo S, Rubinsztein DC. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 2010; 17:268-77; http://dx.doi.org/10.1038/cdd.2009.121. PubMed DOI PMC
Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 2005; 1:46-52; http://dx.doi.org/10.4161/auto.1.1.1542. PubMed DOI
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126:121-34; http://dx.doi.org/10.1016/j.cell.2006.05.034. PubMed DOI
Valbuena A, Castro-Obregon S, Lazo PA. Downregulation of VRK1 by p53 in response to DNA damage is mediated by the autophagic pathway. PloS One 2011; 6:e17320; http://dx.doi.org/10.1371/journal.pone.0017320. PubMed DOI PMC
Lorin S, Pierron G, Ryan KM, Codogno P, Djavaheri-Mergny M. Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy 2010; 6:153-4; http://dx.doi.org/10.4161/auto.6.1.10537. PubMed DOI
Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182:685-701; http://dx.doi.org/10.1083/jcb.200803137. PubMed DOI PMC
Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012; 151:1256-69; http://dx.doi.org/10.1016/j.cell.2012.11.001. PubMed DOI
Takats S, Nagy P, Varga A, Pircs K, Karpati M, Varga K, Kovacs AL, Hegedus K, Juhasz G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol 2013; 201:531-9; http://dx.doi.org/10.1083/jcb.201211160. PubMed DOI PMC
Chen D, Zhong Q. A tethering coherent protein in autophagosome maturation. Autophagy 2012; 8:985-6; http://dx.doi.org/10.4161/auto.20255. PubMed DOI PMC
Taniguchi M, Kitatani K, Kondo T, Hashimoto-Nishimura M, Asano S, Hayashi A, Mitsutake S, Igarashi Y, Umehara H, Takeya H, et al.. Regulation of autophagy and its associated cell death by “sphingolipid rheostat”: reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J Biol Chem 2012; 287:39898-910; http://dx.doi.org/10.1074/jbc.M112.416552. PubMed DOI PMC
Justice MJ, Petrusca DN, Rogozea AL, Williams JA, Schweitzer KS, Petrache I, Wassall SR, Petrache HI. Effects of lipid interactions on model vesicle engulfment by alveolar macrophages. Biophys J 2014; 106:598-609; http://dx.doi.org/10.1016/j.bpj.2013.12.036. PubMed DOI PMC
Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL. Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 2008; 105:17402-7; http://dx.doi.org/10.1073/pnas.0802781105. PubMed DOI PMC
Pattingre S, Bauvy C, Levade T, Levine B, Codogno P. Ceramide-induced autophagy: to junk or to protect cells? Autophagy 2009; 5:558-60; http://dx.doi.org/10.4161/auto.5.4.8390. PubMed DOI PMC
Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, et al.. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 2012; 8:831-8; http://dx.doi.org/10.1038/nchembio.1059. PubMed DOI PMC
Jiang W, Ogretmen B. Ceramide stress in survival versus lethal autophagy paradox: ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Autophagy 2013; 9:258-9; http://dx.doi.org/10.4161/auto.22739. PubMed DOI PMC
Jiang W, Ogretmen B. Autophagy paradox and ceramide. Biochim Biophys Acta 2014; 1841:783-92; http://dx.doi.org/10.1016/j.bbalip.2013.09.005. PubMed DOI PMC
Lepine S, Allegood JC, Park M, Dent P, Milstien S, Spiegel S. Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death Differ 2011; 18:350-61; http://dx.doi.org/10.1038/cdd.2010.104. PubMed DOI PMC
Matarrese P, Garofalo T, Manganelli V, Gambardella L, Marconi M, Grasso M, Tinari A, Misasi R, Malorni W, Sorice M. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 2014; 10:750-65; http://dx.doi.org/10.4161/auto.27959. PubMed DOI PMC
Russ DW, Wills AM, Boyd IM, Krause J. Weakness, SR function and stress in gastrocnemius muscles of aged male rats. Exp Gastroenterol 2014; 50:40-4; http://dx.doi.org/10.1016/j.exger.2013.11.018. PubMed DOI
Bernard A, Jin M, Gonzalez-Rodriguez P, Fullgrabe J, Delorme-Axford E, Backues SK, Joseph B, Klionsky DJ. Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Curr Biol 2015; 25:546-55; http://dx.doi.org/10.1016/j.cub.2014.12.049. PubMed DOI PMC
Bernard A, Klionsky DJ. Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy. Autophagy 2015; 11:718-9; http://dx.doi.org/10.1080/15548627.2015.1018503. PubMed DOI PMC
Nara A, Mizushima N, Yamamoto A, Kabeya Y, Ohsumi Y, Yoshimori T. SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct 2002; 27:29-37; http://dx.doi.org/10.1247/csf.27.29. PubMed DOI
Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 1999; 147:435-46; http://dx.doi.org/10.1083/jcb.147.2.435. PubMed DOI PMC
Jin M, He D, Backues SK, Freeberg MA, Liu X, Kim JK, Klionsky DJ. Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr Biol 2014; 24:1314-22; http://dx.doi.org/10.1016/j.cub.2014.04.048. PubMed DOI PMC
Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2[alpha] phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2007; 14:230-9; http://dx.doi.org/10.1038/sj.cdd.4401984. PubMed DOI
Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 2012; 287:39107-14; http://dx.doi.org/10.1074/jbc.M112.412569. PubMed DOI PMC
Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G, et al.. The acquisition of resistance to TNFalpha in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy 2011; 7:760-70; http://dx.doi.org/10.4161/auto.7.7.15454. PubMed DOI
Mitroulis I, Kourtzelis I, Kambas K, Rafail S, Chrysanthopoulou A, Speletas M, Ritis K. Regulation of the autophagic machinery in human neutrophils. Eur J Immunol 2010; 40:1461-72; http://dx.doi.org/10.1002/eji.200940025. PubMed DOI
Rodriguez-Muela N, Germain F, Marino G, Fitze PS, Boya P. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ 2012; 19:162-9; http://dx.doi.org/10.1038/cdd.2011.88. PubMed DOI PMC
Vázquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, De Pablo F. Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 2012; 8:187-99. PubMed
Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al.. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120:127-41; http://dx.doi.org/10.1172/JCI40027. PubMed DOI PMC
Haim Y, Blüher M, Slutsky N, Goldstein N, Klöting N, Harman-Boehm I, Kirshtein B, Ginsberg D, Gericke M, Jurado EG, et al.. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy 2015; 11:2074-88. PubMed PMC
Las G, Serada SB, Wikstrom JD, Twig G, Shirihai OS. Fatty acids suppress autophagic turnover in beta-cells. J Biol Chem 2011; 286:42534-44; http://dx.doi.org/10.1074/jbc.M111.242412. PubMed DOI PMC
Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MK, Paquet C, Delhaye S, Shin Y, et al.. Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 2013; 19:1039-46; http://dx.doi.org/10.1038/nm.3213. PubMed DOI PMC
Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore DD. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014; 516:112-5. PubMed PMC
Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, et al.. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014; 516:108-11. PubMed PMC
Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008; 27:4860-4; http://dx.doi.org/10.1038/onc.2008.117. PubMed DOI
Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J. The RB-E2F1 pathway regulates autophagy. Cancer Res 2010; 70:7882-93; http://dx.doi.org/10.1158/0008-5472.CAN-10-1604. PubMed DOI PMC
Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 2003; 13:358-63; http://dx.doi.org/10.1016/S0960-9822(03)00082-4. PubMed DOI
Lee C-Y, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 2003; 13:350-7; http://dx.doi.org/10.1016/S0960-9822(03)00085-X. PubMed DOI
Denton D, Shravage B, Simin R, Baehrecke EH, Kumar S. Larval midgut destruction in Drosophila: not dependent on caspases but suppressed by the loss of autophagy. Autophagy 2010; 6:163-5; http://dx.doi.org/10.4161/auto.6.1.10601. PubMed DOI PMC
Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, et al.. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 2012; 17:305-24; http://dx.doi.org/10.1007/s10495-011-0675-0. PubMed DOI
Tian L, Ma L, Guo E, Deng X, Ma S, Xia Q, Cao Y, Li S. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 2013; 9:1172-87; http://dx.doi.org/10.4161/auto.24731. PubMed DOI PMC
Juhasz G, Puskas LG, Komonyi O, Erdi B, Maroy P, Neufeld TP, Sass M. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 2007; 14:1181-90; http://dx.doi.org/10.1038/sj.cdd.4402123. PubMed DOI PMC
Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Menesi D, Puskas LG, Juhasz G. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy 2012; 8:1124-35; http://dx.doi.org/10.4161/auto.20069. PubMed DOI PMC
Barth JM, Szabad J, Hafen E, Kohler K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ 2011; 18:915-24; http://dx.doi.org/10.1038/cdd.2010.157. PubMed DOI PMC
O'Rourke EJ, Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 2013; 15:668-76; http://dx.doi.org/10.1038/ncb2741. PubMed DOI PMC
Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al.. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332:1429-33; http://dx.doi.org/10.1126/science.1204592. PubMed DOI PMC
Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. The FASEB J 2004; 18:39-51; http://dx.doi.org/10.1096/fj.03-0610com. PubMed DOI
Phillips AR, Suttangkakul A, Vierstra RD. The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 2008; 178:1339-53; http://dx.doi.org/10.1534/genetics.107.086199. PubMed DOI PMC
Seiliez I, Gutierrez J, Salmeron C, Skiba-Cassy S, Chauvin C, Dias K, Kaushik S, Tesseraud S, Panserat S. An in vivo and in vitro assessment of autophagy-related gene expression in muscle of rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 2010; 157:258-66; http://dx.doi.org/10.1016/j.cbpb.2010.06.011. PubMed DOI
Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, et al.. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 2013; 4:2267. PubMed PMC
M Sandri. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 2010; 298:C1291-7; http://dx.doi.org/10.1152/ajpcell.00531.2009. PubMed DOI
Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, et al.. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 2009; 11:1305-14; http://dx.doi.org/10.1038/ncb1975. PubMed DOI
Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A, Seux M, Nowak J, Gonzalez CD, Iovanna JL, et al.. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 2007; 282:37124-33; http://dx.doi.org/10.1074/jbc.M706956200. PubMed DOI
Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X, et al.. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 2010; 141:1042-55; http://dx.doi.org/10.1016/j.cell.2010.04.034. PubMed DOI
Lo Re AE, Fernandez-Barrena MG, Almada LL, Mills LD, Elsawa SF, Lund G, Ropolo A, Molejon MI, Vaccaro MI, Fernandez-Zapico ME. Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. J Biol Chem 2012; 287:25325-34; http://dx.doi.org/10.1074/jbc.M112.370809. PubMed DOI PMC
Sardiello M, Palmieri M, Di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, et al.. A gene network regulating lysosomal biogenesis and function. Science 2009; 325:473-7. PubMed
Palmieri M, Impey S, Kang H, Di Ronza A, Pelz C, Sardiello M, Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011; 20:3852-66; http://dx.doi.org/10.1093/hmg/ddr306. PubMed DOI
Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012; 8:903-14; http://dx.doi.org/10.4161/auto.19653. PubMed DOI PMC
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, et al.. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31:1095-108; http://dx.doi.org/10.1038/emboj.2012.32. PubMed DOI PMC
Nezich CL, Wang C, Fogel AI, Youle RJ. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. J Cell Biol 2015; 210:435-50; http://dx.doi.org/10.1083/jcb.201501002. PubMed DOI PMC
Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR, et al.. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015; 524:361-5; http://dx.doi.org/10.1038/nature14587. PubMed DOI PMC
Kang YA, Sanalkumar R, O'Geen H, Linnemann AK, Chang CJ, Bouhassira EE, Farnham PJ, Keles S, Bresnick EH. Autophagy driven by a master regulator of hematopoiesis. Mol Cell Biol 2012; 32:226-39; http://dx.doi.org/10.1128/MCB.06166-11. PubMed DOI PMC
Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007; 6:472-83; http://dx.doi.org/10.1016/j.cmet.2007.11.004. PubMed DOI
Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, Boyd DD. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 2013; 50:16-28; http://dx.doi.org/10.1016/j.molcel.2013.01.024. PubMed DOI PMC
Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J 2011; 30:4642-51. PubMed PMC
Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, Mari B, Barbry P, Mosnier JF, Hebuterne X, et al.. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet 2011; 43:242-5; http://dx.doi.org/10.1038/ng.762. PubMed DOI
Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM, Taskesen E, Stern P, de Ru AH, van Adrichem AJ, et al.. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 2011; 118:916-25; http://dx.doi.org/10.1182/blood-2011-02-336487. PubMed DOI PMC
Roccaro AM, Sacco A, Jia X, Azab AK, Maiso P, Ngo HT, Azab F, Runnels J, Quang P, Ghobrial IM. microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 2010; 116:1506-14; http://dx.doi.org/10.1182/blood-2010-01-265686. PubMed DOI PMC
Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM. In situ detection of starvation-induced autophagy. J Histochem Cytochem 2006; 54:85-96; http://dx.doi.org/10.1369/jhc.5A6743.2005. PubMed DOI
Banreti A, Sass M, Graba Y. The emerging role of acetylation in the regulation of autophagy. Autophagy 2013; 9:819-29; http://dx.doi.org/10.4161/auto.23908. PubMed DOI PMC
Jin M, Klionsky DJ. Regulation of autophagy: Modulation of the size and number of autophagosomes. FEBS Lett 2014; 588:2457-63; http://dx.doi.org/10.1016/j.febslet.2014.06.015. PubMed DOI PMC
Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biology 2015; 25:354-63; http://dx.doi.org/10.1016/j.tcb.2015.02.002. PubMed DOI PMC
Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 2015; 11:28-45; http://dx.doi.org/10.4161/15548627.2014.984267. PubMed DOI PMC
Pietrocola F, Marino G, Lissa D, Vacchelli E, Malik SA, Niso-Santano M, Zamzami N, Galluzzi L, Maiuri MC, Kroemer G. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 2012; 11:3851-60; http://dx.doi.org/10.4161/cc.22027. PubMed DOI PMC
Mariño G, Pietrocola F, Madeo F, Kroemer G. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy. 2014;10:1879-82. doi: 10.4161/auto.36413. PubMed DOI PMC
Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 2014; 13:727-40; http://dx.doi.org/10.1038/nrd4391. PubMed DOI
Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 2009; 284:6322-8; http://dx.doi.org/10.1074/jbc.M807135200. PubMed DOI PMC
Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J, et al.. Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Mol Cell 2015. PubMed
Pattingre S, Petiot A, Codogno P. Analyses of G[a]-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods Enzymol 2004; 390:17-31; http://dx.doi.org/10.1016/S0076-6879(04)90002-X. PubMed DOI
Bauvy C, Meijer AJ, Codogno P. Assaying of autophagic protein degradation. Methods Enzymol 2009; 452:47-61; http://dx.doi.org/10.1016/S0076-6879(08)03604-5. PubMed DOI
Zhang J, Wang J, Ng S, Lin Q, Shen HM. Development of a novel method for quantification of autophagic protein degradation by AHA labeling. Autophagy 2014; 10:901-12; http://dx.doi.org/10.4161/auto.28267. PubMed DOI PMC
Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008; 283:22847-57; http://dx.doi.org/10.1074/jbc.M802182200. PubMed DOI
Kabuta T, Furuta A, Aoki S, Furuta K, Wada K. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 2008; 283:23731-8; http://dx.doi.org/10.1074/jbc.M801918200. PubMed DOI PMC
Saitoh Y, Fujikake N, Okamoto Y, Popiel HA, Hatanaka Y, Ueyama M, Suzuki M, Gaumer S, Murata M, Wada K, et al.. p62 plays a protective role in the autophagic degradation of polyglutamine protein oligomers in polyglutamine disease model flies. J Biol Chem 2015; 290:1442-53; http://dx.doi.org/10.1074/jbc.M114.590281. PubMed DOI PMC
Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 2007; 171:513-24; http://dx.doi.org/10.2353/ajpath.2007.070188. PubMed DOI PMC
Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 2005; 280:40282-92; http://dx.doi.org/10.1074/jbc.M508786200. PubMed DOI
Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, et al.. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007; 447:859-63; http://dx.doi.org/10.1038/nature05853. PubMed DOI
Tomek K, Wagner R, Varga F, Singer CF, Karlic H, Grunt TW. Blockade of fatty acid synthase induces ubiquitination and degradation of phosphoinositide-3-kinase signaling proteins in ovarian cancer. Mol Cancer Res 2011:1767-79; http://dx.doi.org/10.1158/1541-7786.MCR-10-0467. PubMed DOI
Zimmermann AC, Zarei M, Eiselein S, Dengjel J. Quantitative proteomics for the analysis of spatio-temporal protein dynamics during autophagy. Autophagy 2010; 6:1009-16; http://dx.doi.org/10.4161/auto.6.8.12786. PubMed DOI
Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaattela M, Dengjel J, Andersen JS. Ordered organelle degradation during starvation-induced autophagy. Mol Cell Proteomics: MCP 2008; 7:2419-28; http://dx.doi.org/10.1074/mcp.M800184-MCP200. PubMed DOI
Furuya N, Kanazawa T, Fujimura S, Ueno T, Kominami E, Kadowaki M. Leupeptin-induced appearance of partial fragment of betaine homocysteine methyltransferase during autophagic maturation in rat hepatocytes. J Biochem (Tokyo) 2001; 129:313-20; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002859. PubMed DOI
Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, Kominami E. Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 1999; 274:15222-9; http://dx.doi.org/10.1074/jbc.274.21.15222. PubMed DOI
Overbye A, Saetre F, Hagen LK, Johansen HT, Seglen PO. Autophagic activity measured in whole rat hepatocytes as the accumulation of a novel BHMT fragment (p10), generated in amphisomes by the asparaginyl proteinase, legumain. Autophagy 2011; 7:1011-27; http://dx.doi.org/10.4161/auto.7.9.16436. PubMed DOI PMC
Seglen PO, Overbye A, Saetre F. Sequestration assays for mammalian autophagy. Methods Enzymol 2009; 452:63-83; http://dx.doi.org/10.1016/S0076-6879(08)03605-7. PubMed DOI
Mercer CA, Kaliappan A, Dennis PB. Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization. Autophagy 2008; 4:185-94; http://dx.doi.org/10.4161/auto.5275. PubMed DOI
Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, Mautner J. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 2003; 33:1250-9; http://dx.doi.org/10.1002/eji.200323730. PubMed DOI
Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB. A role for intercellular antigen transfer in the recognition of EBV-transformed B cell lines by EBV nuclear antigen-specific CD4+ T cells. J Immunol 2006; 177:3746-56; http://dx.doi.org/10.4049/jimmunol.177.6.3746. PubMed DOI
Klionsky DJ, Emr SD. Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 1989; 8:2241-50. PubMed PMC
Venerando R, Miotto G, Kadowaki M, Siliprandi N, Mortimore GE. Multiphasic control of proteolysis by leucine and alanine in the isolated rat hepatocyte. Am J Physiol 1994; 266:C455-61. PubMed
Häussinger D, Hallbrucker C, vom Dahl S, Lang F, Gerok W. Cell swelling inhibits proteolysis in perfused rat liver. Biochem J 1990; 272:239-42; http://dx.doi.org/10.1042/bj2720239. PubMed DOI PMC
vom Dahl S, Häussinger D. Cell hydration and proteolysis control in liver. Biochem J 1995; 312:988-9; http://dx.doi.org/10.1042/bj3120988. PubMed DOI PMC
Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci USA 2013; 110:6400-5; http://dx.doi.org/10.1073/pnas.1221132110. PubMed DOI PMC
Reggiori F, Monastyrska I, Shintani T, Klionsky DJ. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:5843-56; http://dx.doi.org/10.1091/mbc.E05-07-0629. PubMed DOI PMC
Manjithaya R, Jain S, Farre JC, Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 2010; 189:303-10; http://dx.doi.org/10.1083/jcb.200909154. PubMed DOI PMC
Journo D, Mor A, Abeliovich H. Aup1-mediated regulation of Rtg3 during mitophagy. J Biol Chem 2009; 284:35885-95; http://dx.doi.org/10.1074/jbc.M109.048140. PubMed DOI PMC
Kanki T, Klionsky DJ. Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 2008; 283:32386-93; http://dx.doi.org/10.1074/jbc.M802403200. PubMed DOI PMC
Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng J, Mao K, Yang Z, Yen WL, et al.. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 2009; 20:4730-8; http://dx.doi.org/10.1091/mbc.E09-03-0225. PubMed DOI PMC
Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 2009; 17:98-109; http://dx.doi.org/10.1016/j.devcel.2009.06.014. PubMed DOI PMC
Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 2009; 17:87-97; http://dx.doi.org/10.1016/j.devcel.2009.06.013. PubMed DOI
Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 1998; 141:625-36; http://dx.doi.org/10.1083/jcb.141.3.625. PubMed DOI PMC
Nazarko TY, Nicaud JM, Sibirny AA. Observation of the Yarrowia lipolytica peroxisome-vacuole dynamics by fluorescence microscopy with a single filter set. Cell Biol Int 2005; 29:65-70; http://dx.doi.org/10.1016/j.cellbi.2004.11.014. PubMed DOI
Roetzer A, Gratz N, Kovarik P, Schuller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 2010; 12:199-216; http://dx.doi.org/10.1111/j.1462-5822.2009.01391.x. PubMed DOI PMC
Bormann C, Sahm H. Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii. Arch Microbiol 1978; 117:67-72; http://dx.doi.org/10.1007/BF00689353. PubMed DOI
Clare DA, Duong MN, Darr D, Archibald F, Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 1984; 140:532-7; http://dx.doi.org/10.1016/0003-2697(84)90204-5. PubMed DOI
Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 2009; 11:494-504; http://dx.doi.org/10.1111/j.1462-2920.2008.01789.x. PubMed DOI
Stasyk OV, Nazarko TY, Sibirny AA. Methods of plate pexophagy monitoring and positive selection for ATG gene cloning in yeasts. Methods Enzymol 2008; 451:229-39; http://dx.doi.org/10.1016/S0076-6879(08)03216-3. PubMed DOI
Hutchins MU, Veenhuis M, Klionsky DJ. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 1999; 112:4079-87. PubMed
Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 2002; 7:75-90; http://dx.doi.org/10.1046/j.1356-9597.2001.00499.x. PubMed DOI
Tuttle DL, Dunn WA Jr.. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 1995; 108 (Pt 1):25-35. PubMed
Nazarko TY, Huang J, Nicaud JM, Klionsky DJ, Sibirny AA. Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 2005; 1:37-45; http://dx.doi.org/10.4161/auto.1.1.1512. PubMed DOI PMC
Veenhuis M, Douma A, Harder W, Osumi M. Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol 1983; 134:193-203; http://dx.doi.org/10.1007/BF00407757. PubMed DOI
Monosov EZ, Wenzel TJ, Luers GH, Heyman JA, Subramani S. Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells. J Histochem Cytochem 1996; 44:581-9; http://dx.doi.org/10.1177/44.6.8666743. PubMed DOI
Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J Cell Biol 1997; 136:71-80; http://dx.doi.org/10.1083/jcb.136.1.71. PubMed DOI PMC
Monastyrska I, van der Heide M, Krikken AM, JAKW Kiel, van der Klei IJ, Veenhuis M. Atg8 is essential for macropexophagy in Hansenula polymorpha. Traffic 2005; 6:66-74; http://dx.doi.org/10.1111/j.1600-0854.2004.00252.x. PubMed DOI
Devenish RJ, Prescott M, Turcic K, Mijaljica D. Monitoring organelle turnover in yeast using fluorescent protein tags. Methods Enzymol 2008; 451:109-31; http://dx.doi.org/10.1016/S0076-6879(08)03209-6. PubMed DOI
Mao K, Wang K, Liu X, Klionsky DJ. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 2013; 26:9-18; http://dx.doi.org/10.1016/j.devcel.2013.05.024. PubMed DOI PMC
TK Kerppola. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nature Protocols 2006; 1:1278-86; http://dx.doi.org/10.1038/nprot.2006.201. PubMed DOI PMC
Shyu YJ, Liu H, Deng X, Hu CD. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 2006; 40:61-6; http://dx.doi.org/10.2144/000112036. PubMed DOI
Farre JC, Manjithaya R, Mathewson RD, Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 2008; 14:365-76; http://dx.doi.org/10.1016/j.devcel.2007.12.011. PubMed DOI PMC
He Y, Deng YZ, Naqvi NI. Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation in Magnaporthe oryzae. Autophagy 2013; 9:1818-27; http://dx.doi.org/10.4161/auto.26057. PubMed DOI
Kanki T, Klionsky DJ. The molecular mechanism of mitochondria autophagy in yeast. Mol Microbiol 2010; 75:795-800; http://dx.doi.org/10.1111/j.1365-2958.2009.07035.x. PubMed DOI PMC
Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 2007; 282:5617-24; http://dx.doi.org/10.1074/jbc.M605940200. PubMed DOI
H Abeliovich. Stationary-phase mitophagy in respiring Saccharomyces cerevisiae. Antioxid Redox Sign 2011; 14:2003-11; http://dx.doi.org/10.1089/ars.2010.3807. PubMed DOI
East DA, Fagiani F, Crosby J, Georgakopoulos ND, Bertrand H, Schaap M, Fowkes A, Wells G, Campanella M. PMI: a DeltaPsim independent pharmacological regulator of mitophagy. Chem Biol 2014; 21:1585-96; http://dx.doi.org/10.1016/j.chembiol.2014.09.019. PubMed DOI PMC
Aksam EB, Koek A, JAKW Kiel, Jourdan S, Veenhuis M, van der Klei IJ. A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 2007; 3:96-105; http://dx.doi.org/10.4161/auto.3534. PubMed DOI
Roberts P, Moshitch-Moshkovitz S, Kvam E, O'Toole E, Winey M, Goldfarb DS. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:129-41; http://dx.doi.org/10.1091/mbc.E02-08-0483. PubMed DOI PMC
Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 2008; 19:4492-505; http://dx.doi.org/10.1091/mbc.E08-04-0363. PubMed DOI PMC
Farre JC, Krick R, Subramani S, Thumm M. Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 2009; 21:522-30; http://dx.doi.org/10.1016/j.ceb.2009.04.015. PubMed DOI PMC
Kvam E, Goldfarb DS. Structure and function of nucleus-vacuole junctions: outer-nuclear-membrane targeting of Nvj1p and a role in tryptophan uptake. J Cell Sci 2006; 119:3622-33; http://dx.doi.org/10.1242/jcs.03093. PubMed DOI
Millen JI, Krick R, Prick T, Thumm M, Goldfarb DS. Measuring piecemeal microautophagy of the nucleus in Saccharomyces cerevisiae. Autophagy 2009; 5:75-81; http://dx.doi.org/10.4161/auto.5.1.7181. PubMed DOI
Mijaljica D, Prescott M, Devenish RJ. A late form of nucleophagy in Saccharomyces cerevisiae. PloS One 2012; 7:e40013. PubMed PMC
Shoji JY, Kikuma T, Arioka M, Kitamoto K. Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae. PloS One 2010; 5:e15650; http://dx.doi.org/10.1371/journal.pone.0015650. PubMed DOI PMC
Shoji J-Y, Kikuma T, Arioka M, Kitamoto K. Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae. PloS One 2010; 5:e15650; http://dx.doi.org/10.1371/journal.pone.0015650. PubMed DOI PMC
He M, Kershaw MJ, Soanes DM, Xia Y, Talbot NJ. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy. PloS One 2012; 7:e33270; http://dx.doi.org/10.1371/journal.pone.0033270. PubMed DOI PMC
Maheshwari R. Nuclear behavior in fungal hyphae. FEMS Microbiol Lett 2005; 249:7-14; http://dx.doi.org/10.1016/j.femsle.2005.06.031. PubMed DOI
Shoji J-Y, Craven KD. Autophagy in basal hyphal compartments: A green strategy of great recyclers. Fungal Biol Rev 2011; 25:79-83; http://dx.doi.org/10.1016/j.fbr.2011.04.001. DOI
Voigt O, Poggeler S. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora. Autophagy 2013; 9:33-49; http://dx.doi.org/10.4161/auto.22398. PubMed DOI PMC
Yorimitsu T, Klionsky DJ. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 2005; 16:1593-605; http://dx.doi.org/10.1091/mbc.E04-11-1035. PubMed DOI PMC
Shintani T, Huang W-P, Stromhaug PE, Klionsky DJ. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 2002; 3:825-37; http://dx.doi.org/10.1016/S1534-5807(02)00373-8. PubMed DOI PMC
Abeliovich H, Darsow T, Emr SD. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J 1999; 18:6005-16; http://dx.doi.org/10.1093/emboj/18.21.6005. PubMed DOI PMC
Abeliovich H, Zarei M, Rigbolt KT, Youle RJ, Dengjel J. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat Commun 2013; 4:2789; http://dx.doi.org/10.1038/ncomms3789. PubMed DOI PMC
Overbye A, Fengsrud M, Seglen PO. Proteomic analysis of membrane-associated proteins from rat liver autophagosomes. Autophagy 2007; 3:300-22; http://dx.doi.org/10.4161/auto.3910. PubMed DOI
Petroi D, Popova B, Taheri-Talesh N, Irniger S, Shahpasandzadeh H, Zweckstetter M, Outeiro TF, Braus GH. Aggregate clearance of alpha-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome. J Biol Chem 2012; 287:27567-79; http://dx.doi.org/10.1074/jbc.M112.361865. PubMed DOI PMC
Shahpasandzadeh H, Popova B, Kleinknecht A, Fraser PE, Outeiro TF, Braus GH. Interplay between sumoylation and phosphorylation for protection against alpha-synuclein inclusions. J Biol Chem 2014; 289:31224-40; http://dx.doi.org/10.1074/jbc.M114.559237. PubMed DOI PMC
Wafa K, MacLean J, Zhang F, Pasumarthi KB. Characterization of growth suppressive functions of a splice variant of cyclin D2. PloS One 2013; 8:e53503; http://dx.doi.org/10.1371/journal.pone.0053503. PubMed DOI PMC
Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, Weihl CC. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 2009; 5:511-9; http://dx.doi.org/10.4161/auto.5.4.7761. PubMed DOI PMC
Hohn A, Sittig A, Jung T, Grimm S, Grune T. Lipofuscin is formed independently of macroautophagy and lysosomal activity in stress-induced prematurely senescent human fibroblasts. Free Radical Bio Med 2012; 53:1760-9; http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.591. PubMed DOI
Jung T, Hohn A, Catalgol B, Grune T. Age-related differences in oxidative protein-damage in young and senescent fibroblasts. Arch Biochem Biophys 2009; 483:127-35; http://dx.doi.org/10.1016/j.abb.2008.12.007. PubMed DOI
Fuentealba RA, Marasa J, Diamond MI, Piwnica-Worms D, Weihl CC. An aggregation sensing reporter identifies leflunomide and teriflunomide as polyglutamine aggregate inhibitors. Hum Mol Genet 2012; 21:664-80. PubMed PMC
Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Allophagy: A macroautophagic process degrading spermatozoid-inherited organelles. Autophagy 2012; 8:421-3. PubMed PMC
Sato M, Sato K. Maternal inheritance of mitochondrial DNA: Degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy. Autophagy 2012; 8:424-5. PubMed
Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011; 334:1144-7. PubMed
Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 2011; 334:1141-4; http://dx.doi.org/10.1126/science.1210333. PubMed DOI
Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 2012; 393:547-64. PubMed PMC
Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR, Moussaud-Lamodiere EL, Stankowski JN, Bauer PO, Lorenzo-Betancor O, et al.. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 2015. PubMed PMC
Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Rep 2015. PubMed PMC
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, et al.. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014; 510:162-6. PubMed
Ding WX, Li M, Chen X, Ni HM, Lin CW, Gao W, Lu B, Stolz DB, Clemens DL, Yin XM. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 2010; 139:1740-52; http://dx.doi.org/10.1053/j.gastro.2010.07.041. PubMed DOI PMC
Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462:245-53; http://dx.doi.org/10.1016/j.abb.2007.03.034. PubMed DOI PMC
Dong H, Cheung SH, Liang Y, Wang B, Ramalingam R, Wang P, Sun H, Cheng SH, Lam YW. “Stainomics”: identification of mitotracker labeled proteins in mammalian cells. Electrophoresis 2013; 34:1957-64; http://dx.doi.org/10.1002/elps.201200557. PubMed DOI
Mauro-Lizcano M, Esteban-Martinez L, Seco E, Serrano-Puebla A, Garcia-Ledo L, Figueiredo-Pereira C, Vieira HL, Boya P. New method to assess mitophagy flux by flow cytometry. Autophagy 2015; 11:833-43; http://dx.doi.org/10.1080/15548627.2015.1034403. PubMed DOI PMC
Presley AD, Fuller KM, Arriaga EA. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B, Analytical technologies in the biomedical and life sciences 2003; 793:141-50; http://dx.doi.org/10.1016/S1570-0232(03)00371-4. PubMed DOI
Keij JF, Bell-Prince C, Steinkamp JA. Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 2000; 39:203-10; http://dx.doi.org/10.1002/(SICI)1097-0320(20000301)39:3<203::AID-CYTO5>3.0.CO;2-Z. PubMed DOI
Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 1996; 44:1363-72; http://dx.doi.org/10.1177/44.12.8985128. PubMed DOI
Geisler S, Holmstrom KM, Treis A, Skujat D, Weber SS, Fiesel FC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 2010; 6:871-8; http://dx.doi.org/10.4161/auto.6.7.13286. PubMed DOI
Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-31; http://dx.doi.org/10.1038/ncb2012. PubMed DOI
Diot A, Hinks-Roberts A, Lodge T, Liao C, Dombi E, Morten K, Brady S, Fratter C, Carver J, Muir R, et al.. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA. Pharmacol Res 2015; 100:24-35; http://dx.doi.org/10.1016/j.phrs.2015.07.014. PubMed DOI
Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 2009; 284:13843-55; http://dx.doi.org/10.1074/jbc.M808515200. PubMed DOI PMC
Dagda RK, Zhu J, Kulich SM, Chu CT. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 2008; 4:770-82; http://dx.doi.org/10.4161/auto.6458. PubMed DOI PMC
Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, et al.. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25:1025-40; http://dx.doi.org/10.1128/MCB.25.3.1025-1040.2005. PubMed DOI PMC
Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 2011; 18:1042-52; http://dx.doi.org/10.1016/j.chembiol.2011.05.013. PubMed DOI
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010; 191:1367-80; http://dx.doi.org/10.1083/jcb.201007013. PubMed DOI PMC
Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 2011; 286:19630-40; http://dx.doi.org/10.1074/jbc.M110.209338. PubMed DOI PMC
Amadoro G, Corsetti V, Florenzano F, Atlante A, Ciotti MT, Mongiardi MP, Bussani R, Nicolin V, Nori SL, Campanella M, et al.. AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons. Neuobiol Dis 2014; 62:489-507; http://dx.doi.org/10.1016/j.nbd.2013.10.018. PubMed DOI
Chang TK, Shravage BV, Hayes SD, Powers CM, Simin RT, WaDe Harper J, Baehrecke EH. Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol 2013; 15:1067-78; http://dx.doi.org/10.1038/ncb2804. PubMed DOI PMC
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85:257-73; http://dx.doi.org/10.1016/j.neuron.2014.12.007. PubMed DOI PMC
Yang JY, Yang WY. Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells. Autophagy 2011; 7:1230-8; http://dx.doi.org/10.4161/auto.7.10.16626. PubMed DOI
Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy 2012; 8:1462-76; http://dx.doi.org/10.4161/auto.21211. PubMed DOI
Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, Campello S, Nardacci R, Piacentini M, Campanella M, et al.. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 2014. PubMed PMC
JJ Lemasters. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2014; 2:749-54; http://dx.doi.org/10.1016/j.redox.2014.06.004. PubMed DOI PMC
Manjithaya R, Nazarko TY, Farre JC, Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Lett 2010; 584:1367-73; http://dx.doi.org/10.1016/j.febslet.2010.01.019. PubMed DOI PMC
Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012; 2012:512721; http://dx.doi.org/10.1155/2012/512721. PubMed DOI PMC
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, et al.. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006; 58:726-41; http://dx.doi.org/10.1124/pr.58.4.5. PubMed DOI
Walter KM, Schonenberger MJ, Trotzmuller M, Horn M, Elsasser HP, Moser AB, Lucas MS, Schwarz T, Gerber PA, Faust PL, et al.. Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab 2014; 20:882-97; http://dx.doi.org/10.1016/j.cmet.2014.09.017. PubMed DOI
Alexander A, Cai SL, Kim J, Nanez A, Sahin M, Maclean KH, Inoki K, Guan K-L, Shen J, Person MD, et al.. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010; 107:4153-8; http://dx.doi.org/10.1073/pnas.0913860107. PubMed DOI PMC
Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, Wogan GN. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci USA 2013; 110:E2950-7; http://dx.doi.org/10.1073/pnas.1307736110. PubMed DOI PMC
Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, Tee AR, Tait-Mulder J, Di Nardo A, Han JM, et al.. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 2013; 15:1186-96; http://dx.doi.org/10.1038/ncb2822. PubMed DOI PMC
Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, et al.. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 2015. PubMed PMC
Luiken JJ, van den Berg M, Heikoop JC, Meijer AJ. Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett 1992; 304:93-7; http://dx.doi.org/10.1016/0014-5793(92)80596-9. PubMed DOI
Yokota S. Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate. Eur J Cell Biol 1993; 61:67-80. PubMed
D'Eletto M, Farrace MG, Rossin F, Strappazzon F, Giacomo GD, Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, et al.. Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 2012; 19:1228-38; http://dx.doi.org/10.1038/cdd.2012.2. PubMed DOI PMC
Nardacci R, Sartori C, Stefanini S. Selective autophagy of clofibrate-induced rat liver peroxisomes. Cytochemistry and immunocytochemistry on tissue specimens and on fractions obtained by Nycodenz density gradient centrifugation. Cell Mol Biol 2000; 46:1277-90. PubMed
Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M. Peroxisome dynamics in cultured mammalian cells. Traffic 2009; 10:1722-33; http://dx.doi.org/10.1111/j.1600-0854.2009.00970.x. PubMed DOI
Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, Lamark T, Jauregui M, Law K, Lippincott-Schwartz J, et al.. NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 2013; 126:939-52; http://dx.doi.org/10.1242/jcs.114819. PubMed DOI
Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 2010; 189:671-9; http://dx.doi.org/10.1083/jcb.201001039. PubMed DOI PMC
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, et al.. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2012; 2:120080; http://dx.doi.org/10.1098/rsob.120080. PubMed DOI PMC
Yang KC, Ma X, Liu H, Murphy J, Barger PM, Mann DL, Diwan A. TNF-Receptor Associated Factor-2 Mediates Mitochondrial Autophagy. Circ Heart Fail 2014; 8:175-87. PubMed PMC
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20:1726-37; http://dx.doi.org/10.1093/hmg/ddr048. PubMed DOI PMC
Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, Kimura M, Sato S, Hattori N, Komatsu M, et al.. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 2010; 15:887-900. PubMed PMC
Mauro-Lizcano . New method to assess mitophagy flux by flow cytometry. Autophagy 2015; 11:in press. PubMed PMC
McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 2014; 33:282-95. PubMed PMC
Ivatt RM, Sanchez-Martinez A, Godena VK, Brown S, Ziviani E, Whitworth AJ. Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus SREBF1 as a regulator of mitophagy. Proc Natl Acad Sci USA 2014; 111:8494-9; http://dx.doi.org/10.1073/pnas.1321207111. PubMed DOI PMC
Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, Noguchi A, Springer D, Bocharov AV, Eggerman TL, et al.. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 2011; 121:3701-12; http://dx.doi.org/10.1172/JCI44736. PubMed DOI PMC
Klinkenberg M, Gispert S, Dominguez-Bautista JA, Braun I, Auburger G, Jendrach M. Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 2012; 13:9-21; http://dx.doi.org/10.1007/s10048-011-0303-8. PubMed DOI PMC
Parganlija D, Klinkenberg M, Dominguez-Bautista J, Hetzel M, Gispert S, Chimi MA, Drose S, Mai S, Brandt U, Auburger G, et al.. Loss of PINK1 Impairs Stress-Induced Autophagy and Cell Survival. PloS One 2014; 9:e95288; http://dx.doi.org/10.1371/journal.pone.0095288. PubMed DOI PMC
Lyamzaev KG, Nepryakhina OK, Saprunova VB, Bakeeva LE, Pletjushkina OY, Chernyak BV, Skulachev VP. Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. Biochim Biophys Acta 2008; 1777:817-25; http://dx.doi.org/10.1016/j.bbabio.2008.03.027. PubMed DOI
Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, Bihlmeyer NA, et al.. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci USA 2014; 111:9633-8; http://dx.doi.org/10.1073/pnas.1404651111. PubMed DOI PMC
Hara-Kuge S, Fujiki Y. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Exp Cell Res 2008; 314:3531-41; http://dx.doi.org/10.1016/j.yexcr.2008.09.015. PubMed DOI
Ezaki J, Kominami E, Ueno T. Peroxisome degradation in mammals. IUBMB Life 2011; 63:1001-8; http://dx.doi.org/10.1002/iub.537. PubMed DOI
Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Phys 2008; 148:142-55; http://dx.doi.org/10.1104/pp.108.122770. PubMed DOI PMC
Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Phys 2009; 149:885-93; http://dx.doi.org/10.1104/pp.108.130013. PubMed DOI PMC
Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell 2014; 26:4084-101; http://dx.doi.org/10.1105/tpc.114.129999. PubMed DOI PMC
Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, Otegui MS. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell 2015; 27:391-402. PubMed PMC
Changou CA, Chen YR, Xing L, Yen Y, Chuang FY, Cheng RH, Bold RJ, Ann DK, Kung HJ. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci USA 2014; 111:14147-52; http://dx.doi.org/10.1073/pnas.1404171111. PubMed DOI PMC
Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014. PubMed PMC
Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 2011; 43:1686-97; http://dx.doi.org/10.1016/j.biocel.2011.08.016. PubMed DOI
Terman A, Kurz T. Lysosomal iron, iron chelation, and cell death. Antioxid Redox Sign 2013; 18:888-98; http://dx.doi.org/10.1089/ars.2012.4885. PubMed DOI
Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima N, Iwai K. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol 2011; 31:2040-52; http://dx.doi.org/10.1128/MCB.01437-10. PubMed DOI PMC
Bauckman KA, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis 2013; 4:e592; http://dx.doi.org/10.1038/cddis.2013.87. PubMed DOI PMC
De Domenico I, Ward DM, Kaplan J. Autophagy, ferritin and iron chelation. Autophagy 2010; 6:157; http://dx.doi.org/10.4161/auto.6.1.10587. PubMed DOI
Sturm B, Goldenberg H, Scheiber-Mojdehkar B. Transient increase of the labile iron pool in HepG2 cells by intravenous iron preparations. Eur J Biochem 2003; 270:3731-8; http://dx.doi.org/10.1046/j.1432-1033.2003.03759.x. PubMed DOI
Nagl W. ‘'Plastolysomes' - Plastids involved in the autolysis of the embryo-suspensor in Phaseolus. Zeitschrift Pflanzenphysiol 1977; 85:45-51; http://dx.doi.org/10.1016/S0044-328X(77)80263-8. DOI
Gartner PJ, Nagl W. Acid phosphatase activity in plastids (plastolysomes) of senescing embryo-suspensor cells. Planta 1980; 149:341-9; http://dx.doi.org/10.1007/BF00571168. PubMed DOI
van Doorn WG, Kirasak K, Sonong A, Srihiran Y, van Lent J, Ketsa S. Do plastids in Dendrobium cv. Lucky Duan petals function similar to autophagosomes and autolysosomes? Autophagy 2011; 7:584-97; http://dx.doi.org/10.4161/auto.7.6.15099. PubMed DOI
Parra-Vega V, Corral-Martínez P, Rivas-Sendra A, Segui-Simarro JM. Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores. Front Plant Sci 2015; 6:94. PubMed PMC
Gonzalez-Melendi P, Uyttewaal M, Morcillo CN, Hernandez Mora JR, Fajardo S, Budar F, Lucas MM. A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J Exp Bot 2008; 59:827-38; http://dx.doi.org/10.1093/jxb/erm365. PubMed DOI
Newcomb EH. Fine structure of protein-storing plastids in bean root tips. J Cell Biol 1967; 33:143-63; http://dx.doi.org/10.1083/jcb.33.1.143. PubMed DOI PMC
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458:1131-5; http://dx.doi.org/10.1038/nature07976. PubMed DOI PMC
Koenig U, Fobker M, Lengauer B, Brandstetter M, Resch GP, Groger M, Plenz G, Pammer J, Barresi C, Hartmann C, et al.. Autophagy facilitates secretion and protects against degeneration of the Harderian gland. Autophagy 2015; 11:298-313; http://dx.doi.org/10.4161/15548627.2014.978221. PubMed DOI PMC
Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR, Howe MK, McDonnell DP, Frigo DE. Androgens promote prostate cancer cell growth through induction of autophagy. Mol Endocrinol 2013; 27:280-95; http://dx.doi.org/10.1210/me.2012-1260. PubMed DOI PMC
O'Rourke EJ, Soukas AA, Carr CE, Ruvkun G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 2009; 10:430-5; http://dx.doi.org/10.1016/j.cmet.2009.10.002. PubMed DOI PMC
Inokuchi-Shimizu S, Park EJ, Roh YS, Yang L, Zhang B, Song J, Liang S, Pimienta M, Taniguchi K, Wu X, et al.. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest 2014; 124:3566-78; http://dx.doi.org/10.1172/JCI74068. PubMed DOI PMC
Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, Bandyopadhyay G, Li N, Aghajan M, Jang I, et al.. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab 2012; 16:311-21; http://dx.doi.org/10.1016/j.cmet.2012.08.004. PubMed DOI PMC
Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, et al.. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15:647-58; http://dx.doi.org/10.1038/ncb2718. PubMed DOI PMC
AM Cuervo. Preventing lysosomal fat indigestion. Nat Cell Biol 2013; 15:565-7; http://dx.doi.org/10.1038/ncb2778. PubMed DOI
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nature Rev Mol Cell Biol 2013; 14:283-96; http://dx.doi.org/10.1038/nrm3565. PubMed DOI PMC
Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci USA 2010; 107:16320-4; http://dx.doi.org/10.1073/pnas.1002176107. PubMed DOI PMC
Heck MV, Azizov M, Stehning T, Walter M, Kedersha N, Auburger G. Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics 2014; 15:135-44; http://dx.doi.org/10.1007/s10048-014-0397-x. PubMed DOI PMC
Popovic D, Akutsu M, Novak I, Harper JW, Behrends C, Dikic I. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 2012; 32:1733-44; http://dx.doi.org/10.1128/MCB.06717-11. PubMed DOI PMC
Hung YH, Chen LM, Yang JY, Yang WY. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun 2013; 4:2111; http://dx.doi.org/10.1038/ncomms3111. PubMed DOI
Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, et al.. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 2013; 32:2336-47; http://dx.doi.org/10.1038/emboj.2013.171. PubMed DOI PMC
De Meyer GR, Grootaert MO, Michiels CF, Kurdi A, Schrijvers DM, Martinet W. Autophagy in vascular disease. Circ Res 2015; 116:468-79; http://dx.doi.org/10.1161/CIRCRESAHA.116.303804. PubMed DOI
Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis 1999; 142:1-28; http://dx.doi.org/10.1016/S0021-9150(98)00196-8. PubMed DOI
He C, Zhu H, Zhang W, Okon I, Wang Q, Li H, Le YZ, Xie Z. 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol 2013; 183:626-37; http://dx.doi.org/10.1016/j.ajpath.2013.04.028. PubMed DOI PMC
Martinet W, Schrijvers DM, Timmermans JP, Bult H. Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol 2008; 154:1236-46; http://dx.doi.org/10.1038/bjp.2008.181. PubMed DOI PMC
Zarrouk A, Vejux A, Mackrill J, O'Callaghan Y, Hammami M, O'Brien N, Lizard G. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 2014; 18:148-62; http://dx.doi.org/10.1016/j.arr.2014.09.006. PubMed DOI
Monier S, Samadi M, Prunet C, Denance M, Laubriet A, Athias A, Berthier A, Steinmetz E, Jurgens G, Negre-Salvayre A, et al.. Impairment of the cytotoxic and oxidative activities of 7 beta-hydroxycholesterol and 7-ketocholesterol by esterification with oleate. Biochem Biophys Res Commun 2003; 303:814-24; http://dx.doi.org/10.1016/S0006-291X(03)00412-1. PubMed DOI
Nury T, Zarrouk A, Mackrill JJ, Samadi M, Durand P, Riedinger JM, Doria M, Vejux A, Limagne E, Delmas D, et al.. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7beta-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of alpha-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). Steroids 2015; 99:194-203; http://dx.doi.org/10.1016/j.steroids.2015.02.003. PubMed DOI
Nury T, Zarrouk A, Vejux A, Doria M, Riedinger JM, Delage-Mourroux R, Lizard G. Induction of oxiapoptophagy, a mixed mode of cell death associated with oxidative stress, apoptosis and autophagy, on 7-ketocholesterol-treated 158N murine oligodendrocytes: impairment by alpha-tocopherol. Biochem Biophys Res Commun 2014; 446:714-9; http://dx.doi.org/10.1016/j.bbrc.2013.11.081. PubMed DOI
Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015; 522:359-62; http://dx.doi.org/10.1038/nature14506. PubMed DOI
Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 2006; 281:30299-304; http://dx.doi.org/10.1074/jbc.M607007200. PubMed DOI PMC
Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 2014; 127:4078-88; http://dx.doi.org/10.1242/jcs.154716. PubMed DOI PMC
Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 2007; 3:285-7; http://dx.doi.org/10.4161/auto.3930. PubMed DOI
Klionsky DJ, Cuervo AM, Dunn WA Jr., Levine B, van der Klei I, Seglen PO. How shall I eat thee? Autophagy 2007; 3:413-6; http://dx.doi.org/10.4161/auto.4377. PubMed DOI
Bolender RP, Weibel ER. A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of threatment. J Cell Biol 1973; 56:746-61; http://dx.doi.org/10.1083/jcb.56.3.746. PubMed DOI PMC
Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, et al.. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015; 522:354-8; http://dx.doi.org/10.1038/nature14498. PubMed DOI
Lipatova Z, Segev N. A Role for Macro-ER-Phagy in ER Quality Control. PLoS Genet 2015; 11:e1005390. PubMed PMC
Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 2008; 10:602-10; http://dx.doi.org/10.1038/ncb1723. PubMed DOI
Ossareh-Nazari B, Nino CA, Bengtson MH, Lee JW, Joazeiro CA, Dargemont C. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol 2014; 204:909-17; http://dx.doi.org/10.1083/jcb.201308139. PubMed DOI PMC
Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci USA 2012; 109:15942-6; http://dx.doi.org/10.1073/pnas.1209487109. PubMed DOI PMC
Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 2012; 14:1314-21; http://dx.doi.org/10.1038/ncb2611. PubMed DOI PMC
Zhang P, Zhang H. Autophagy modulates miRNA-mediated gene silencing and selectively degrades AIN-1/GW182 in C. elegans. EMBO Rep 2013; 14:568-76; http://dx.doi.org/10.1038/embor.2013.53. PubMed DOI PMC
Brown CR, Chiang H-L. A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2009; 2:177-83; http://dx.doi.org/10.4161/cib.7711. PubMed DOI PMC
Schule T, Rose M, Entian KD, Thumm M, Wolf DH. Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphatase in yeast. EMBO J 2000; 19:2161-7; http://dx.doi.org/10.1093/emboj/19.10.2161. PubMed DOI PMC
Schork SM, Thumm M, Wolf DH. Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. J Biol Chem 1995; 270:26446-50; http://dx.doi.org/10.1074/jbc.270.44.26446. PubMed DOI
Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD, Thumm M, Wolf DH. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 2003; 14:1652-63; http://dx.doi.org/10.1091/mbc.E02-08-0456. PubMed DOI PMC
Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004; 279:49138-50; http://dx.doi.org/10.1074/jbc.M404544200. PubMed DOI
Chiang H-L, Schekman R, Hamamoto S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem 1996; 271:9934-41; http://dx.doi.org/10.1074/jbc.271.50.32359. PubMed DOI
Huang PH, Chiang H-L. Identification of novel vesicles in the cytosol to vacuole protein degradation pathway. J Cell Biol 1997; 136:803-10; http://dx.doi.org/10.1083/jcb.136.4.803. PubMed DOI PMC
Alibhoy AA, Giardina BJ, Dunton DD, Chiang H-L. Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway. Autophagy 2012; 8:29-46. PubMed PMC
Brown CR, Wolfe AB, Cui D, Chiang H-L. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008; 283:26116-27; http://dx.doi.org/10.1074/jbc.M709922200. PubMed DOI PMC
Chiang MC, Chiang H-L. Vid24p, a novel protein localized to the fructose-1, 6-bisphosphatase-containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation. J Cell Biol 1998; 140:1347-56; http://dx.doi.org/10.1083/jcb.140.6.1347. PubMed DOI PMC
Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 1995; 128:779-92; http://dx.doi.org/10.1083/jcb.128.5.779. PubMed DOI PMC
Brown CR, Hung GC, Dunton D, Chiang H-L. The TOR complex 1 is distributed in endosomes and in retrograde vesicles that form from the vacuole membrane and plays an important role in the vacuole import and degradation pathway. J Biol Chem 2010; 285:23359-70; http://dx.doi.org/10.1074/jbc.M109.075143. PubMed DOI PMC
Brown CR, Dunton D, Chiang H-L. The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation. J Biol Chem 2010; 285:1516-28; http://dx.doi.org/10.1074/jbc.M109.028241. PubMed DOI PMC
Webster P. Cytoplasmic bacteria and the autophagic pathway. Autophagy 2006; 2:159-61; http://dx.doi.org/10.4161/auto.2826. PubMed DOI
Dubuisson JF, Swanson MS. Mouse infection by Legionella, a model to analyze autophagy. Autophagy 2006; 2:179-82; http://dx.doi.org/10.4161/auto.2831. PubMed DOI PMC
Jordan TX, Randall G. Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 2011. PubMed PMC
Knodler LA, Celli J. Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell Microbiol 2011; 13:1319-27; http://dx.doi.org/10.1111/j.1462-5822.2011.01632.x. PubMed DOI PMC
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469:323-35; http://dx.doi.org/10.1038/nature09782. PubMed DOI PMC
Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 2011; 240:92-104; http://dx.doi.org/10.1111/j.1600-065X.2010.00995.x. PubMed DOI PMC
Dong X, Levine B. Autophagy and viruses: adversaries or allies? J Innate Immun 2013; 5:480-93; http://dx.doi.org/10.1159/000346388. PubMed DOI PMC
Wang C, Symington JW, Mysorekar IU. ATG16L1 and pathogenesis of urinary tract infections. Autophagy 2012; 8:1693-4; http://dx.doi.org/10.4161/auto.21600. PubMed DOI PMC
Choy A, Roy CR. Autophagy and bacterial infection: an evolving arms race. Trends Microbiol 2013; 21:451-6; http://dx.doi.org/10.1016/j.tim.2013.06.009. PubMed DOI PMC
Mostowy S, Cossart P. Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol 2012; 22:283-91; http://dx.doi.org/10.1016/j.tcb.2012.03.006. PubMed DOI
Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S, Imamoto F, Noda T, Yoshimori T. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 2011; 22:2290-300; http://dx.doi.org/10.1091/mbc.E10-11-0893. PubMed DOI PMC
Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012; 482:414-8; http://dx.doi.org/10.1038/nature10744. PubMed DOI PMC
Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 2009; 183:5909-16; http://dx.doi.org/10.4049/jimmunol.0900441. PubMed DOI
Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10:1215-21; http://dx.doi.org/10.1038/ni.1800. PubMed DOI
Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, Buss F. The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella Typhimurium by autophagy. PLoS Pathog 2015;11:e1005174. PubMed PMC
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, et al.. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011; 333:228-33; http://dx.doi.org/10.1126/science.1205405. PubMed DOI PMC
Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA 2009; 106:6226-31; http://dx.doi.org/10.1073/pnas.0811045106. PubMed DOI PMC
Rich KA, Burkett C, Webster P. Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 2003; 5:455-68; http://dx.doi.org/10.1046/j.1462-5822.2003.00292.x. PubMed DOI
Shahnazari S, Brumell JH. Mechanisms and consequences of bacterial targeting by the autophagy pathway. Current opinion in microbiology 2011; 14:68-75; http://dx.doi.org/10.1016/j.mib.2010.11.001. PubMed DOI
Klionsky DJ, Eskelinen EL, Deretic V. Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes… wait, I'm confused. Autophagy 2014; 10:549-51; http://dx.doi.org/10.4161/auto.28448. PubMed DOI PMC
Li X, Ye Y, Zhou X, Huang C, Wu M. Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. J Immunol 2015; 194:1112-21; http://dx.doi.org/10.4049/jimmunol.1401958. PubMed DOI PMC
Ye Y, Tan S, Zhou X, Li X, Jundt MC, Lichter N, Hidebrand A, Dhasarathy A, Wu M. Inhibition of p-IkappaBalpha Ubiquitylation by Autophagy-Related Gene 7 to Regulate Inflammatory Responses to Bacterial Infection. J Infect Dis 2015; 212:1816-26. PubMed PMC
Yuan K, Huang C, Fox J, Laturnus D, Carlson E, Zhang B, Yin Q, Gao H, Wu M. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J Cell Sci 2012; 125:507-15; http://dx.doi.org/10.1242/jcs.094573. PubMed DOI PMC
Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, Thomas BJ, Malosse C, Gantier MP, Casillas LN, et al.. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 2014; 15:623-35; http://dx.doi.org/10.1016/j.chom.2014.04.001. PubMed DOI
Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nature reviews Immunology 2015; 15:375-87; http://dx.doi.org/10.1038/nri3837. PubMed DOI
McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem 2011; 286:22147-59; http://dx.doi.org/10.1074/jbc.M110.192500. PubMed DOI PMC
Mao Y, Da L, Tang H, Yang J, Lei Y, Tiollais P, Li T, Zhao M. Hepatitis B virus X protein reduces starvation-induced cell death through activation of autophagy and inhibition of mitochondrial apoptotic pathway. Biochem Biophys Res Commun 2011; 415:68-74; http://dx.doi.org/10.1016/j.bbrc.2011.10.013. PubMed DOI
Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007; 1:23-35; http://dx.doi.org/10.1016/j.chom.2006.12.001. PubMed DOI
Alexander DE, Ward SL, Mizushima N, Levine B, Leib DA. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol 2007; 81:12128-34; http://dx.doi.org/10.1128/JVI.01356-07. PubMed DOI PMC
Leib DA, Alexander DE, Cox D, Yin J, Ferguson TA. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J Virol 2009; 83:12164-71; http://dx.doi.org/10.1128/JVI.01676-09. PubMed DOI PMC
Yordy B, Iijima N, Huttner A, Leib D, Iwasaki A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 2012; 12:334-45; http://dx.doi.org/10.1016/j.chom.2012.07.013. PubMed DOI PMC
Liang CEX, Jung JU. Downregulation of autophagy by herpesvirus Bcl-2 homologs. Autophagy 2008; 4:268-72; http://dx.doi.org/10.4161/auto.5210. PubMed DOI
Hernaez B, Cabezas M, Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med 2013; 13:305-16; http://dx.doi.org/10.2174/156652413804810736. PubMed DOI
Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Munoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res 2013; 173:42-57; http://dx.doi.org/10.1016/j.virusres.2012.12.006. PubMed DOI PMC
Galindo I, Hernaez B, Diaz-Gil G, Escribano JM, Alonso C. A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 2008; 375:561-72; http://dx.doi.org/10.1016/j.virol.2008.01.050. PubMed DOI PMC
Gannage M, Ramer PC, Munz C. Targeting Beclin 1 for viral subversion of macroautophagy. Autophagy 2010; 6:166-7; http://dx.doi.org/10.4161/auto.6.1.10624. PubMed DOI
MS Killian. Dual role of autophagy in HIV-1 replication and pathogenesis. AIDS Res Ther 2012; 9:16; http://dx.doi.org/10.1186/1742-6405-9-16. PubMed DOI PMC
Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, et al.. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 2009; 186:255-68; http://dx.doi.org/10.1083/jcb.200903070. PubMed DOI PMC
Nardacci R, Amendola A, Ciccosanti F, Corazzari M, Esposito V, Vlassi C, Taibi C, Fimia GM, Del Nonno F, Ippolito G, et al.. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients. Autophagy 2014; 10:1167-78; http://dx.doi.org/10.4161/auto.28678. PubMed DOI PMC
Zhang H, Monken CE, Zhang Y, Lenard J, Mizushima N, Lattime EC, Jin S. Cellular autophagy machinery is not required for vaccinia virus replication and maturation. Autophagy 2006; 2:91-5; http://dx.doi.org/10.4161/auto.2.2.2297. PubMed DOI PMC
Heaton NS, Randall G. Dengue virus and autophagy. Viruses 2011; 3:1332-41; http://dx.doi.org/10.3390/v3081332. PubMed DOI PMC
Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA 2009; 106:14046-51; http://dx.doi.org/10.1073/pnas.0907344106. PubMed DOI PMC
Collins CA, De Maziere A, van Dijk S, Carlsson F, Klumperman J, Brown EJ. Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathog 2009; 5:e1000430; http://dx.doi.org/10.1371/journal.ppat.1000430. PubMed DOI PMC
Moreau K, Lacas-Gervais S, Fujita N, Sebbane F, Yoshimori T, Simonet M, Lafont F. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell Microbiol 2010; 12:1108-23; http://dx.doi.org/10.1111/j.1462-5822.2010.01456.x. PubMed DOI
Grasso D, Ropolo A, Lo Re A, Boggio V, Molejon MI, Iovanna JL, Gonzalez CD, Urrutia R, Vaccaro MI. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 2011; 286:8308-24; http://dx.doi.org/10.1074/jbc.M110.197301. PubMed DOI PMC
Gorbunov NV, Kiang JG. Autophagy-Mediated Innate Defense Mechanism in Crypt Paneth Cells Responding to Impairment of Small Intestine Barrier after Total-Body Gamma-Photon Irradiation In: Gorbunov NV, ed. Autophagy: Principles, Regulation and Roles in Disease. Hauppauge, NY: NOVA SCIENCE PUBLISHERS, INC., 2011:61-84.
Seglen PO, Gordon PB, Tolleshaug H, Høyvik H. Use of [3H]raffinose as a specific probe of autophagic sequestration. Exp Cell Res 1986; 162:273-7. PubMed
Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990; 111:941-53; http://dx.doi.org/10.1083/jcb.111.3.941. PubMed DOI PMC
Gordon PB, Seglen PO. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Exp Cell Res 1982; 142:1-14; http://dx.doi.org/10.1016/0014-4827(82)90402-5. PubMed DOI
Seglen PO, Luhr M, Mills IG, Saetre F, Szalai P, Engedal N. Macroautophagic cargo sequestration assays. Methods 2015; 75:25-36; http://dx.doi.org/10.1016/j.ymeth.2014.12.021. PubMed DOI
Boland B, Smith DA, Mooney D, Jung SS, Walsh DM, Platt FM. Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. J Biol Chem 2010; 285:37415-26; http://dx.doi.org/10.1074/jbc.M110.186411. PubMed DOI PMC
Nair U, Thumm M, Klionsky DJ, Krick R. GFP-Atg8 protease protection as a tool to monitor autophagosome biogenesis. Autophagy 2011; 7:1546-50; http://dx.doi.org/10.4161/auto.7.12.18424. PubMed DOI PMC
Plomp PJ, Gordon PB, Meijer AJ, Høyvik H, Seglen PO. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem 1989; 264:6699-704. PubMed
Høyvik H, Gordon PB, Berg TO, Strømhaug PE, Seglen PO. Inhibition of autophagic-lysosomal delivery and autophagic lactolysis by asparagine. J Cell Biol 1991; 113:1305-12; http://dx.doi.org/10.1083/jcb.113.6.1305. PubMed DOI PMC
Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2006; 2:39-46; http://dx.doi.org/10.4161/auto.2229. PubMed DOI PMC
Lorenz H, Hailey DW, Lippincott-Schwartz J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 2006; 3:205-10; http://dx.doi.org/10.1038/nmeth857. PubMed DOI
McNeil PL, Murphy RF, Lanni F, Taylor DL. A method for incorporating macromolecules into adherent cells. J Cell Biol 1984; 98:1556-64; http://dx.doi.org/10.1083/jcb.98.4.1556. PubMed DOI PMC
Kim J, Huang WP, Stromhaug PE, Klionsky DJ. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 2002; 277:763-73; http://dx.doi.org/10.1074/jbc.M109134200. PubMed DOI PMC
Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell 2012; 23:896-909; http://dx.doi.org/10.1091/mbc.E11-09-0785. PubMed DOI PMC
Kovács AL, Laszlo L, Kovács J. Effect of amino acids and cycloheximide on changes caused by vinblastine, leupeptin and methylamine in the autophagic/lysosomal system of mouse hepatocytes in vivo. Exp Cell Res 1985; 157:83-94; http://dx.doi.org/10.1016/0014-4827(85)90154-5. PubMed DOI
Swanson MS, Byrne BG, Dubuisson JF. Kinetic analysis of autophagosome formation and turnover in primary mouse macrophages. Methods Enzymol 2009; 452:383-402; http://dx.doi.org/10.1016/S0076-6879(08)03623-9. PubMed DOI
Beugnet A, Tee AR, Taylor PM, Proud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 2003; 372:555-66; http://dx.doi.org/10.1042/bj20021266. PubMed DOI PMC
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, et al.. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 2007; 26:663-74; http://dx.doi.org/10.1016/j.molcel.2007.04.020. PubMed DOI
Jomain-Baum M, Garber AJ, Farber E, Hanson RW. The effect of cycloheximide on the interaction between mitochondrial respiration and gluconeogenesis in guinea pig and rat liver. J Biol Chem 1973; 248:1536-43. PubMed
Garber AJ, Jomain-Baum M, Salganicoff L, Farber E, Hanson RW. The effects of cycloheximide on energy transfer in rat and guinea pig liver mitochondria. J Biol Chem 1973; 248:1530-5. PubMed
Mora R, Dokic I, Kees T, Huber CM, Keitel D, Geibig R, Brugge B, Zentgraf H, Brady NR, Regnier-Vigouroux A. Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma. Glia 2010; 58:1364-83. PubMed
Bright NA, Lindsay MR, Stewart A, Luzio JP. The relationship between lumenal and limiting membranes in swollen late endocytic compartments formed after wortmannin treatment or sucrose accumulation. Traffic 2001; 2:631-42; http://dx.doi.org/10.1034/j.1600-0854.2001.20906.x. PubMed DOI
Deter RL. Quantitative characterization of dense body, autophagic vacuole, and acid phosphatase-bearing particle populations during the early phases of glucagon-induced autophagy in rat liver. J Cell Biol 1971; 48:473-89; http://dx.doi.org/10.1083/jcb.48.3.473. PubMed DOI PMC
Deter RL. Analog modeling of glucagon-induced autophagy in rat liver. I. Conceptual and mathematical model of telolysosome-autophagosome-autolysosome interaction. Exp Cell Res 1975; 94:122-6; http://dx.doi.org/10.1016/0014-4827(75)90538-8. PubMed DOI
Deter RL. Analog modeling of glucagon-induced autophagy in rat liver. II. Evaluation of iron labeling as a means for identifying telolysosome, autophagosome and autolysosome populations. Exp Cell Res 1975; 94:127-39; http://dx.doi.org/10.1016/0014-4827(75)90539-X. PubMed DOI
Deter RL, Baudhuin P, de Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 1967; 35:C11-6; http://dx.doi.org/10.1083/jcb.35.2.C11. PubMed DOI PMC
Deter RL, de Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33:437-49; http://dx.doi.org/10.1083/jcb.33.2.437. PubMed DOI PMC
Stromhaug PE, Berg TO, Fengsrud M, Seglen PO. Purification and characterization of autophagosomes from rat hepatocytes. Biochem J 1998; 335 (Pt 2):217-24; http://dx.doi.org/10.1042/bj3350217. PubMed DOI PMC
Deter RL. Electron microscopic evaluation of subcellular fractions obtained by ultracentrifugation In: Hayat MA, ed. Principles and Techniques of Electron Microscopy. New York: Van Nostrand Reinhold Co, 1973:199-235.
Marzella L, Ahlberg J, Glaumann H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol 1982; 93:144-54; http://dx.doi.org/10.1083/jcb.93.1.144. PubMed DOI PMC
Wattiaux R, Wattiaux-De Coninck S, Ronveaux-Dupal M-F, Dubois F. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol 1978; 78:349-68; http://dx.doi.org/10.1083/jcb.78.2.349. PubMed DOI PMC
Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neuobiol Dis 2010; 39:423-38; http://dx.doi.org/10.1016/j.nbd.2010.05.014. PubMed DOI
Weibel ER, Bolender RP. Stereological techniques for electron microscopic morphometry In: Hayat MA, ed. Principles and Techniques of Electron Microscopy. New York: Van Nostrand Reinhold Co, 1973:237-96.
Baudhuin P, Evrard P, Berthet J. Electron microscopic examination of subcellular fractions. I. The preparation of representative samples from suspensions of particles. J Cell Biol 1967; 32:181-91; http://dx.doi.org/10.1083/jcb.32.1.181. PubMed DOI PMC
Baudhuin P, Berthet J. Electron microscopic examination of subcellular fractions. II. Quantitative analysis of the mitochondrial population isolated from rat liver. J Cell Biol 1967; 35:631-48; http://dx.doi.org/10.1083/jcb.35.3.631. PubMed DOI PMC
Storrie B, Madden EA. Isolation of subcellular organelles. Methods Enzymol 1990; 182:203-25; http://dx.doi.org/10.1016/0076-6879(90)82018-W. PubMed DOI
Balch WE, Rothman JE. Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys 1985; 240:413-25; http://dx.doi.org/10.1016/0003-9861(85)90046-3. PubMed DOI
Graham JM. Isolation of lysosomes from tissues and cells by differential and density gradient centrifugation In: Bonifacino JS, Dasso M, Harfod JB, Lippincott-Schwartz J and Yamada KM, eds. Current Protocols in Cell Biology: John Wiley & Sons, Inc, 2000:Unit 3.6. PubMed
Cuervo AM, Dice JF, Knecht E. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 1997; 272:5606-15; http://dx.doi.org/10.1074/jbc.272.9.5606. PubMed DOI
He C, Sumpter R Jr., Levine B. Exercise induces autophagy in peripheral tissues and in the brain. Autophagy 2012; 8:1548-51; http://dx.doi.org/10.4161/auto.21327. PubMed DOI PMC
Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 2014:0. PubMed PMC
Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA. A method to measure cardiac autophagic flux in vivo. Autophagy 2008; 4:322-9; http://dx.doi.org/10.4161/auto.5603. PubMed DOI PMC
Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007; 117:1782-93; http://dx.doi.org/10.1172/JCI27523. PubMed DOI PMC
Castillo K, Valenzuela V, Matus S, Nassif M, Onate M, Fuentealba Y, Encina G, Irrazabal T, Parsons G, Court FA, et al.. Measurement of autophagy flux in the nervous system in vivo. Cell Death Dis 2013; 4:e917. PubMed PMC
Matus S, Valenzuela V, Hetz C. A new method to measure autophagy flux in the nervous system. Autophagy 2014; 10:710-4; http://dx.doi.org/10.4161/auto.28434. PubMed DOI PMC
Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, Court FA, van Zundert B, Hetz C. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 2013; 9:1308-20; http://dx.doi.org/10.4161/auto.25188. PubMed DOI
Chiarelli R, Agnello M, Roccheri MC. Sea urchin embryos as a model system for studying autophagy induced by cadmium stress. Autophagy 2011; 7:1028-34; http://dx.doi.org/10.4161/auto.7.9.16450. PubMed DOI
Morici G, Agnello M, Spagnolo F, Roccheri MC, Di Liegro CM, Rinaldi AM. Confocal microscopy study of the distribution, content and activity of mitochondria during Paracentrotus lividus development. J Microsc 2007; 228:165-73; http://dx.doi.org/10.1111/j.1365-2818.2007.01860.x. PubMed DOI
Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM. Detection of autophagy in tissue by standard immunohistochemistry: possibilities and limitations. Autophagy 2006; 2:55-7; http://dx.doi.org/10.4161/auto.2217. PubMed DOI
Holt SV, Wyspianska B, Randall KJ, James D, Foster JR, Wilkinson RW. The development of an immunohistochemical method to detect the autophagy-associated protein LC3-II in human tumor xenografts. Toxicol Pathol 2011; 39:516-23; http://dx.doi.org/10.1177/0192623310396903. PubMed DOI
Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 2009; 452:1-12; http://dx.doi.org/10.1016/S0076-6879(08)03601-X. PubMed DOI
Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci 2010; 30:12535-44; http://dx.doi.org/10.1523/JNEUROSCI.1920-10.2010. PubMed DOI PMC
Daniels BH, McComb RD, Mobley BC, Gultekin SH, Lee HS, Margeta M. LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar cardiomyopathy: a study of 3 cases. Am J Surg Pathol 2013; 37:1014-21; http://dx.doi.org/10.1097/PAS.0b013e3182863fa8. PubMed DOI
Hiniker A, Daniels BH, Lee HS, Margeta M. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies. Acta Neuropathol Commun 2013; 1:29; http://dx.doi.org/10.1186/2051-5960-1-29. PubMed DOI PMC
Lee HS, Daniels BH, Salas E, Bollen AW, Debnath J, Margeta M. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study. PloS One 2012; 7:e36221. PubMed PMC
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 2011; 13:655-67; http://dx.doi.org/10.1016/j.cmet.2011.03.023. PubMed DOI PMC
Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N, Matsumoto N, Hisatsune C, Nakamura T, Mikoshiba K. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 2014; 111:E3966-75; http://dx.doi.org/10.1073/pnas.1409730111. PubMed DOI PMC
Rodriguez-Muela N, Koga H, Garcia-Ledo L, de la Villa P, de la Rosa EJ, Cuervo AM, Boya P. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 2013; 12:478-88; http://dx.doi.org/10.1111/acel.12072. PubMed DOI PMC
Esteban-Martinez L, Boya P. Autophagic flux determination in vivo and ex vivo. Methods 2015; 75:79-86; http://dx.doi.org/10.1016/j.ymeth.2015.01.008. PubMed DOI
McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, Zhu X, Huang Y. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci 2012; 32:15704-14; http://dx.doi.org/10.1523/JNEUROSCI.2392-12.2012. PubMed DOI PMC
Herrando-Grabulosa M, Casas C, Aguilera J. The C-terminal domain of tetanus toxin protects motoneurons against acute excitotoxic damage on spinal cord organotypic cultures. J Neurochem 2013; 124:36-44; http://dx.doi.org/10.1111/jnc.12062. PubMed DOI
Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13:589-98; http://dx.doi.org/10.1038/ncb2220. PubMed DOI PMC
Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, et al.. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 2010; 16:1313-20; http://dx.doi.org/10.1038/nm.2247. PubMed DOI
Bloemberg D, McDonald E, Dulay D, Quadrilatero J. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats. Acta Physiol (Oxf) 2014; 210:381-91; http://dx.doi.org/10.1111/apha.12178. PubMed DOI
Ogata T, Oishi Y, Higuchi M, Muraoka I. Fasting-related autophagic response in slow- and fast-twitch skeletal muscle. Biochem Biophys Res Commun 2010; 394:136-40; http://dx.doi.org/10.1016/j.bbrc.2010.02.130. PubMed DOI
Yamada E, Bastie CC, Koga H, Wang Y, Cuervo AM, Pessin JE. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep 2012; 1:557-69; http://dx.doi.org/10.1016/j.celrep.2012.03.014. PubMed DOI PMC
He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, et al.. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012; 481:511-5; http://dx.doi.org/10.1038/nature10758. PubMed DOI PMC
Haspel J, Shaik RS, Ifedigbo E, Nakahira K, Dolinay T, Englert JA, Choi AM. Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy 2011; 7:629-42; http://dx.doi.org/10.4161/auto.7.6.15100. PubMed DOI PMC
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011; 50:940-50; http://dx.doi.org/10.1016/j.yjmcc.2011.02.018. PubMed DOI
Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PloS One 2011; 6:e20975; http://dx.doi.org/10.1371/journal.pone.0020975. PubMed DOI PMC
Gottlieb RA, Finley KD, Mentzer RM Jr.. Cardioprotection requires taking out the trash. Basic Res Cardiol 2009; 104:169-80; http://dx.doi.org/10.1007/s00395-009-0011-9. PubMed DOI PMC
Avagliano L, Virgili E, Garo C, Quadrelli F, Doi P, Samaja M, Bulfamante GP, Marconi AM. Autophagy and human parturition: evaluation of LC3 expression in placenta from spontaneous or medically induced onset of labor. BioMed Res Intl 2013; 2013:689768; http://dx.doi.org/10.1155/2013/689768. PubMed DOI PMC
Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL. Autophagy in the human placenta throughout gestation. PloS One 2013; 8:e83475; http://dx.doi.org/10.1371/journal.pone.0083475. PubMed DOI PMC
Signorelli P, Avagliano L, Virgili E, Gagliostro V, Doi P, Braidotti P, Bulfamante GP, Ghidoni R, Marconi AM. Autophagy in term normal human placentas. Placenta 2011; 32:482-5; http://dx.doi.org/10.1016/j.placenta.2011.03.005. PubMed DOI
Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PloS One 2012; 7:e40957; http://dx.doi.org/10.1371/journal.pone.0040957. PubMed DOI PMC
Chang YL, Wang TH, Chang SD, Chao AS, Hsieh PC, Wang CN. Increased autophagy in the placental territory of selective intrauterine growth-restricted monochorionic twins. Prenatal Diag 2013; 33:187-90; http://dx.doi.org/10.1002/pd.4040. PubMed DOI
Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci 2008; 15:912-20; http://dx.doi.org/10.1177/1933719108319159. PubMed DOI
Avagliano L, Danti L, Doi P, Felis S, Guala M, Locatelli A, Maffeo I, Mecacci F, Plevani C, Simeone S, et al.. Autophagy in placentas from acidotic newborns: an immunohistochemical study of LC3 expression. Placenta 2013; 34:1091-4; http://dx.doi.org/10.1016/j.placenta.2013.09.004. PubMed DOI
Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb RA. Novel methods for measuring cardiac autophagy in vivo. Methods Enzymol 2009; 453:325-42; http://dx.doi.org/10.1016/S0076-6879(08)04016-0. PubMed DOI PMC
Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114:3619-29. PubMed
Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neuobiol Dis 2008; 32:329-39; http://dx.doi.org/10.1016/j.nbd.2008.07.022. PubMed DOI
Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 2010; 6:366-77; http://dx.doi.org/10.4161/auto.6.3.11261. PubMed DOI
Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: Role of protein synthesis and autophagic pathways. Exp Neurol 2014; 57:192-9. PubMed
Ginet V, Puyal J, Clarke PG, Truttmann AC. Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 2009; 175:1962-74; http://dx.doi.org/10.2353/ajpath.2009.090463. PubMed DOI PMC
Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Annals Neurol 2009; 66:378-89; http://dx.doi.org/10.1002/ana.21714. PubMed DOI
Penas C, Font-Nieves M, Fores J, Petegnief V, Planas A, Navarro X, Casas C. Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ 2011; 18:1617-27; http://dx.doi.org/10.1038/cdd.2011.24. PubMed DOI PMC
Y Uchiyama. Autophagic cell death and its execution by lysosomal cathepsins. Arch Histol Cytol 2001; 64:233-46; http://dx.doi.org/10.1679/aohc.64.233. PubMed DOI
Udelnow A, Kreyes A, Ellinger S, Landfester K, Walther P, Klapperstueck T, Wohlrab J, Henne-Bruns D, Knippschild U, Wurl P. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells. PloS One 2011; 6:e20143. PubMed PMC
Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol 2000; 165:1534-40; http://dx.doi.org/10.4049/jimmunol.165.3.1534. PubMed DOI
Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005; 307:593-6; http://dx.doi.org/10.1126/science.1104904. PubMed DOI
Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 2011; 30: 4642-51; http://dx.doi.org/10.1038/emboj.2011.322. PubMed DOI PMC
Akagi Y, Isaka Y, Akagi A, Ikawa M, Takenaka M, Moriyama T, Yamauchi A, Horio M, Ueda N, Okabe M, et al.. Transcriptional activation of a hybrid promoter composed of cytomegalovirus enhancer and beta-actin/beta-globin gene in glomerular epithelial cells in vivo. Kidney Int 1997; 51:1265-9; http://dx.doi.org/10.1038/ki.1997.172. PubMed DOI
Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al.. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 2011; 22:902-13; http://dx.doi.org/10.1681/ASN.2010070705. PubMed DOI PMC
Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, et al.. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2010; 120:1084-96; http://dx.doi.org/10.1172/JCI39492. PubMed DOI PMC
Vandrovcova J, Anaya F, Kay V, Lees A, Hardy J, de Silva R. Disentangling the role of the tau gene locus in sporadic tauopathies. Curr Alzheimer Res 2010; 7:726-34; http://dx.doi.org/10.2174/156720510793611619. PubMed DOI
Chen YS, Chen SD, Wu CL, Huang SS, Yang DI. Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp Neurol 2014; 253:63-71; http://dx.doi.org/10.1016/j.expneurol.2013.12.009. PubMed DOI
Tofaris GK, Spillantini MG. Physiological and pathological properties of alpha-synuclein. Cell Mol Life Sci 2007; 64:2194-201; http://dx.doi.org/10.1007/s00018-007-7217-5. PubMed DOI PMC
EE Wanker. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol Chem 2000; 381:937-42. PubMed
Sandri M, Coletto L, Grumati P, Bonaldo P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 2013; 126:5325-33; http://dx.doi.org/10.1242/jcs.114041. PubMed DOI
Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration–lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 2013; 280:4348-70; http://dx.doi.org/10.1111/febs.12287. PubMed DOI
Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends in Neurosci 2014; 37:315-24; http://dx.doi.org/10.1016/j.tins.2014.03.004. PubMed DOI PMC
Ossareh-Nazari B, Bonizec M, Cohen M, Dokudovskaya S, Delalande F, Schaeffer C, Van Dorsselaer A, Dargemont C. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 2010; 11:548-54; http://dx.doi.org/10.1038/embor.2010.74. PubMed DOI PMC
Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014; 17:17-23; http://dx.doi.org/10.1038/nn.3584. PubMed DOI PMC
Ebrahimi-Fakhari D, Wahlster L, Hoffmann GF, Kolker S. Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases. Pediatr Res 2014; 75:217-26; http://dx.doi.org/10.1038/pr.2013.185. PubMed DOI
Lee KM, Hwang SK, Lee JA. Neuronal autophagy and neurodevelopmental disorders. Exp Neurobiol 2013; 22:133-42; http://dx.doi.org/10.5607/en.2013.22.3.133. PubMed DOI PMC
Yasin SA, Ali AM, Tata M, Picker SR, Anderson GW, Latimer-Bowman E, Nicholson SL, Harkness W, Cross JH, Paine SM, et al.. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol 2013; 126:207-18; http://dx.doi.org/10.1007/s00401-013-1135-4. PubMed DOI
Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2012; 96:87-95; http://dx.doi.org/10.1016/j.pneurobio.2011.11.005. PubMed DOI
Seidel K, Brunt ER, de Vos RA, Dijk F, van der Want HJ, Rub U, den Dunnen WF. The p62 antibody reveals various cytoplasmic protein aggregates in spinocerebellar ataxia type 6. Clin Neuropathol 2009; 28:344-9; http://dx.doi.org/10.5414/NPP28344. PubMed DOI
Harada H, Warabi E, Matsuki T, Yanagawa T, Okada K, Uwayama J, Ikeda A, Nakaso K, Kirii K, Noguchi N, et al.. Deficiency of p62/Sequestosome 1 causes hyperphagia due to leptin resistance in the brain. J Neurosci 2013; 33:14767-77; http://dx.doi.org/10.1523/JNEUROSCI.2954-12.2013. PubMed DOI PMC
Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, Dean B, Levine J, Agam G, Gozes I. Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatr 2015; 20:126-32; http://dx.doi.org/10.1038/mp.2013.174. PubMed DOI PMC
Dresner E, Agam G, Gozes I. Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: deregulation in schizophrenia. Eur Neuropsychopharm 2011; 21:355-61; http://dx.doi.org/10.1016/j.euroneuro.2010.06.004. PubMed DOI
Nishino I. Autophagic vacuolar myopathy. Semin Pediatr Neurol 2006; 13:90-5; http://dx.doi.org/10.1016/j.spen.2006.06.004. PubMed DOI
Girolamo F, Lia A, Amati A, Strippoli M, Coppola C, Virgintino D, Roncali L, Toscano A, Serlenga L, Trojano M. Overexpression of autophagic proteins in the skeletal muscle of sporadic inclusion body myositis. Neuropath Appl Neuro 2013; 39:736-49; http://dx.doi.org/10.1111/nan.12040. PubMed DOI
Temiz P, Weihl CC, Pestronk A. Inflammatory myopathies with mitochondrial pathology and protein aggregates. J Neurol Sci 2009; 278:25-9; http://dx.doi.org/10.1016/j.jns.2008.11.010. PubMed DOI
Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D'Angelo A, Bianchi ME, et al.. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12:2074-88; http://dx.doi.org/10.1111/jth.12710. PubMed DOI
Screen M, Raheem O, Holmlund-Hampf J, Jonson PH, Huovinen S, Hackman P, Udd B. Gene expression profiling in tibial muscular dystrophy reveals unfolded protein response and altered autophagy. PloS One 2014; 9:e90819; http://dx.doi.org/10.1371/journal.pone.0090819. PubMed DOI PMC
Brady S, Squier W, Sewry C, Hanna M, Hilton-Jones D, Holton JL. A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis. BMJ Open 2014; 4:e004552; http://dx.doi.org/10.1136/bmjopen-2013-004552. PubMed DOI PMC
Lin NY, Beyer C, Giessl A, Kireva T, Scholtysek C, Uderhardt S, Munoz LE, Dees C, Distler A, Wirtz S, et al.. Autophagy regulates TNFalpha-mediated joint destruction in experimental arthritis. Ann Rheum Dis 2013; 72:761-8; http://dx.doi.org/10.1136/annrheumdis-2012-201671. PubMed DOI
Lin NY, Stefanica A, Distler JH. Autophagy: a key pathway of TNF-induced inflammatory bone loss. Autophagy 2013; 9:1253-5; http://dx.doi.org/10.4161/auto.25467. PubMed DOI PMC
Tchetina EV, Poole AR, Zaitseva EM, Sharapova EP, Kashevarova NG, Taskina EA, Alekseeva LI, Semyonova LA, Glukhova SI, Kuzin AN, et al.. Differences in Mammalian target of rapamycin gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity. Arthritis 2013; 2013:461486; http://dx.doi.org/10.1155/2013/461486. PubMed DOI PMC
Mitroulis I, Kourtzelis I, Kambas K, Chrysanthopoulou A, Ritis K. Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype. Hum Immunol 2011; 72:135-8; http://dx.doi.org/10.1016/j.humimm.2010.11.006. PubMed DOI
Bachetti T, Chiesa S, Castagnola P, Bani D, Di Zanni E, Omenetti A, D'Osualdo A, Fraldi A, Ballabio A, Ravazzolo R, et al.. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 2013; 72:1044-52; http://dx.doi.org/10.1136/annrheumdis-2012-201952. PubMed DOI
Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 2011; 21:290-304; http://dx.doi.org/10.1038/cr.2010.150. PubMed DOI PMC
Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K. 2011. Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One. 6, e29318. PubMed PMC
Kambas K, Mitroulis I, Apostolidou E, Girod A, Chrysanthopoulou A, Pneumatikos I, Skendros P, Kourtzelis I, Koffa M, Kotsianidis I, et al.. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PloS One 2012; 7:e45427; http://dx.doi.org/10.1371/journal.pone.0045427. PubMed DOI PMC
Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, Koffa M, Giatromanolaki A, Boumpas DT, et al.. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol 2014; 233:294-307; http://dx.doi.org/10.1002/path.4359. PubMed DOI
Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 2011; 30:4701-11; http://dx.doi.org/10.1038/emboj.2011.398. PubMed DOI PMC
Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, Girod A, Arelaki S, Froudarakis M, Nakopoulou L, Giatromanolaki A, et al.. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis 2013. PubMed
Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F, Marselli L, Masiello P, Marchetti P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009; 52:1083-6; http://dx.doi.org/10.1007/s00125-009-1347-2. PubMed DOI
Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, Yagihashi S. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of beta-cell mass in Japanese type 2 diabetic patients. Diabetes Care 2014; 37:1966-74; http://dx.doi.org/10.2337/dc13-2018. PubMed DOI
Ost A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H, Sandstrom P, Kjolhede P, Stralfors P. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16:235-46; http://dx.doi.org/10.2119/molmed.2010.00023. PubMed DOI PMC
Kosacka J, Kern M, Kloting N, Paeschke S, Rudich A, Haim Y, Gericke M, Serke H, Stumvoll M, Bechmann I, et al.. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol Cell Endocrinol 2015; 409:21-32; http://dx.doi.org/10.1016/j.mce.2015.03.015. PubMed DOI
Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G. Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 2014; 57:1505-16; http://dx.doi.org/10.1007/s00125-014-3255-3. PubMed DOI
Berton G. Editorial: Gigantism: a new way to prolong neutrophil life. J Leukocyte Biol 2014; 96:505-6; http://dx.doi.org/10.1189/jlb.3CE0214-107R. PubMed DOI
Dyugovskaya L, Berger S, Polyakov A, Lavie L. The development of giant phagocytes in long-term neutrophil cultures. J Leukocyte Biol 2014; 96:511-21; http://dx.doi.org/10.1189/jlb.0813437. PubMed DOI
Galluzzi L, Kepp O, Kroemer G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J 2012; 31:1055-7; http://dx.doi.org/10.1038/emboj.2012.2. PubMed DOI PMC
Panzarini E, Inguscio V, Fimia GM, Dini L. Rose Bengal Acetate PhotoDynamic Therapy (RBAc-PDT) induces exposure and release of damage-associated molecular patterns (DAMPs) in human HeLa cells. PloS One 2014; 9:e105778. PubMed PMC
Santin G, Bottone MG, Malatesta M, Scovassi AI, Bottiroli G, Pellicciari C, Croce AC. Regulated forms of cell death are induced by the photodynamic action of the fluorogenic substrate, Hypocrellin B-acetate. J Photochem Photobiol B 2013; 125:90-7; http://dx.doi.org/10.1016/j.jphotobiol.2013.05.006. PubMed DOI
Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 2013; 19:428-46; http://dx.doi.org/10.1016/j.molmed.2013.04.005. PubMed DOI
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis. Oncoimmunology 2012; 1:786-8; http://dx.doi.org/10.4161/onci.19750. PubMed DOI PMC
Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ 2014; 21:26-38; http://dx.doi.org/10.1038/cdd.2013.48. PubMed DOI PMC
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; http://dx.doi.org/10.1146/annurev-immunol-032712-100008. PubMed DOI
Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Fact Rev 2013; 24:319-33; http://dx.doi.org/10.1016/j.cytogfr.2013.01.005. PubMed DOI
Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C, Agostinis P. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013; 9:1292-307; http://dx.doi.org/10.4161/auto.25399. PubMed DOI
Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al.. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31:1062-79; http://dx.doi.org/10.1038/emboj.2011.497. PubMed DOI PMC
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al.. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; http://dx.doi.org/10.1126/science.1208347. PubMed DOI
Bian S, Sun X, Bai A, Zhang C, Li L, Enjyoji K, Junger WG, Robson SC, Wu Y. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PloS One 2013; 8:e60184; http://dx.doi.org/10.1371/journal.pone.0060184. PubMed DOI PMC
Di Virgilio F. Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 2007; 28:465-72; http://dx.doi.org/10.1016/j.tips.2007.07.002. PubMed DOI
Garg AD, Dudek AM, Agostinis P. Calreticulin surface exposure is abrogated in cells lacking, chaperone-mediated autophagy-essential gene, LAMP2A. Cell Death Dis 2013; 4:e826; http://dx.doi.org/10.1038/cddis.2013.372. PubMed DOI PMC
Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology 2013; 2:e26260; http://dx.doi.org/10.4161/onci.26260. PubMed DOI PMC
Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T, Derde S, Meersseman P, Derese I, Mesotten D, Wouters PJ, et al.. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Resp Med 2013; 1:621-9; http://dx.doi.org/10.1016/S2213-2600(13)70183-8. PubMed DOI
Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Guiza F, Martinet W, Timmermans JP, D'Hoore A, Wouters PJ, et al.. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab 2011; 96:E633-45; http://dx.doi.org/10.1210/jc.2010-2563. PubMed DOI
Czaja MJ, Ding WX, Donohue TM Jr., Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, et al.. Functions of autophagy in normal and diseased liver. Autophagy 2013; 9:1131-58; http://dx.doi.org/10.4161/auto.25063. PubMed DOI PMC
Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, Czaja MJ, Friedman SL. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142:938-46; http://dx.doi.org/10.1053/j.gastro.2011.12.044. PubMed DOI PMC
Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy 2012; 8:719-30; http://dx.doi.org/10.4161/auto.19469. PubMed DOI PMC
Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, et al.. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 2013; 16:394-406; http://dx.doi.org/10.1038/nn.3350. PubMed DOI PMC
Napolitano G, Johnson JL, He J, Rocca CJ, Monfregola J, Pestonjamasp K, Cherqui S, Catz SD. Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis. EMBO Mol Med 2015; 7:158-74; http://dx.doi.org/10.15252/emmm.201404223. PubMed DOI PMC
Venugopal B, Mesires NT, Kennedy JC, Curcio-Morelli C, Laplante JM, Dice JF, Slaugenhaupt SA. Chaperone-mediated autophagy is defective in mucolipidosis type IV. J Cell Physiol 2009; 219:344-53; http://dx.doi.org/10.1002/jcp.21676. PubMed DOI
Franch HA. Pathways of proteolysis affecting renal cell growth. Curr Opin Nephrol Hypertens 2002; 11:445-50; http://dx.doi.org/10.1097/00041552-200207000-00012. PubMed DOI
Sooparb S, Price SR, Shaoguang J, Franch HA. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int 2004; 65:2135-44; http://dx.doi.org/10.1111/j.1523-1755.2004.00639.x. PubMed DOI
Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, et al.. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PloS One 2008; 3:e3316. PubMed PMC
Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF, Ward MM. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA 2007; 298:187-93; http://dx.doi.org/10.1001/jama.298.2.187. PubMed DOI
Merlini L, Nishino I, Consortium for Autophagy in Muscular D. 201st ENMC International Workshop: Autophagy in muscular dystrophies–translational approach, 1-3 November 2013, Bussum, The Netherlands. Neuromuscular Disord 2014; 24:546-61; http://dx.doi.org/10.1016/j.nmd.2014.03.009. PubMed DOI
Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48; http://dx.doi.org/10.1016/j.cell.2007.10.048. PubMed DOI PMC
Aits S, Gustafsson L, Hallgren O, Brest P, Gustafsson M, Trulsson M, Mossberg AK, Simon HU, Mograbi B, Svanborg C. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death. Int J Cancer 2009; 124:1008-19; http://dx.doi.org/10.1002/ijc.24076. PubMed DOI
Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, et al.. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008; 172:454-69; http://dx.doi.org/10.2353/ajpath.2008.070876. PubMed DOI PMC
Hou YC, Hannigan AM, Gorski SM. An executioner caspase regulates autophagy. Autophagy 2009; 5:530-3; http://dx.doi.org/10.4161/auto.5.4.8061. PubMed DOI PMC
Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjorkoy G, Johansen T, Rusten TE, Brech A, Baehrecke EH, Stenmark H. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol 2010; 190:523-31; http://dx.doi.org/10.1083/jcb.201002035. PubMed DOI PMC
Piras A, Gianetto D, Conte D, Bosone A, Vercelli A. Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PloS One 2011; 6:e22514; http://dx.doi.org/10.1371/journal.pone.0022514. PubMed DOI PMC
Schwarze PE, Seglen PO. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp Cell Res 1985; 157:15-28; http://dx.doi.org/10.1016/0014-4827(85)90148-X. PubMed DOI
Liu Y, Shoji-Kawata S, Sumpter RM Jr., Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, et al.. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA 2013; 110:20364-71; http://dx.doi.org/10.1073/pnas.1319661110. PubMed DOI PMC
Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V, Nabissi M, Bonfili L, Eleuteri AM, Mozzicafreddo M, Burattini L, et al.. Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Brit J Cancer 2013; 109:1040-50; http://dx.doi.org/10.1038/bjc.2013.420. PubMed DOI PMC
Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 2011; 2:e144. PubMed PMC
Denton D, Nicolson S, Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 2012; 19:87-95. PubMed PMC
Beaulaton J, Lockshin RA. Ultrastructural study of the normal degeneration of the intersegmental muscles of Anthereae polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference of cellular autophagy. J Morphol 1977; 154:39-57; http://dx.doi.org/10.1002/jmor.1051540104. PubMed DOI
PG Clarke. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 1990; 181:195-213. PubMed
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al.. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2011. PubMed PMC
Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nature Rev Mol Cell Biol 2008; 9:1004-10; http://dx.doi.org/10.1038/nrm2529. PubMed DOI PMC
Richard VR, Beach A, Piano A, Leonov A, Feldman R, Burstein MT, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Baptista S, et al.. Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle 2014; 13:3707-26; http://dx.doi.org/10.4161/15384101.2014.965003. PubMed DOI PMC
Sheibani S, Richard VR, Beach A, Leonov A, Feldman R, Mattie S, Khelghatybana L, Piano A, Greenwood M, Vali H, et al.. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from “liponecrosis”, a previously unknown form of programmed cell death. Cell Cycle 2014; 13:138-47; http://dx.doi.org/10.4161/cc.26885. PubMed DOI PMC
Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, et al.. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009; 16:1093-107; http://dx.doi.org/10.1038/cdd.2009.44. PubMed DOI PMC
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, et al.. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015; 22:58-73; http://dx.doi.org/10.1038/cdd.2014.137. PubMed DOI PMC
Minina EA, Bozhkov PV, Hofius D. Autophagy as initiator or executioner of cell death. Trends Plant Sci 2014; 19:692-7. PubMed
van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, et al.. Morphological classification of plant cell deaths. Cell Death Differ 2011; 18:1241-6; http://dx.doi.org/10.1038/cdd.2011.36. PubMed DOI PMC
Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 2010; 64:151-64. PubMed
Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V, Clapham D, Sanchez-Vera V, Suarez MF, Zhivotovsky B, Daniel G, et al.. Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol 2013; 203:917-27; http://dx.doi.org/10.1083/jcb.201307082. PubMed DOI PMC
Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009; 137:773-83; http://dx.doi.org/10.1016/j.cell.2009.02.036. PubMed DOI
Giusti C, Tresse E, Luciani MF, Golstein P. Autophagic cell death: analysis in Dictyostelium. Biochim Biophys Acta 2009; 1793:1422-31; http://dx.doi.org/10.1016/j.bbamcr.2008.12.005. PubMed DOI
Luciani MF, Giusti C, Harms B, Oshima Y, Kikuchi H, Kubohara Y, Golstein P. Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy 2011; 7:501-8; http://dx.doi.org/10.4161/auto.7.5.14957. PubMed DOI
Uchikawa T, Yamamoto A, Inouye K. Origin and function of the stalk-cell vacuole in Dictyostelium. Dev Biol 2011; 352:48-57; http://dx.doi.org/10.1016/j.ydbio.2011.01.014. PubMed DOI
Guimar[a]es CA, Benchimol M, Amarante-Mendes GP, Linden R. Alternative programs of cell death in developing retinal tissue. J Biol Chem 2003; 278:41938-46; http://dx.doi.org/10.1074/jbc.M306547200. PubMed DOI
Lossi L, Gambino G, Mioletti S, Merighi A. In vivo analysis reveals different apoptotic pathways in pre- and postmigratory cerebellar granule cells of rabbit. J Neurobiol 2004; 60:437-52; http://dx.doi.org/10.1002/neu.20032. PubMed DOI
Lossi L, Alasia S, Salio C, Merighi A. Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45; http://dx.doi.org/10.1016/j.pneurobio.2009.01.002. PubMed DOI
Thorburn A. I think autophagy controls the death of my cells: what do I do to get my paper published? Autophagy 2011; 7:455-6; http://dx.doi.org/10.4161/auto.7.5.14797. PubMed DOI
Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM. Chaperone-mediated autophagy at a glance. J Cell Sci 2011; 124:495-9; http://dx.doi.org/10.1242/jcs.073874. PubMed DOI PMC
Arias E, Cuervo AM. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 2010; 23:184-9; http://dx.doi.org/10.1016/j.ceb.2010.10.009. PubMed DOI PMC
Kaushik S, Cuervo AM. Methods to monitor chaperone-mediated autophagy. Methods Enzymol 2009; 452:297-324; http://dx.doi.org/10.1016/S0076-6879(08)03619-7. PubMed DOI PMC
Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990; 15:305-9; http://dx.doi.org/10.1016/0968-0004(90)90019-8. PubMed DOI
Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501-3; http://dx.doi.org/10.1126/science.273.5274.501. PubMed DOI
Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 2000; 113:4441-50. PubMed
Finn PF, Mesires NT, Vine M, Dice JF. Effects of small molecules on chaperone-mediated autophagy. Autophagy 2005; 1:141-5; http://dx.doi.org/10.4161/auto.1.3.2000. PubMed DOI
Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 2008; 28:5747-63; http://dx.doi.org/10.1128/MCB.02070-07. PubMed DOI PMC
Aniento F, Emans N, Griffiths G, Gruenberg J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 1993; 123:1373-87; http://dx.doi.org/10.1083/jcb.123.6.1373. PubMed DOI PMC
Salvador N, Aguado C, Horst M, Knecht E. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 2000; 275:27447-56. PubMed
Koga H, Martinez-Vicente M, Macian F, Verkhusha VV, Cuervo AM. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat Commun 2011; 2:386; http://dx.doi.org/10.1038/ncomms1393. PubMed DOI PMC
Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20:131-9; http://dx.doi.org/10.1016/j.devcel.2010.12.003. PubMed DOI PMC
Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P, Saint R, Fleischmann BK, et al.. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 2010; 20:143-8; http://dx.doi.org/10.1016/j.cub.2009.11.022. PubMed DOI
Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, Tanaka Y, Lullmann-Rauch R, Hartmann D, Heeren J, et al.. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 2004; 15: 3132-45; http://dx.doi.org/10.1091/mbc.E04-02-0103. PubMed DOI PMC
Eskelinen EL, Illert AL, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002; 13:3355-68; http://dx.doi.org/10.1091/mbc.E02-02-0114. PubMed DOI PMC
Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 2007; 26:313-24; http://dx.doi.org/10.1038/sj.emboj.7601511. PubMed DOI PMC
Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, Konya C, Uchida K, Yoshimura A, Tamai Y, Wada K, et al.. Discovery of a novel type of autophagy targeting RNA. Autophagy 2013; 9:403-9; http://dx.doi.org/10.4161/auto.23002. PubMed DOI PMC
Fujiwara Y, Hase K, Wada K, Kabuta T. An RNautophagy/DNautophagy receptor, LAMP2C, possesses an arginine-rich motif that mediates RNA/DNA-binding. Biochem Biophys Res Commun 2015; 460:281-6; http://dx.doi.org/10.1016/j.bbrc.2015.03.025. PubMed DOI
Fujiwara Y, Kikuchi H, Aizawa S, Furuta A, Hatanaka Y, Konya C, Uchida K, Wada K, Kabuta T. Direct uptake and degradation of DNA by lysosomes. Autophagy 2013; 9:1167-71; http://dx.doi.org/10.4161/auto.24880. PubMed DOI PMC
Hase K, Fujiwara Y, Kikuchi H, Aizawa S, Hakuno F, Takahashi S, Wada K, Kabuta T. RNautophagy/DNautophagy possesses selectivity for RNA/DNA substrates. Nucleic Acids Res 2015; 43:6439-49; http://dx.doi.org/10.1093/nar/gkv579. PubMed DOI PMC
Furuta A, Kikuchi H, Fujita H, Yamada D, Fujiwara Y, Kabuta T, Nishino I, Wada K, Uchiyama Y. Property of lysosomal storage disease associated with midbrain pathology in the central nervous system of lamp-2-deficient mice. Am J Pathol 2015; 185:1713-23; http://dx.doi.org/10.1016/j.ajpath.2015.02.015. PubMed DOI
Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, D'Hooge R, Saftig P, Blanz J. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol Commun 2015; 3:6; http://dx.doi.org/10.1186/s40478-014-0182-y. PubMed DOI PMC
Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, et al.. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 2013; 23:430-5; http://dx.doi.org/10.1016/j.cub.2013.01.064. PubMed DOI
Carra S, Seguin SJ, Lambert H, Landry J. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 2008; 283:1437-44; http://dx.doi.org/10.1074/jbc.M706304200. PubMed DOI
Carra S, Seguin SJ, Landry J. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 2008; 4:237-9; http://dx.doi.org/10.4161/auto.5407. PubMed DOI
Niemann A, Baltes J, Elsasser HP. Fluorescence properties and staining behavior of monodansylpentane, a structural homologue of the lysosomotropic agent monodansylcadaverine. J Histochem Cytochem 2001; 49:177-85; http://dx.doi.org/10.1177/002215540104900205. PubMed DOI
Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001; 61:439-44. PubMed
Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard RJ, Le SS, Laessig TA, Heidenreich KA. The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci 2004; 24:4498-509; http://dx.doi.org/10.1523/JNEUROSCI.5744-03.2004. PubMed DOI PMC
Moriyasu Y, Hattori M, Jauh G-Y, Rogers JC. Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 2003; 44:795-802; http://dx.doi.org/10.1093/pcp/pcg100. PubMed DOI
Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci 2013; 37:1949-61; http://dx.doi.org/10.1111/ejn.12169. PubMed DOI PMC
Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 1995; 66:3-14. PubMed
Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ 2005; 12:1297-309; http://dx.doi.org/10.1038/sj.cdd.4401651. PubMed DOI
Gutierrez MG, Munafo DB, Beron W, Colombo MI. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004; 117:2687-97; http://dx.doi.org/10.1242/jcs.01114. PubMed DOI
Fogel JL, Thein TZ, Mariani FV. Use of LysoTracker to detect programmed cell death in embryos and differentiating embryonic stem cells. J Vis Exp 2012; 68; doi: 10.3791/4254 PubMed DOI PMC
Freundt EC, Czapiga M, Lenardo MJ. Photoconversion of Lysotracker Red to a green fluorescent molecule. Cell Res 2007; 17:956-8; http://dx.doi.org/10.1038/cr.2007.80. PubMed DOI
Oeste CL, Seco E, Patton WF, Boya P, Perez-Sala D. Interactions between autophagic and endo-lysosomal markers in endothelial cells. Histochem Cell Biol 2013; 139:659-70; http://dx.doi.org/10.1007/s00418-012-1057-6. PubMed DOI
Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007; 6:304-12; http://dx.doi.org/10.1038/nrd2272. PubMed DOI
Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 2010; 20:355-62; http://dx.doi.org/10.1016/j.tcb.2010.03.002. PubMed DOI PMC
Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 2008; 4:600-6; http://dx.doi.org/10.4161/auto.6260. PubMed DOI PMC
Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 2009; 186:773-82; http://dx.doi.org/10.1083/jcb.200907014. PubMed DOI PMC
Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, et al.. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005; 280:20722-9; http://dx.doi.org/10.1074/jbc.M413934200. PubMed DOI
Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275:992-8; http://dx.doi.org/10.1074/jbc.275.2.992. PubMed DOI
Harris J, Hartman M, Roche C, Zeng SG, O'Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J, et al.. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 2011; 286:9587-97; http://dx.doi.org/10.1074/jbc.M110.202911. PubMed DOI PMC
Crisan TO, Plantinga TS, van de Veerdonk FL, Farcas MF, Stoffels M, Kullberg BJ, van der Meer JW, Joosten LA, Netea MG. Inflammasome-independent modulation of cytokine response by autophagy in human cells. PloS One 2011; 6:e18666. PubMed PMC
Kleinnijenhuis J, Oosting M, Plantinga TS, van der Meer JW, Joosten LA, Crevel RV, Netea MG. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology 2011; 134:341-8; http://dx.doi.org/10.1111/j.1365-2567.2011.03494.x. PubMed DOI PMC
Peral de Castro C, Jones SA, Ni Cheallaigh C, Hearnden CA, Williams L, Winter J, Lavelle EC, Mills KH, Harris J. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion. J Immunol 2012; 189:4144-53; http://dx.doi.org/10.4049/jimmunol.1201946. PubMed DOI
Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al.. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 2014; 16:1069-79; http://dx.doi.org/10.1038/ncb3053. PubMed DOI
Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, Bachelot MF, Lamberton A, Mathieu M, Bertrand T, et al.. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 2014; 10:1013-9; http://dx.doi.org/10.1038/nchembio.1681. PubMed DOI
Chen J, Chen MX, Fogo AB, Harris RC, Chen JK. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 2013; 24:198-207; http://dx.doi.org/10.1681/ASN.2012010101. PubMed DOI PMC
Cantino D, Mosso R, Baccino FM. Changes induced by fasting and cycloheximide in the vacuolar apparatus of rat hepatocytes. A morphometric investigation. Boll Soc Ital Biol Sper 1979; 55:1884-9. PubMed
Kovács J. Morphometric study of the effect of leupeptin, vinblastine, estron acetate and cycloheximide on the autophagic vacuole-lysosomal compartments in mouse seminal vesicle cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1983; 42:83-93; http://dx.doi.org/10.1007/BF02890372. PubMed DOI
Papadopoulos T, Pfeifer U. Regression of rat liver autophagic vacuoles by locally applied cycloheximide. Lab Investig 1986; 54:100-7. PubMed
Rumpelt HJ, Albring M, Thoenes W. Prevention of D-galactosamine-induced hepatocellular autophagocytosis by cycloheximide. Virchows Arch B Cell Pathol 1974; 16:195-203; http://dx.doi.org/10.1007/BF02894074. PubMed DOI
Rumpelt HJ, Weisbach T. Effect of cycloheximide on glucagon-induced autophagy. Quantitative examinations on hepatocytes in the rat. Am J Pathol 1978; 91:49-55. PubMed PMC
Kovács AL, Kovács J. Autophagocytosis in mouse seminal vesicle cells in vitro. Temperature dependence and effects of vinblastine and inhibitors of protein synthesis. Virchows Arch B Cell Pathol Incl Mol Pathol 1980; 32:97-104; http://dx.doi.org/10.1007/BF02889018. PubMed DOI
Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2007; 83:781-91; http://dx.doi.org/10.1080/09553000701769970. PubMed DOI
Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 2011; 99:287-92; http://dx.doi.org/10.1016/j.radonc.2011.06.002. PubMed DOI
Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008; 68:1485-94; http://dx.doi.org/10.1158/0008-5472.CAN-07-0562. PubMed DOI
Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 2010; 3:ra31. PubMed
Seglen PO, Gordon PB. Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes. Mol Pharmacol 1980; 18:468-75. PubMed
Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA 2011; 108:11121-6; http://dx.doi.org/10.1073/pnas.1107969108. PubMed DOI PMC
Pellegrini P, Strambi A, Zipoli C, Hagg-Olofsson M, Buoncervello M, Linder S, De Milito A. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 2014; 10:562-71; http://dx.doi.org/10.4161/auto.27901. PubMed DOI PMC
Fischer S, Ronellenfitsch MW, Thiepold AL, Harter PN, Reichert S, Kogel D, Paschke R, Mittelbronn M, Weller M, Steinbach JP, et al.. Hypoxia enhances the antiglioma cytotoxicity of B10, a glycosylated derivative of betulinic acid. PloS One 2014; 9:e94921; http://dx.doi.org/10.1371/journal.pone.0094921. PubMed DOI PMC
Gonzalez P, Mader I, Tchoghandjian A, Enzenmuller S, Cristofanon S, Basit F, Debatin KM, Fulda S. Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ 2012; 19:1337-46; http://dx.doi.org/10.1038/cdd.2012.10. PubMed DOI PMC
Potze L, Mullauer FB, Colak S, Kessler JH, Medema JP. Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis 2014; 5:e1169; http://dx.doi.org/10.1038/cddis.2014.139. PubMed DOI PMC
Broniatowski M, Flasinski M, Wydro P. Investigation of the interactions of lupane type pentacyclic triterpenes with outer leaflet membrane phospholipids–Langmuir monolayer and synchrotron X-ray scattering study. J Colloid Interface Sci 2012; 381:116-24; http://dx.doi.org/10.1016/j.jcis.2012.05.020. PubMed DOI
Chen Y, Sun R, Wang B. Monolayer behavior of binary systems of betulinic acid and cardiolipin: thermodynamic analyses of Langmuir monolayers and AFM study of Langmuir-Blodgett monolayers. J Colloid Interface Sci 2011; 353:294-300; http://dx.doi.org/10.1016/j.jcis.2010.09.019. PubMed DOI
Gao M, Lau PM, Kong SK. Mitochondrial toxin betulinic acid induces in vitro eryptosis in human red blood cells through membrane permeabilization. Arch Toxicol 2014; 88:755-68. PubMed
Wei P, Zhang L, Lu Y, Man N, Wen L. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 2010; 21:495101; http://dx.doi.org/10.1088/0957-4484/21/49/495101. PubMed DOI
Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998; 8:397-403; http://dx.doi.org/10.1016/S0962-8924(98)01346-4. PubMed DOI
S Mehdi. Cell-penetrating inhibitors of calpain. Trends Biochem Sci 1991; 16:150-3; http://dx.doi.org/10.1016/0968-0004(91)90058-4. PubMed DOI
Holen I, Gordon PB, Seglen PO. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur J Biochem 1993; 215:113-22; http://dx.doi.org/10.1111/j.1432-1033.1993.tb18013.x. PubMed DOI
Sasaki K, Murata M, Yasumoto T, Mieskes G, Takai A. Affinity of okadaic acid to type-1 and type-2A protein phosphatases is markedly reduced by oxidation of its 27-hydroxyl group. Biochem J 1994; 298:259-62; http://dx.doi.org/10.1042/bj2980259. PubMed DOI PMC
Robinson DG, Albrecht S, Moriyasu Y. The V-ATPase inhibitors concanamycin A and bafilomycin A lead to Golgi swelling in tobacco BY-2 cells. Protoplasma 2004; 224:255-60; http://dx.doi.org/10.1007/s00709-004-0070-6. PubMed DOI
Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, et al.. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20:526-40; http://dx.doi.org/10.1016/j.cmet.2014.06.014. PubMed DOI
Wu YC, Wu WK, Li Y, Yu L, Li ZJ, Wong CC, Li HT, Sung JJ, Cho CH. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem Biophys Res Commun 2009; 382:451-6; http://dx.doi.org/10.1016/j.bbrc.2009.03.051. PubMed DOI
Ostenfeld MS, Hoyer-Hansen M, Bastholm L, Fehrenbacher N, Olsen OD, Groth-Pedersen L, Puustinen P, Kirkegaard-Sorensen T, Nylandsted J, Farkas T, et al.. Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 2008; 4:487-99; http://dx.doi.org/10.4161/auto.5774. PubMed DOI
Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007. PubMed PMC
Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 2013; 136:166-82; http://dx.doi.org/10.1093/toxsci/kft188. PubMed DOI PMC
Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 2008; 118:79-88; http://dx.doi.org/10.1172/JCI33700. PubMed DOI PMC
Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 1981; 90:665-9; http://dx.doi.org/10.1083/jcb.90.3.665. PubMed DOI PMC
Matsuoka K, Higuchi T, Maeshima M, Nakamura K. A vacuolar-type H+-ATPase in a nonvacuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 1997; 9:533-46. PubMed PMC
Arstila AU, Nuuja IJ, Trump BF. Studies on cellular autophagocytosis. Vinblastine-induced autophagy in the rat liver. Exp Cell Res 1974; 87:249-52; http://dx.doi.org/10.1016/0014-4827(74)90477-7. PubMed DOI
Hirsimaki Y, Arstila AU, Trump BF. Autophagocytosis: in vitro induction by microtuble poisons. Exp Cell Res 1975; 92:11-4; http://dx.doi.org/10.1016/0014-4827(75)90630-8. PubMed DOI
Kominami E, Hashida S, Khairallah EA, Katunuma N. Sequestration of cytoplasmic enzymes in an autophagic vacuole-lysosomal system induced by injection of leupeptin. J Biol Chem 1983; 258:6093-100. PubMed
Réz G, Fellinger E, Reti M, Biczo I, Kovács AL. Time course of quantitative morphological changes of the autophagic-lysosomal compartment of murine seminal vesicle epithelial cells under the influence of vinblastine. J Submicrosc Cytol Pathol 1990; 22:529-34. PubMed
Oliva O, Réz G, Pálfia Z, Fellinger E. Dynamics of vinblastine-induced autophagocytosis in murine pancreatic acinar cells: influence of cycloheximide post-treatments. Exp Mol Pathol 1992; 56:76-86; http://dx.doi.org/10.1016/0014-4800(92)90025-7. PubMed DOI
Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009; 7:e38; http://dx.doi.org/10.1371/journal.pbio.1000038. PubMed DOI PMC
Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 2011; 7:9-17; http://dx.doi.org/10.1038/nchembio.500. PubMed DOI
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284:8023-32; http://dx.doi.org/10.1074/jbc.M900301200. PubMed DOI PMC
Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al.. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69:6232-40; http://dx.doi.org/10.1158/0008-5472.CAN-09-0299. PubMed DOI
Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, et al.. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70:288-98; http://dx.doi.org/10.1158/0008-5472.CAN-09-1751. PubMed DOI
Roscic A, Baldo B, Crochemore C, Marcellin D, Paganetti P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J Neurochem 2011; 119:398-407; http://dx.doi.org/10.1111/j.1471-4159.2011.07435.x. PubMed DOI
Fan QW, Cheng C, Hackett C, Feldman M, Houseman BT, Nicolaides T, Haas-Kogan D, James CD, Oakes SA, Debnath J, et al.. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal 2010; 3:ra81. PubMed PMC
Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010; 11:467-78; http://dx.doi.org/10.1016/j.cmet.2010.04.005. PubMed DOI PMC
Yamamoto A, Yue Z. Autophagy and its normal and pathogenic States in the brain. Annu Rev Neurosci 2014; 37:55-78; http://dx.doi.org/10.1146/annurev-neuro-071013-014149. PubMed DOI
Tsvetkov AS, Miller J, Arrasate M, Wong JS, Pleiss MA, Finkbeiner S. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc Natl Acad Sci USA 2010; 107:16982-7; http://dx.doi.org/10.1073/pnas.1004498107. PubMed DOI PMC
Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al.. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4:295-305; http://dx.doi.org/10.1038/nchembio.79. PubMed DOI PMC
Palomo GM, Cerrato T, Gargini R, Diaz-Nido J. Silencing of frataxin gene expression triggers p53-dependent apoptosis in human neuron-like cells. Hum Mol Genet 2011; 20:2807-22; http://dx.doi.org/10.1093/hmg/ddr187. PubMed DOI
Bolinches-Amoros A, Molla B, Pla-Martin D, Palau F, Gonzalez-Cabo P. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. Front Cell Neurosci 2014; 8:124. PubMed PMC
Sakagami H, Kawase M, Wakabayashi H, Kurihara T. Factors that affect the type of cell death induced by chemicals. Autophagy 2007; 3:493-5; http://dx.doi.org/10.4161/auto.4594. PubMed DOI
Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 2002; 277:33105-14; http://dx.doi.org/10.1074/jbc.M204630200. PubMed DOI
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al.. Ambra1 regulates autophagy and development of the nervous system. Nature 2007; 447:1121-5. PubMed
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032-6; http://dx.doi.org/10.1038/nature03029. PubMed DOI
Hwang S, Maloney NS, Bruinsma MW, Goel G, Duan E, Zhang L, Shrestha B, Diamond MS, Dani A, Sosnovtsev SV, et al.. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 2012; 11:397-409; http://dx.doi.org/10.1016/j.chom.2012.03.002. PubMed DOI PMC
Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG, Yang JM. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 2009; 5:816-23; http://dx.doi.org/10.4161/auto.9064. PubMed DOI PMC
Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007; 14: 146-57; http://dx.doi.org/10.1038/sj.cdd.4401936. PubMed DOI
Poeck H, Besch R, Maihoefer C, Renn M, Tormo D, Morskaya SS, Kirschnek S, Gaffal E, Landsberg J, Hellmuth J, et al.. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat Med 2008; 14:1256-63; http://dx.doi.org/10.1038/nm.1887. PubMed DOI
Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J 2008; 27:1110-21; http://dx.doi.org/10.1038/emboj.2008.31. PubMed DOI PMC
Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 2007; 204:25-31; http://dx.doi.org/10.1084/jem.20061303. PubMed DOI PMC
Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat W, et al.. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2008; 4:309-14; http://dx.doi.org/10.4161/auto.5474. PubMed DOI
Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR, Chang H, Zhou FC, Gao SJ, Liang C, et al.. FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 2009; 11:1355-62; http://dx.doi.org/10.1038/ncb1980. PubMed DOI PMC
Kimball SR, Siegfried BA, Jefferson LS. Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 2004; 279:54103-9; http://dx.doi.org/10.1074/jbc.M410755200. PubMed DOI
Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995; 270:2320-6; http://dx.doi.org/10.1074/jbc.270.5.2320. PubMed DOI
Klionsky DJ, Meijer AJ, Codogno P, Neufeld TP, Scott RC. Autophagy and p70S6 kinase. Autophagy 2005; 1:59-61; http://dx.doi.org/10.4161/auto.1.1.1536. PubMed DOI
Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998; 273:3963-6; http://dx.doi.org/10.1074/jbc.273.7.3963. PubMed DOI
Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170:1101-11; http://dx.doi.org/10.1083/jcb.200504035. PubMed DOI PMC
Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 2010; 285:11061-7; http://dx.doi.org/10.1074/jbc.R109.072181. PubMed DOI PMC
Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, et al.. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 2007; 104:19023-8; http://dx.doi.org/10.1073/pnas.0709695104. PubMed DOI PMC
Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al.. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-[b], and Bcl-2. Mol Cell 2007; 25:193-205; http://dx.doi.org/10.1016/j.molcel.2006.12.009. PubMed DOI
Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, De Smedt H, Bultynck G, Parys JB. mTOR-Controlled Autophagy Requires Intracellular Ca(2+) Signaling. PloS One 2013; 8:e61020; http://dx.doi.org/10.1371/journal.pone.0061020. PubMed DOI PMC
Pereira GJ, Hirata H, Fimia GM, do Carmo LG, Bincoletto C, Han SW, Stilhano RS, Ureshino RP, Bloor-Young D, Churchill G, et al.. Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 2011; 286:27875-81; http://dx.doi.org/10.1074/jbc.C110.216580. PubMed DOI PMC
Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D, et al.. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013; 494:201-6; http://dx.doi.org/10.1038/nature11866. PubMed DOI PMC
Su M, Mei Y, Sanishvili R, Levine B, Colbert CL, Sinha S. Targeting gamma-herpesvirus 68 Bcl-2-mediated down-regulation of autophagy. J Biol Chem 2014; 289:8029-40; http://dx.doi.org/10.1074/jbc.M113.515361. PubMed DOI PMC
Winter G, Hazan R, Bakalinsky AT, Abeliovich H. Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid. Autophagy 2008; 4:28-36; http://dx.doi.org/10.4161/auto.5127. PubMed DOI
Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, Kobayashi H, Sato F, Sato S, Ishikawa K, et al.. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 2011; 7:176-87; http://dx.doi.org/10.4161/auto.7.2.14074. PubMed DOI PMC
Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP, Long MJ, Bishop DK, Haber JE. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res 2015; 43:6889-901; http://dx.doi.org/10.1093/nar/gkv520. PubMed DOI PMC
Fu J, Shao CJ, Chen FR, Ng HK, Chen ZP. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-oncology 2010; 12:328-40; http://dx.doi.org/10.1093/neuonc/nop005. PubMed DOI PMC
Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, et al.. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 2011; 471:74-9; http://dx.doi.org/10.1038/nature09803. PubMed DOI PMC
Bartholomew CR, Suzuki T, Du Z, Backues SK, Jin M, Lynch-Day MA, Umekawa M, Kamath A, Zhao M, Xie Z, et al.. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci USA 2012; 109:11206-10; http://dx.doi.org/10.1073/pnas.1200313109. PubMed DOI PMC
Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W, et al.. Function and molecular mechanism of acetylation in autophagy regulation. Science 2012; 336:474-7; http://dx.doi.org/10.1126/science.1216990. PubMed DOI
Katagiri N, Kuroda T, Kishimoto H, Hayashi Y, Kumazawa T, Kimura K. The nucleolar protein nucleophosmin is essential for autophagy induced by inhibiting Pol I transcription. Sci Rep 2015; 5:8903; http://dx.doi.org/10.1038/srep08903. PubMed DOI PMC
Kreiner G, Bierhoff H, Armentano M, Rodriguez-Parkitna J, Sowodniok K, Naranjo JR, Bonfanti L, Liss B, Schutz G, Grummt I, et al.. A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death Differ 2013; 20:1455-64. PubMed PMC
Furuya N, Liang XH, Levine B. Autophagy and cancer In: Klionsky DJ, ed. Autophagy. Georgetown, TX: Landes Bioscience, 2004:241-55.
de Medina P, Paillasse MR, Segala G, Khallouki F, Brillouet S, Dalenc F, Courbon F, Record M, Poirot M, Silvente-Poirot S. Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chem Phys Lipids 2011; 164:432-7. PubMed
de Medina P, Payre B, Boubekeur N, Bertrand-Michel J, Terce F, Silvente-Poirot S, Poirot M. Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ 2009; 16:1372-84. PubMed
Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL, et al.. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 2007; 3:331-8. PubMed PMC
Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and [a]-synuclein. J Biol Chem 2007; 282:5641-52. PubMed
Kruger U, Wang Y, Kumar S, Mandelkow EM. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 2012; 33:2291-305. PubMed
Koshkina NV, Briggs K, Palalon F, Curley SA. Autophagy and enhanced chemosensitivity in experimental pancreatic cancers induced by noninvasive radiofrequency field treatment. Cancer 2014; 120:480-91. PubMed PMC
Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, et al.. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010; 142:270-83. PubMed PMC
Decuypere JP, Bultynck G, Parys JB. A dual role for Ca2+ in autophagy regulation. Cell Calcium 2011; 50:242-50. PubMed
Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, et al.. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 2009; 16:1006-17. PubMed
Dayan F, Bilton RL, Laferriere J, Trottier E, Roux D, Pouyssegur J, Mazure NM. Activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway. J Cell Physiol 2009; 218:167-74. PubMed
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009; 29:2570-81. PubMed PMC
Yamashita S, Yurimoto H, Murakami D, Yoshikawa M, Oku M, Sakai Y. Lag-phase autophagy in the methylotrophic yeast Pichia pastoris. Genes Cells 2009; 14:861-70. PubMed
van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ. Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 2010; 11:1. PubMed PMC
Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 2006; 47:1641-52. PubMed
Yano K, Suzuki T, Moriyasu Y. Constitutive autophagy in plant root cells. Autophagy 2007; 3:360-2. PubMed
Gordon PB, Kisen GO, Kovacs AL, Seglen PO. Experimental characterization of the autophagic-lysosomal pathway in isolated rat hepatocytes. Biochem Soc Symp 1989; 55:129-43. PubMed
Poli A, Gordon PB, Schwarze PE, Grinde B, Seglen PO. Effects of insulin and anchorage on hepatocytic protein metabolism and amino acid transport. J Cell Sci 1981; 48:1-18. PubMed
Schliess F, Reissmann R, Reinehr R, vom Dahl S, Häussinger D. Involvement of integrins and Src in insulin signaling toward autophagic proteolysis in rat liver. J Biol Chem 2004; 279:21294-301. PubMed
vom Dahl S, Dombrowski F, Schmitt M, Schliess F, Pfeifer U, Haussinger D. Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent way downstream from p38MAPK activation. Biochem J 2001; 354:31-6. PubMed PMC
vom Dahl S, Stoll B, Gerok W, Häussinger D. Inhibition of proteolysis by cell swelling in the liver requires intact microtubular structures. Biochem J 1995; 308 (Pt 2):529-36. PubMed PMC
Klionsky DJ, Bruford EA, Cherry JM, Hodgkin J, Laulederkind SJ, Singer AG. In the beginning there was babble. Autophagy 2012; 8:1165-7. PubMed PMC
Kovacs AL, Zhang H. Role of autophagy in Caenorhabditis elegans. FEBS Lett 2010; 584:1335-41. PubMed
Wu F, Li Y, Wang F, Noda NN, Zhang H. Differential function of the two Atg4 homologues in the aggrephagy pathway in Caenorhabditis elegans. J Biol Chem 2012; 287:29457-67. PubMed PMC
Zhang H, Wu F, Wang X, Du H, Wang X, Zhang H. The two C. elegans ATG-16 homologs have partially redundant functions in the basal autophagy pathway. Autophagy 2013; 9:1965-74. PubMed PMC
Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, et al.. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 2009; 136:308-21. PubMed
Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, et al.. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 2010; 1:e10. PubMed PMC
Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 2008; 15:105-12. PubMed
Alberti A, Michelet X, Djeddi A, Legouis R. The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in C. elegans. Autophagy 2010; 6:622-33. PubMed
Manil-Segalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, Satiat-Jeunemaitre B, Legouis R. The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 2014; 28:43-55; http://dx.doi.org/10.1016/j.devcel.2013.11.022. PubMed DOI
Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 2007; 21:2161-71; http://dx.doi.org/10.1101/gad.1573107. PubMed DOI PMC
Liang Q, Yang P, Tian E, Han J, Zhang H. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Autophagy 2012; 8:1426-33; http://dx.doi.org/10.4161/auto.21163. PubMed DOI
Yang P, Zhang H. The coiled-coil domain protein EPG-8 plays an essential role in the autophagy pathway in C. elegans. Autophagy 2011; 7:159-65; http://dx.doi.org/10.4161/auto.7.2.14223. PubMed DOI
SenGupta T, Torgersen ML, Kassahun H, Vellai T, Simonsen A, Nilsen H. Base excision repair AP endonucleases and mismatch repair act together to induce checkpoint-mediated autophagy. Nat Commun 2013; 4:2674; http://dx.doi.org/10.1038/ncomms3674. PubMed DOI PMC
Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, et al.. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 2015; 25:1810-22; http://dx.doi.org/10.1016/j.cub.2015.05.059. PubMed DOI
Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al.. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10:676-87; http://dx.doi.org/10.1038/ncb1730. PubMed DOI PMC
Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC, Kroemer G. The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 2008; 4:870-3; http://dx.doi.org/10.4161/auto.6730. PubMed DOI
Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, et al.. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp Gerontol 2013; 48:191-201; http://dx.doi.org/10.1016/j.exger.2012.12.002. PubMed DOI PMC
Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 2015; 521:525-8; http://dx.doi.org/10.1038/nature14300. PubMed DOI
Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovacs AL, Kumsta C, Lapierre LR, Legouis R, Lin L, et al.. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 2015; 11:9-27. PubMed PMC
Alers S, L{o}ffler AS, Paasch F, Dieterle AM, Keppeler H, Lauber K, Campbell DG, Fehrenbacher B, Schaller M, Wesselborg S, et al.. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy 2011; 7:1424-33; http://dx.doi.org/10.4161/auto.7.12.18027. PubMed DOI PMC
Brown WR, Hubbard SJ, Tickle C, Wilson SA. The chicken as a model for large-scale analysis of vertebrate gene function. Nature reviews Genetics 2003; 4:87-98; http://dx.doi.org/10.1038/nrg998. PubMed DOI
Wang L, Rodrigues NA, Wu Y, Maslikowski BM, Singh N, Lacroix S, Bedard PA. Pleiotropic action of AP-1 in v-Src-transformed cells. J Virol 2011; 85:6725-35; http://dx.doi.org/10.1128/JVI.01013-10. PubMed DOI PMC
Baba TW, Giroir BP, Humphries EH. Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology 1985; 144:139-51; http://dx.doi.org/10.1016/0042-6822(85)90312-5. PubMed DOI
Perez-Martin M, Perez-Perez ME, Lemaire SD, Crespo JL. Oxidative Stress Contributes to Autophagy Induction in Response to Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii. Plant Physiol 2014; 166:997-1008; http://dx.doi.org/10.1104/pp.114.243659. PubMed DOI PMC
Perez-Perez ME, Couso I, Crespo JL. Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy 2012; 8:376-88; http://dx.doi.org/10.4161/auto.18864. PubMed DOI
Mauvezin C, Ayala C, Braden CR, Kim J, Neufeld TP. Assays to monitor autophagy in Drosophila. Methods 2014; 68:134-9; http://dx.doi.org/10.1016/j.ymeth.2014.03.014. PubMed DOI PMC
Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW, Park H, Ro SH, Kim JS, Juhasz G, et al.. Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 2015; 11:1358-72; http://dx.doi.org/10.1080/15548627.2015.1063766. PubMed DOI PMC
Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 2008; 181:655-66; http://dx.doi.org/10.1083/jcb.200712051. PubMed DOI PMC
Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009; 30:588-98; http://dx.doi.org/10.1016/j.immuni.2009.02.009. PubMed DOI PMC
Anding AL, Baehrecke EH. Vps15 is required for stress induced and developmentally triggered autophagy and salivary gland protein secretion in Drosophila. Cell Death Differ 2014. PubMed PMC
Hou YC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 2008; 182:1127-39; http://dx.doi.org/10.1083/jcb.200712091. PubMed DOI PMC
Pircs K, Nagy P, Varga A, Venkei Z, Erdi B, Hegedus K, Juhasz G. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PloS One 2012; 7:e44214; http://dx.doi.org/10.1371/journal.pone.0044214. PubMed DOI PMC
Hindle SJ, Elliott CJ. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease. Autophagy 2013; 9:936-8; http://dx.doi.org/10.4161/auto.24397. PubMed DOI PMC
Shravage BV, Hill JH, Powers CM, Wu L, Baehrecke EH. Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development 2013; 140:1321-9; http://dx.doi.org/10.1242/dev.089490. PubMed DOI PMC
Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 2007; 117:2133-44; http://dx.doi.org/10.1172/JCI31807. PubMed DOI PMC
McIver SC, Kang YA, DeVilbiss AW, O'Driscoll CA, Ouellette JN, Pope NJ, Camprecios G, Chang CJ, Yang D, Bouhassira EE, et al.. The exosome complex establishes a barricade to erythroid maturation. Blood 2014; 124:2285-97; http://dx.doi.org/10.1182/blood-2014-04-571083. PubMed DOI PMC
Fujiwara T, O'Geen H, Keles S, Blahnik K, Linnemann AK, Kang YA, Choi K, Farnham PJ, Bresnick EH. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009; 36:667-81; http://dx.doi.org/10.1016/j.molcel.2009.11.001. PubMed DOI PMC
Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC, Blobel GA, Chodosh LA, Weiss MJ. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 2004; 104:3136-47; http://dx.doi.org/10.1182/blood-2004-04-1603. PubMed DOI
Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, Yu D, Hardison R, Weiss MJ, Orkin SH, et al.. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 2009; 36:682-95; http://dx.doi.org/10.1016/j.molcel.2009.11.002. PubMed DOI PMC
Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112:1493-502; http://dx.doi.org/10.1182/blood-2008-02-137398. PubMed DOI PMC
Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 2010; 107:832-7; http://dx.doi.org/10.1073/pnas.0913170107. PubMed DOI PMC
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454:232-5; http://dx.doi.org/10.1038/nature07006. PubMed DOI PMC
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, et al.. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104:19500-5; http://dx.doi.org/10.1073/pnas.0708818104. PubMed DOI PMC
Josefsen L, Droce A, Sondergaard TE, Sørensen JL, Bormann J, Schäfer W, Giese H, Olsson S. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium gaminearum. Autophagy 2012; 8:326-37. PubMed
Nadal M, Gold SE. The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis. Mol Plant Pathol 2010; 11:463-78; http://dx.doi.org/10.1111/j.1364-3703.2010.00620.x. PubMed DOI PMC
Pollack JK, Harris SD, Marten MR. Autophagy in filamentous fungi. Fungal Genet Biol 2009; 46:1-8; http://dx.doi.org/10.1016/j.fgb.2008.10.010. PubMed DOI
Richie DL, Fuller KK, Fortwendel J, Miley MD, McCarthy JW, Feldmesser M, Rhodes JC, Askew DS. Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot Cell 2007; 6:2437-47; http://dx.doi.org/10.1128/EC.00224-07. PubMed DOI PMC
Voigt O, Poggeler S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl Microbiol Biot 2013; 97:9277-90; http://dx.doi.org/10.1007/s00253-013-5221-2. PubMed DOI
Kim Y, Islam N, Moss BJ, Nandakumar MP, Marten MR. Autophagy induced by rapamycin and carbon-starvation have distinct proteome profiles in Aspergillus nidulans. Biotechnol Bioeng 2011; 108:2705-15; http://dx.doi.org/10.1002/bit.23223. PubMed DOI
Pinan-Lucarre B, Balguerie A, Clave C. Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell 2005; 4:1765-74; http://dx.doi.org/10.1128/EC.4.11.1765-1774.2005. PubMed DOI PMC
Deng YZ, Naqvi NI. A vacuolar glucoamylase, Sga1, participates in glycogen autophagy for proper asexual differentiation in Magnaporthe oryzae. Autophagy 2010; 6:455-61; http://dx.doi.org/10.4161/auto.6.4.11736. PubMed DOI
Deng YZ, Ramos-Pamplona M, Naqvi NI. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy 2009; 5:33-43; http://dx.doi.org/10.4161/auto.5.1.7175. PubMed DOI
Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 2014; 10:822-34; http://dx.doi.org/10.4161/auto.28148. PubMed DOI PMC
Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 2009; 21:1291-304; http://dx.doi.org/10.1105/tpc.108.060996. PubMed DOI PMC
Liu XH, Lu JP, Zhang L, Dong B, Min H, Lin FC. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 2007; 6:997-1005; http://dx.doi.org/10.1128/EC.00011-07. PubMed DOI PMC
Nguyen LN, Bormann J, Le GT, Starkel C, Olsson S, Nosanchuk JD, Giese H, Schafer W. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet Biol 2011; 48:217-24; http://dx.doi.org/10.1016/j.fgb.2010.11.004. PubMed DOI
Duan Z, Chen Y, Huang W, Shang Y, Chen P, Wang C. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 2013; 9:538-49; http://dx.doi.org/10.4161/auto.23575. PubMed DOI PMC
Deng YZ, Ramos-Pamplona M, Naqvi NI. Methods for functional analysis of macroautophagy in filamentous fungi. Methods Enzymol 2008; 451:295-310; http://dx.doi.org/10.1016/S0076-6879(08)03220-5. PubMed DOI
Kershaw MJ, Talbot NJ. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA 2009; 106:15967-72; http://dx.doi.org/10.1073/pnas.0901477106. PubMed DOI PMC
Liu TB, Liu XH, Lu JP, Zhang L, Min H, Lin FC. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy 2010; 6:74-85; http://dx.doi.org/10.4161/auto.6.1.10438. PubMed DOI
Penalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst HN, Pantazopoulou A. Searching for gold beyond mitosis: Mining intracellular membrane traffic in Aspergillus nidulans. Cell Log 2012; 2:2-14; http://dx.doi.org/10.4161/cl.19304. PubMed DOI PMC
Pinar M, Pantazopoulou A, Penalva MA. Live-cell imaging of Aspergillus nidulans autophagy: RAB1 dependence, Golgi independence and ER involvement. Autophagy 2013; 9:1024-43; http://dx.doi.org/10.4161/auto.24483. PubMed DOI PMC
Lipatova Z, Belogortseva N, Zhang XQ, Kim J, Taussig D, Segev N. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci USA 2012; 109:6981-6; http://dx.doi.org/10.1073/pnas.1121299109. PubMed DOI PMC
Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai H, Bartholomew CR, Brumell JH, Ferro-Novick S, Klionsky DJ. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci USA 2010; 107:7811-6; http://dx.doi.org/10.1073/pnas.1000063107. PubMed DOI PMC
Deng Y, Qu Z, Naqvi NI. The role of snx41-based pexophagy in magnaporthe development. PloS One 2013; 8:e79128. PubMed PMC
Piggott N, Cook MA, Tyers M, Measday V. Genome-wide fitness profiles reveal a requirement for autophagy during yeast fermentation. Genes Genomes Genetics 2011; 1:353-67. PubMed PMC
Cebollero E, Gonzalez R. Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines. Appl Environ Microbiol 2006; 72:4121-7; http://dx.doi.org/10.1128/AEM.02920-05. PubMed DOI PMC
Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 2008; 8:35-52; http://dx.doi.org/10.1111/j.1567-1364.2007.00338.x. PubMed DOI PMC
Mendes-Ferreira A, Sampaio-Marques B, Barbosa C, Rodrigues F, Costa V, Mendes-Faia A, Ludovico P, Leao C. Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 2010; 76:7918-24; http://dx.doi.org/10.1128/AEM.01535-10. PubMed DOI PMC
Rossignol T, Dulau L, Julien A, Blondin B. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 2003; 20:1369-85; http://dx.doi.org/10.1002/yea.1046. PubMed DOI
Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 2009; 75:5761-72; http://dx.doi.org/10.1128/AEM.00845-09. PubMed DOI PMC
Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 9:32-44; http://dx.doi.org/10.1111/j.1567-1364.2008.00456.x. PubMed DOI
Hazan R, Levine A, Abeliovich H. Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl Environ Microbiol 2004; 70:4449-57; http://dx.doi.org/10.1128/AEM.70.8.4449-4457.2004. PubMed DOI PMC
Singletary K, Milner J. Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomark Prev 2008; 17:1596-610; http://dx.doi.org/10.1158/1055-9965.EPI-07-2917. PubMed DOI
Su CL, Chen FN, Won SJ. Involvement of apoptosis and autophagy in reducing mouse hepatoma ML-1 cell growth in inbred BALB/c mice by bacterial fermented soybean products. Food Chem Toxicol 2011; 49:17-24; http://dx.doi.org/10.1016/j.fct.2010.08.017. PubMed DOI
Abeliovich H, Gonzalez R. Autophagy in food biotechnology. Autophagy 2009; 5:925-9; http://dx.doi.org/10.4161/auto.5.7.9213. PubMed DOI
Berger B, Abdalla FC, Cruz-Landim C. Effect of narcosis with CO2 on the ovarian development in queens of Apis mellifera (Hymenoptera, Apini). Sociobiology 2005; 45:261-70.
Silva-Zacarin ECM, Tomaino GA, Brocheto-Braga MR, Taboga SR, Silva de Moraes RLM. Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae). J Biosci 2007; 32:309-28; http://dx.doi.org/10.1007/s12038-007-0031-2. PubMed DOI
Gregorc A, Bowen ID. Programmed cell death in the honey-bee (Apis mellifera L.) larvae midgut. Cell Biol Int 1997; 21:151-8; http://dx.doi.org/10.1006/cbir.1997.0127. PubMed DOI
Navajas M, Migeon A, Alaux C, Martin-Magniette M, Robinson G, Evans J, Cros-Arteil S, Crauser D, Le Conte Y. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 2008; 9:301; http://dx.doi.org/10.1186/1471-2164-9-301. PubMed DOI PMC
Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res 2013; 73:3-7; http://dx.doi.org/10.1158/0008-5472.CAN-12-2464. PubMed DOI
Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, Matsui I, Niimura F, Matsusaka T, Fujita N, et al.. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 2012; 180:517-25; http://dx.doi.org/10.1016/j.ajpath.2011.11.001. PubMed DOI
Colasanti T, Vomero M, Alessandri C, Barbati C, Maselli A, Camperio C, Conti F, Tinari A, Carlo-Stella C, Tuosto L, et al.. Role of alpha-synuclein in autophagy modulation of primary human T lymphocytes. Cell Death Dis 2014; 5:e1265; http://dx.doi.org/10.1038/cddis.2014.211. PubMed DOI PMC
Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK, Spangenberg J, Zornig C, Juhl HH, David KA. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. BioTechniques 2004; 36:1030-7. PubMed
Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B, Banks S, Deng J, VanMeter AJ, Geho DH, et al.. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics: MCP 2008; 7:1998-2018; http://dx.doi.org/10.1074/mcp.M700596-MCP200. PubMed DOI PMC
Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol 2010; 221:117-24; http://dx.doi.org/10.1002/path.2694. PubMed DOI PMC
Domart MC, Esposti DD, Sebagh M, Olaya N, Harper F, Pierron G, Franc B, Tanabe KK, Debuire B, Azoulay D, et al.. Concurrent induction of necrosis, apoptosis, and autophagy in ischemic preconditioned human livers formerly treated by chemotherapy. J Hepatol 2009; 51:881-9; http://dx.doi.org/10.1016/j.jhep.2009.06.028. PubMed DOI
Jahania SM, Sengstock D, Vaitkevicius P, Andres A, Ito BR, Gottlieb RA, Mentzer RM Jr. Activation of the homeostatic intracellular repair response during cardiac surgery. J Am Coll Surgeons 2013; 216:719-26; discussion 26-9; http://dx.doi.org/10.1016/j.jamcollsurg.2012.12.034. PubMed DOI PMC
Singh KK, Yanagawa B, Quan A, Wang R, Garg A, Khan R, Pan Y, Wheatcroft MD, Lovren F, Teoh H, et al.. Autophagy gene fingerprint in human ischemia and reperfusion. J Thor Cardio Surg 2014; 147:1065-72 e1; http://dx.doi.org/10.1016/j.jtcvs.2013.04.042. PubMed DOI
Nyman E, Brannmark C, Palmer R, Brugard J, Nystrom FH, Stralfors P, Cedersund G. A hierarchical whole-body modeling approach elucidates the link between in Vitro insulin signaling and in Vivo glucose homeostasis. J Biol Chem 2011; 286:26028-41; http://dx.doi.org/10.1074/jbc.M110.188987. PubMed DOI PMC
Adkins Y, Schie IW, Fedor D, Reddy A, Nguyen S, Zhou P, Kelley DS, Wu J. A novel mouse model of nonalcoholic steatohepatitis with significant insulin resistance. Lab Investig 2013; 93:1313-22; http://dx.doi.org/10.1038/labinvest.2013.123. PubMed DOI
Lake AD, Novak P, Hardwick RN, Flores-Keown B, Zhao F, Klimecki WT, Cherrington NJ. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci 2014; 137:26-35; http://dx.doi.org/10.1093/toxsci/kft230. PubMed DOI PMC
Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, et al.. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 2014; 59:1366-80; http://dx.doi.org/10.1002/hep.26667. PubMed DOI
Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillon J, Lo Iacono O, Corazzari M, Fimia GM, et al.. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 2014; 5:e1179; http://dx.doi.org/10.1038/cddis.2014.162. PubMed DOI PMC
Buzgariu W, Chera S, Galliot B. Methods to investigate autophagy during starvation and regeneration in hydra. Methods Enzymol 2008; 451:409-37; http://dx.doi.org/10.1016/S0076-6879(08)03226-6. PubMed DOI
Chera S, Buzgariu W, Ghila L, Galliot B. Autophagy in Hydra: a response to starvation and stress in early animal evolution. Biochim Biophys Acta 2009; 1793:1432-43; http://dx.doi.org/10.1016/j.bbamcr.2009.03.010. PubMed DOI
Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K, Galliot B. Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci 2006; 119:846-57; http://dx.doi.org/10.1242/jcs.02807. PubMed DOI
B Galliot. Autophagy and self-preservation: a step ahead from cell plasticity? Autophagy 2006; 2:231-3; http://dx.doi.org/10.4161/auto.2706. PubMed DOI
Galliot B, Miljkovic-Licina M, de Rosa R, Chera S. Hydra, a niche for cell and developmental plasticity. Seminars Cell Dev Biol 2006; 17:492-502; http://dx.doi.org/10.1016/j.semcdb.2006.05.005. PubMed DOI
Sala-Mercado JA, Wider J, Undyala VV, Jahania S, Yoo W, Mentzer RM Jr., Gottlieb RA, Przyklenk K. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 2010; 122:S179-84; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.928242. PubMed DOI PMC
Botting KJ, McMillen IC, Forbes H, Nyengaard JR, Morrison JL. Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes. J Am Heart Assoc 2014; 3. PubMed PMC
Wang KC, Brooks DA, Summers-Pearce B, Bobrovskaya L, Tosh DN, Duffield JA, Botting KJ, Zhang S, Caroline McMillen I, Morrison JL. Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life. Physiol Rep 2015; 3. PubMed PMC
Zhang S, Regnault TR, Barker PL, Botting KJ, McMillen IC, McMillan CM, Roberts CT, Morrison JL. Placental adaptations in growth restriction. Nutrients 2015; 7:360-89; http://dx.doi.org/10.3390/nu7010360. PubMed DOI PMC
Derde S, Vanhorebeek I, Guiza F, Derese I, Gunst J, Fahrenkrog B, Martinet W, Vervenne H, Ververs EJ, Larsson L, et al.. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology 2012; 153:2267-76; http://dx.doi.org/10.1210/en.2011-2068. PubMed DOI
Gunst J, Derese I, Aertgeerts A, Ververs EJ, Wauters A, Van den Berghe G, Vanhorebeek I. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med 2013; 41:182-94; http://dx.doi.org/10.1097/CCM.0b013e3182676657. PubMed DOI
Lopez-Alonso I, Aguirre A, Gonzalez-Lopez A, Fernandez AF, Amado-Rodriguez L, Astudillo A, Batalla-Solis E, Albaiceta GM. Impairment of autophagy decreases ventilator-induced lung injury by blockade of the NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 2013; 304:L844-52; http://dx.doi.org/10.1152/ajplung.00422.2012. PubMed DOI
Sun Y, Li C, Shu Y, Ju X, Zou Z, Wang H, Rao S, Guo F, Liu H, Nan W, et al.. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection. Sci Signal 2012; 5:ra16. PubMed
Sobolewska A, Motyl T, Gajewska M. Role and regulation of autophagy in the development of acinar structures formed by bovine BME-UV1 mammary epithelial cells. Eur J Cell Biol 2011; 90:854-64; http://dx.doi.org/10.1016/j.ejcb.2011.06.007. PubMed DOI
Motyl T, Gajewska M, Zarzynska J, Sobolewska A, Gajkowska B. Regulation of autophagy in bovine mammary epithelial cells. Autophagy 2007; 3:484-6; http://dx.doi.org/10.4161/auto.4491. PubMed DOI
Sobolewska A, Gajewska M, Zarzynska J, Gajkowska B, Motyl T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur J Cell Biol 2009; 88:117-30; http://dx.doi.org/10.1016/j.ejcb.2008.09.004. PubMed DOI
Facey CO, Lockshin RA. The execution phase of autophagy associated PCD during insect metamorphosis. Apoptosis 2010; 15:639-52; http://dx.doi.org/10.1007/s10495-010-0499-3. PubMed DOI
Malagoli D, Abdalla FC, Cao Y, Feng Q, Fujisaki K, Gregorc A, Matsuo T, Nezis IP, Papassideri IS, Sass M, et al.. Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives. Autophagy 2010; 6:575-88; http://dx.doi.org/10.4161/auto.6.5.11962. PubMed DOI
Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev Growth Differ 2006; 48:419-28; http://dx.doi.org/10.1111/j.1440-169X.2006.00878.x. PubMed DOI
Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Different modes of programmed cell death during oogenesis of the silkmoth Bombyx mori. Autophagy 2008; 4:97-100; http://dx.doi.org/10.4161/auto.5205. PubMed DOI
Sumithra P, Britto CP, Krishnan M. Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L. Cell Tissue Res 2010; 339:349-58; http://dx.doi.org/10.1007/s00441-009-0898-3. PubMed DOI
Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B, Congiu T, Ferrarese R, Rivas-Pena ML, Pennacchio F, Eguileor M. Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res 2007; 330:345-59; http://dx.doi.org/10.1007/s00441-007-0449-8. PubMed DOI
Khoa DB, Takeda M. Expression of autophagy 8 (Atg8) and its role in the midgut and other organs of the greater wax moth, Galleria mellonella, during metamorphic remodelling and under starvation. Insect Mol Biol 2012; 21:473-87; http://dx.doi.org/10.1111/j.1365-2583.2012.01152.x. PubMed DOI
Gai Z, Zhang X, Islam M, Wang X, Li A, Yang Y, Li Y, Peng J, Hong H, Liu K. Characterization of Atg8 in lepidopteran insect cells. Arch Insect Biochem 2013; 84:57-77. PubMed
Goncu E, Parlak O. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori. Autophagy 2008; 4:1069-72; http://dx.doi.org/10.4161/auto.6953. PubMed DOI
Zhou S, Zhou Q, Liu Y, Wang S, Wen D, He Q, Wang W, Bendena WG, Li S. Two Tor genes in the silkworm Bombyx mori. Insect Mol Biol 2010; 19:727-35; http://dx.doi.org/10.1111/j.1365-2583.2010.01026.x. PubMed DOI
Zhang X, Hu ZY, Li WF, Li QR, Deng XJ, Yang WY, Cao Y, Zhou CZ. Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori. BMC Mol Biol 2009; 10:50; http://dx.doi.org/10.1186/1471-2199-10-50. PubMed DOI PMC
Romanelli D, Casati B, Franzetti E, Tettamanti G. A molecular view of autophagy in Lepidoptera. Biomed Res Int 2014; 2014:902315; http://dx.doi.org/10.1155/2014/902315. PubMed DOI PMC
Li Q, Deng X, Huang Z, Zheng S, Tettamanti G, Cao Y, Feng Q. Expression of autophagy-related genes in the anterior silk gland of the silkworm (Bombyx mori) during metamorphosis. Can J Zool 2011; 89:1019-26; http://dx.doi.org/10.1139/z11-075. DOI
Casati B, Terova G, Cattaneo AG, Rimoldi S, Franzetti E, de Eguileor M, Tettamanti G. Molecular cloning, characterization and expression analysis of ATG1 in the silkworm, Bombyx mori. Gene 2012; 511:326-37; http://dx.doi.org/10.1016/j.gene.2012.09.086. PubMed DOI
Godefroy N, Hoa C, Tsokanos F, Le Goff E, Douzery EJ, Baghdiguian S, Martinand-Mari C. Identification of autophagy genes in Ciona intestinalis: a new experimental model to study autophagy mechanism. Autophagy 2009; 5:805-15; http://dx.doi.org/10.4161/auto.8995. PubMed DOI
Martinand-Mari C, Vacelet J, Nickel M, Worheide G, Mangeat P, Baghdiguian S. Cell death and renewal during prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Poecilosclerida). J Exp Biol 2012; 215:3937-43; http://dx.doi.org/10.1242/jeb.072371. PubMed DOI
Thomé RG, Santos HB, Arantes FP, Domingos FF, Bazzoli N, Rizzo E. Dual roles for autophagy during follicular atresia in fish ovary. Autophagy 2009; 5:117-9; http://dx.doi.org/10.4161/auto.5.1.7302. PubMed DOI
Santos HB, Thome RG, Arantes FP, Sato Y, Bazzoli N, Rizzo E. Ovarian follicular atresia is mediated by heterophagy, autophagy, and apoptosis in Prochilodus argenteus and Leporinus taeniatus (Teleostei: Characiformes). Theriogenology 2008; 70:1449-60; http://dx.doi.org/10.1016/j.theriogenology.2008.06.091. PubMed DOI
Santos HB, Sato Y, Moro L, Bazzoli N, Rizzo E. Relationship among follicular apoptosis, integrin beta1 and collagen type IV during early ovarian regression in the teleost Prochilodus argenteus after induced spawning. Cell Tissue Res 2008; 332:159-70; http://dx.doi.org/10.1007/s00441-007-0540-1. PubMed DOI
Santos HB, Rizzo E, Bazzoli N, Sato Y, Moro L. Ovarian regression and apoptosis in the South American teleost Leporinus taeniatus Lutken (Characiformes, Anostomidae) from the São Francisco Basin. 2005; 67:1446-59.
Couve E, Schmachtenberg O. Autophagic activity and aging in human odontoblasts. J Dent Res 2011; 90:523-8; http://dx.doi.org/10.1177/0022034510393347. PubMed DOI
Gonzalez-Estevez C. Autophagy in freshwater planarians. Methods Enzymol 2008; 451:439-65; http://dx.doi.org/10.1016/S0076-6879(08)03227-8. PubMed DOI
Gonzalez-Estevez C, Felix DA, Aboobaker AA, Salo E. Gtdap-1 promotes autophagy and is required for planarian remodeling during regeneration and starvation. Proc Natl Acad Sci USA 2007; 104:13373-8; http://dx.doi.org/10.1073/pnas.0703588104. PubMed DOI PMC
Toyooka K, Moriyasu Y, Goto Y, Takeuchi M, Fukuda H, Matsuoka K. Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2006; 2:96-106; http://dx.doi.org/10.4161/auto.2.2.2366. PubMed DOI
Corral-Martinez P, Parra-Vega V, Segui-Simarro JM. Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. J Exp Bot 2013; 64:3061-75. PubMed
Le Bars R, Marion J, Le Borgne R, Satiat-Jeunemaitre B, Bianchi MW. ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. Nat Commun 2014; 5:4121; http://dx.doi.org/10.1038/ncomms5121. PubMed DOI
Shin KD, Lee HN, Chung T. A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol Cells 2014; 37:399-405; http://dx.doi.org/10.14348/molcells.2014.0042. PubMed DOI PMC
Svenning S, Lamark T, Krause K, Johansen T. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 2011; 7:993-1010; http://dx.doi.org/10.4161/auto.7.9.16389. PubMed DOI PMC
Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Surowiecki P, Lewandowska M, Liszewska F, Wawrzynska A, Sirko A. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 2011; 7:1145-58; http://dx.doi.org/10.4161/auto.7.10.16617. PubMed DOI PMC
Minina EA, Sanchez-Vera V, Moschou PN, Suarez MF, Sundberg E, Weih M, Bozhkov PV. Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis. Aging Cell 2013; 12:327-9; http://dx.doi.org/10.1111/acel.12048. PubMed DOI
van Doorn WG, Papini A. Ultrastructure of autophagy in plant cells: a review. Autophagy 2013; 9:1922-36; http://dx.doi.org/10.4161/auto.26275. PubMed DOI
Moriyasu Y, Inoue Y. Use of protease inhibitors for detecting autophagy in plants. Methods Enzymol 2008; 451:557-80; http://dx.doi.org/10.1016/S0076-6879(08)03232-1. PubMed DOI
Moriyasu Y, Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Phys 1996; 111:1233-41. PubMed PMC
Inoue Y, Moriyasu Y. Autophagy is not a main contributor to the degradation of phospholipids in tobacco cells cultured under sucrose starvation conditions. Plant Cell Physiol 2006; 47:471-80; http://dx.doi.org/10.1093/pcp/pcj013. PubMed DOI
Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y. 3-methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol 2004; 45:265-74; http://dx.doi.org/10.1093/pcp/pch031. PubMed DOI
Besteiro S, Brooks CF, Striepen B, Dubremetz J-F. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathog 2011; 7:e1002416. PubMed PMC
Calvo-Garrido J, Carilla-Latorre S, Kubohara Y, Santos-Rodrigo N, Mesquita A, Soldati T, Golstein P, Escalante R. Autophagy in Dictyostelium: genes and pathways, cell death and infection. Autophagy 2010; 6:686-701; http://dx.doi.org/10.4161/auto.6.6.12513. PubMed DOI
Tung SM, Unal C, Ley A, Pena C, Tunggal B, Noegel AA, Krut O, Steinert M, Eichinger L. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 2010; 12:765-80; http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x. PubMed DOI
Bozzaro S, Eichinger L. The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 2011; 12:942-54; http://dx.doi.org/10.2174/138945011795677782. PubMed DOI PMC
Schlegel M, Hülsmann N. Protists – A textbook example for a paraphyletic taxon. Org Divers Evol 2007; 7:166-72; http://dx.doi.org/10.1016/j.ode.2006.11.001. DOI
Kitamura K, Kishi-Itakura C, Tsuboi T, Sato S, Kita K, Ohta N, Mizushima N. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PloS One 2012; 7:e42977; http://dx.doi.org/10.1371/journal.pone.0042977. PubMed DOI PMC
Barquilla A, Crespo JL, Navarro M. Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci USA 2008; 105:14579-84; http://dx.doi.org/10.1073/pnas.0802668105. PubMed DOI PMC
Hain AU, Bartee D, Sanders NG, Miller AS, Sullivan DJ, Levitskaya J, Meyers CF, Bosch J. Identification of an Atg8-Atg3 protein-protein interaction inhibitor from the medicines for Malaria Venture Malaria Box active in blood and liver stage Plasmodium falciparum parasites. J Med Chem 2014; 57:4521-31; http://dx.doi.org/10.1021/jm401675a. PubMed DOI PMC
Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR, Graham DR, Colquhoun DR, Coppens I, Bosch J. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J Struct Biol 2012; 180:551-62; http://dx.doi.org/10.1016/j.jsb.2012.09.001. PubMed DOI PMC
Navale R, Atul , Allanki AD, Sijwali PS. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum. PloS One 2014; 9:e113220; http://dx.doi.org/10.1371/journal.pone.0113220. PubMed DOI PMC
Morais P, Lamas J, Sanmartin ML, Orallo F, Leiro J. Resveratrol induces mitochondrial alterations, autophagy and a cryptobiosis-like state in scuticociliates. Protist 2009; 160:552-64; http://dx.doi.org/10.1016/j.protis.2009.04.004. PubMed DOI
Yakisich JS, Kapler GM. The effect of phosphoinositide 3-kinase inhibitors on programmed nuclear degradation in Tetrahymena and fate of surviving nuclei. Cell Death Differ 2004; 11:1146-9; http://dx.doi.org/10.1038/sj.cdd.4401473. PubMed DOI
Akematsu T, Pearlman RE, Endoh H. Gigantic macroautophagy in programmed nuclear death of Tetrahymena thermophila. Autophagy 2010; 6:901-11; http://dx.doi.org/10.4161/auto.6.7.13287. PubMed DOI PMC
Akematsu T, Fukuda Y, Attiq R, Pearlman RE. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. Autophagy 2014; 10:209-25; http://dx.doi.org/10.4161/auto.26929. PubMed DOI PMC
Liu ML, Yao MC. Role of ATG8 and autophagy in programmed nuclear degradation in Tetrahymena thermophila. Eukaryot Cell 2012; 11:494-506; http://dx.doi.org/10.1128/EC.05296-11. PubMed DOI PMC
Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, et al.. Status and opportunities for genomics research with rainbow trout. Comp Biochem Phys B 2002; 133:609-46; http://dx.doi.org/10.1016/S1096-4959(02)00167-7. PubMed DOI
Govoroun M, Le Gac F, Guiguen Y. Generation of a large scale repertoire of Expressed Sequence Tags (ESTs) from normalised rainbow trout cDNA libraries. BMC Genomics 2006; 7:196; http://dx.doi.org/10.1186/1471-2164-7-196. PubMed DOI PMC
Rexroad CE III, Lee Y, Keele JW, Karamycheva S, Brown G, Koop B, Gahr SA, Palti Y, Quackenbush J. Sequence analysis of a rainbow trout cDNA library and creation of a gene index. Cytogenetic Genome Res 2003; 102:347-54; http://dx.doi.org/10.1159/000075773. PubMed DOI
Rise ML, von Schalburg KR, Brown GD, Mawer MA, Devlin RH, Kuipers N, Busby M, Beetz-Sargent M, Alberto R, Gibbs AR, et al.. Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Res 2004; 14:478-90; http://dx.doi.org/10.1101/gr.1687304. PubMed DOI PMC
Salem M, Rexroad CE III, Wang J, Thorgaard GH, Yao J. Characterization of the rainbow trout transcriptome using Sanger and 454-pyrosequencing approaches. BMC Genomics 2010; 11:564; http://dx.doi.org/10.1186/1471-2164-11-564. PubMed DOI PMC
Polakof S, Panserat S, Craig PM, Martyres DJ, Plagnes-Juan E, Savari S, Aris-Brosou S, Moon TW. The metabolic consequences of hepatic AMP-kinase phosphorylation in rainbow trout. PloS One 2011; 6:e20228; http://dx.doi.org/10.1371/journal.pone.0020228. PubMed DOI PMC
Seiliez I, Gabillard JC, Skiba-Cassy S, Garcia-Serrana D, Gutierrez J, Kaushik S, Panserat S, Tesseraud S. An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Physiol Reg Integ Comp Physiol 2008; 295:R329-35; http://dx.doi.org/10.1152/ajpregu.00146.2008. PubMed DOI
Seiliez I, Gabillard J-C, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 2012; 8:364-75. PubMed
Chiarelli R, Agnello M, Bosco L, Roccheri MC. Sea urchin embryos exposed to cadmium as an experimental model for studying the relationship between autophagy and apoptosis. Mar Environ Res 2014; 93:47-55; http://dx.doi.org/10.1016/j.marenvres.2013.06.001. PubMed DOI
Umemiya R, Matsuo T, Hatta T, Sakakibara S, Boldbaatar D, Fujisaki K. Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis. Insect Biochem Molec 2007; 37:975-84; http://dx.doi.org/10.1016/j.ibmb.2007.05.006. PubMed DOI
Kawano S, Umemiya-Shirafuji R, Boldbaatar D, Matsuoka K, Tanaka T, Fujisaki K. Cloning and characterization of the autophagy-related gene 6 from the hard tick, Haemaphysalis longicornis. Parasitol Res 2011; 109:1341-9; http://dx.doi.org/10.1007/s00436-011-2429-x. PubMed DOI
Umemiya-Shirafuji R, Matsuo T, Liao M, Boldbaatar D, Battur B, Suzuki HI, Fujisaki K. Increased expression of ATG genes during nonfeeding periods in the tick Haemaphysalis longicornis. Autophagy 2010; 6:473-81; http://dx.doi.org/10.4161/auto.6.4.11668. PubMed DOI
Umemiya-Shirafuji R, Galay RL, Maeda H, Kawano S, Tanaka T, Fukumoto S, Suzuki H, Tsuji N, Fujisaki K. Expression analysis of autophagy-related genes in the hard tick Haemaphysalis longicornis. Vet Parasitol 2014; 201:169-75; http://dx.doi.org/10.1016/j.vetpar.2014.01.024. PubMed DOI
de la Fuente J, Kocan KM, Almazan C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 2007; 23:427-33; http://dx.doi.org/10.1016/j.pt.2007.07.002. PubMed DOI
Ayllón N, Villar V, Galindo RC, Kocan KM, Šíma R, López JA, Vázquez J, Alberdi P, Cabezas-Cruz A, Kopáček P, et al.. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet 2015; 11:e1005120; http://dx.doi.org/10.1371/journal.pgen.1005120. PubMed DOI PMC
Genomic Resources Development C, Contreras M, de la Fuente J, Estrada-Pena A, Grubhoffer L, Tobes R. Genomic resources notes accepted 1 April 2014 - 31 May 2014. Mol Ecol Resour 2014; 14:1095. PubMed
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF. Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 2014; 10:572-87; http://dx.doi.org/10.4161/auto.27649. PubMed DOI PMC
Sasaki T, Lian S, Qi J, Bayliss PE, Carr CE, Johnson JL, Guha S, Kobler P, Catz SD, Gill M, et al.. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet 2014; 10:e1004409; http://dx.doi.org/10.1371/journal.pgen.1004409. PubMed DOI PMC
He C, Bartholomew CR, Zhou W, Klionsky DJ. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 2009; 5:520-6; http://dx.doi.org/10.4161/auto.5.4.7768. PubMed DOI PMC
Komoike Y, Shimojima K, Liang JS, Fujii H, Maegaki Y, Osawa M, Fujii S, Higashinakagawa T, Yamamoto T. A functional analysis of GABARAP on 17p13.1 by knockdown zebrafish. J Hum Genet 2010; 55:155-62; http://dx.doi.org/10.1038/jhg.2010.1. PubMed DOI
Dowling JJ, Low SE, Busta AS, Feldman EL. Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 2010; 19:2668-81; http://dx.doi.org/10.1093/hmg/ddq153. PubMed DOI PMC
Makky K, Tekiela J, Mayer AN. Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Dev Biol 2007; 303:501-13; http://dx.doi.org/10.1016/j.ydbio.2006.11.030. PubMed DOI PMC
Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, et al.. PICALM modulates autophagy activity and tau accumulation. Nat Commun 2014; 5:4998; http://dx.doi.org/10.1038/ncomms5998. PubMed DOI PMC
Hishiya A, Salman MN, Carra S, Kampinga HH, Takayama S. BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity. PloS One 2011; 6:e16828; http://dx.doi.org/10.1371/journal.pone.0016828. PubMed DOI PMC
Ruparelia AA, Oorschot V, Vaz R, Ramm G, Bryson-Richardson RJ. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol 2014; 128:821-33; http://dx.doi.org/10.1007/s00401-014-1344-5. PubMed DOI
Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M, Cossart P, Herbomel P, Levraud JP, Colucci-Guyon E. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog 2013; 9:e1003588; http://dx.doi.org/10.1371/journal.ppat.1003588. PubMed DOI PMC
van der Vaart M, Korbee CJ, Lamers GE, Tengeler AC, Hosseini R, Haks MC, Ottenhoff TH, Spaink HP, Meijer AH. The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLP-MYD88 to Authophagic Defense. Cell Host Microbe 2014; 15:753-67; http://dx.doi.org/10.1016/j.chom.2014.05.005. PubMed DOI
Varga M, Sass M, Papp D, Takacs-Vellai K, Kobolak J, Dinnyes A, Klionsky DJ, Vellai T. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 2014; 21:547-56; http://dx.doi.org/10.1038/cdd.2013.175. PubMed DOI PMC
Benato F, Skobo T, Gioacchini G, Moro I, Ciccosanti F, Piacentini M, Fimia GM, Carnevali O, Dalla Valle L. Ambra1 knockdown in zebrafish leads to incomplete development due to severe defects in organogenesis. Autophagy 2013; 9:476-95; http://dx.doi.org/10.4161/auto.23278. PubMed DOI PMC
Skobo T, Benato F, Grumati P, Meneghetti G, Cianfanelli V, Castagnaro S, Chrisam M, Di Bartolomeo S, Bonaldo P, Cecconi F, et al.. Zebrafish ambra1a and ambra1b knockdown impairs skeletal muscle development. PloS One 2014; 9:e99210; http://dx.doi.org/10.1371/journal.pone.0099210. PubMed DOI PMC
Mizushima N. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol 2009; 452:13-23; http://dx.doi.org/10.1016/S0076-6879(08)03602-1. PubMed DOI
Henault J, Martinez J, Riggs JM, Tian J, Mehta P, Clarke L, Sasai M, Latz E, Brinkmann MM, Iwasaki A, et al.. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 2012; 37:986-97; http://dx.doi.org/10.1016/j.immuni.2012.09.014. PubMed DOI PMC
Varma H, Gangadhar NM, Letso RR, Wolpaw AJ, Sriramaratnam R, Stockwell BR. Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity. Exp Cell Res 2013; 319:1759-73; http://dx.doi.org/10.1016/j.yexcr.2013.03.019. PubMed DOI PMC
Kong-Hap MA, Mouammine A, Daher W, Berry L, Lebrun M, Dubremetz JF, Besteiro S. Regulation of ATG8 membrane association by ATG4 in the parasitic protist Toxoplasma gondii. Autophagy 2013; 9:1334-48; http://dx.doi.org/10.4161/auto.25189. PubMed DOI
Jayabalasingham B, Voss C, Ehrenman K, Romano JD, Smith ME, Fidock DA, Bosch J, Coppens I. Characterization of the ATG8-conjugation system in 2 Plasmodium species with special focus on the liver stage: possible linkage between the apicoplastic and autophagic systems? Autophagy 2014; 10:269-84; http://dx.doi.org/10.4161/auto.27166. PubMed DOI PMC
Tomlins AM, Ben-Rached F, Williams RA, Proto WR, Coppens I, Ruch U, Gilberger TW, Coombs GH, Mottram JC, Muller S, et al.. Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation. Autophagy 2013; 9:1540-52; http://dx.doi.org/10.4161/auto.25832. PubMed DOI
Mizushima N, Sahani MH. ATG8 localization in apicomplexan parasites: apicoplast and more? Autophagy 2014; 10:1487-94; http://dx.doi.org/10.4161/auto.32183. PubMed DOI PMC
Haldar AK, Piro AS, Pilla DM, Yamamoto M, Coers J. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance. PloS One 2014; 9:e86684; http://dx.doi.org/10.1371/journal.pone.0086684. PubMed DOI PMC
Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, Matsuura Y, Pann-Ghill S, Hayashi M, Ebisu S, et al.. Role of mouse and human autophagy proteins in IFN-gamma-induced cell-autonomous responses against Toxoplasma gondii. J Immunol 2014; 192:3328-35; http://dx.doi.org/10.4049/jimmunol.1302822. PubMed DOI
Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog 2009; 5:e1000288; http://dx.doi.org/10.1371/journal.ppat.1000288. PubMed DOI PMC
Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, et al.. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 2014; 509:366-70; http://dx.doi.org/10.1038/nature13157. PubMed DOI
Taguchi Y, Imaoka K, Kataoka M, Uda A, Nakatsu D, Horii-Okazaki S, Kunishige R, Kano F, Murata M. Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog 2015; 11:e1004747; http://dx.doi.org/10.1371/journal.ppat.1004747. PubMed DOI PMC
Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C, Virgin HW, Celli J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012; 11:33-45; http://dx.doi.org/10.1016/j.chom.2011.12.002. PubMed DOI PMC
Ferguson TA, Green DR. Autophagy and phagocytosis converge for better vision. Autophagy 2014; 10:165-7; http://dx.doi.org/10.4161/auto.26735. PubMed DOI PMC
Mehta P, Henault J, Kolbeck R, Sanjuan MA. Noncanonical autophagy: one small step for LC3, one giant leap for immunity. Curr Opin Immunol 2014; 26:69-75; http://dx.doi.org/10.1016/j.coi.2013.10.012. PubMed DOI
Scarlatti F, Maffei R, Beau I, Ghidoni R, Codogno P. Non-canonical autophagy: an exception or an underestimated form of autophagy? Autophagy 2008; 4:1083-5; http://dx.doi.org/10.4161/auto.7068. PubMed DOI
Takeshita F, Kobiyama K, Miyawaki A, Jounai N, Okuda K. The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy 2008; 4:67-9; http://dx.doi.org/10.4161/auto.5055. PubMed DOI
Deretic V, Jiang S, Dupont N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 2012; 22:397-406; http://dx.doi.org/10.1016/j.tcb.2012.04.008. PubMed DOI PMC
Cleyrat C, Darehshouri A, Steinkamp MP, Vilaine M, Boassa D, Ellisman MH, Hermouet S, Wilson BS. Mpl traffics to the cell surface through conventional and unconventional routes. Traffic 2014; 15:961-82; http://dx.doi.org/10.1111/tra.12185. PubMed DOI PMC
Hughes T, Rusten TE. Origin and evolution of self-consumption: autophagy. Adv Exp Med Biol 2007; 607:111-8; http://dx.doi.org/10.1007/978-0-387-74021-8. PubMed DOI
JA Kiel. Autophagy in unicellular eukaryotes. Philos Trans R Soc B 2010; 365:819-30; http://dx.doi.org/10.1098/rstb.2009.0237. PubMed DOI PMC
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; http://dx.doi.org/10.1093/nar/25.17.3389. PubMed DOI PMC
Pertsemlidis A, Fondon JW III. Having a BLAST with bioinformatics (and avoiding BLASTphemy). Genome Biol 2001; 2:REVIEWS2002; http://dx.doi.org/10.1186/gb-2001-2-10-reviews2002. PubMed DOI PMC
B Rost. Twilight zone of protein sequence alignments. Protein engineering 1999; 12:85-94; http://dx.doi.org/10.1093/protein/12.2.85. PubMed DOI
Duszenko M, Ginger ML, Brennand A, Gualdron-Lopez M, Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langsley G, de Castro SL, et al.. Autophagy in protists. Autophagy 2011; 7:127-58; http://dx.doi.org/10.4161/auto.7.2.13310. PubMed DOI PMC
Rigden DJ, Michels PA, Ginger ML. Autophagy in protists: Examples of secondary loss, lineage-specific innovations, and the conundrum of remodeling a single mitochondrion. Autophagy 2009; 5:784-94; http://dx.doi.org/10.4161/auto.8838. PubMed DOI
Katsani KR, Irimia M, Karapiperis C, Scouras ZG, Blencowe BJ, Promponas VJ, Ouzounis CA. Functional genomics evidence unearths new moonlighting roles of outer ring coat nucleoporins. Sci Rep 2014; 4:4655; http://dx.doi.org/10.1038/srep04655. PubMed DOI PMC
Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC. Intrinsically disordered regions in autophagy proteins. Proteins 2014; 82:565-78; http://dx.doi.org/10.1002/prot.24424. PubMed DOI PMC
Promponas VJ, Ouzounis CA, Iliopoulos I. Experimental evidence validating the computational inference of functional associations from gene fusion events: a critical survey. Brief Bioinform 2014; 15:443-54; http://dx.doi.org/10.1093/bib/bbs072. PubMed DOI PMC
Homma K, Suzuki K, Sugawara H. The Autophagy Database: an all-inclusive information resource on autophagy that provides nourishment for research. Nucleic Acids Res 2011; 39:D986-90; http://dx.doi.org/10.1093/nar/gkq995. PubMed DOI PMC
Turei D, Foldvari-Nagy L, Fazekas D, Modos D, Kubisch J, Kadlecsik T, Demeter A, Lenti K, Csermely P, Vellai T, et al.. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy. Autophagy 2015; 11:155-65; http://dx.doi.org/10.4161/15548627.2014.994346. PubMed DOI PMC
Birgisdottir AB, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci 2013; 126:3237-47. PubMed
Wild P, McEwan DG, Dikic I. The LC3 interactome at a glance. J Cell Sci 2014; 127:3-9; http://dx.doi.org/10.1242/jcs.140426. PubMed DOI
Noda NN, Ohsumi Y, Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 2010; 584:1379-85; http://dx.doi.org/10.1016/j.febslet.2010.01.018. PubMed DOI
Kalvari I, Tsompanis S, Mulakkal NC, Osgood R, Johansen T, Nezis IP, Promponas VJ. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 2014; 10:913-25; http://dx.doi.org/10.4161/auto.28260. PubMed DOI PMC
Dosztanyi Z, Meszaros B, Simon I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 2009; 25:2745-6; http://dx.doi.org/10.1093/bioinformatics/btp518. PubMed DOI PMC
Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, Speck T, Kruger D, Grebnev G, Kuban M, et al.. The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 2014; 42:D259-66; http://dx.doi.org/10.1093/nar/gkt1047. PubMed DOI PMC
Wu D, Huang Y, Kang JJ, Li KN, Bi XM, Zhang T, Jin NN, Hu YF, Tan PW, Zhang L, et al.. ncRDeathDB: a comprehensive bioinformatics resource for deciphering network organization of the ncRNA-mediated cell death system. Autophagy 2015; 11:1917-26. PubMed PMC
Li Y, Zhuang L, Wang Y, Hu Y, Wu Y, Wang D, Xu J. Connect the dots: a systems level approach for analyzing the miRNA-mediated cell death network. Autophagy 2013; 9:436-9; http://dx.doi.org/10.4161/auto.23096. PubMed DOI PMC
Xu J, Li YH. miRDeathDB: a database bridging microRNAs and the programmed cell death. Cell Death Differ 2012; 19:1571; http://dx.doi.org/10.1038/cdd.2012.87. PubMed DOI PMC
Xu J, Wang Y, Tan X, Jing H. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 2012; 8:873-82; http://dx.doi.org/10.4161/auto.19629. PubMed DOI PMC
Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson JJ. Dynamic Modeling of the Interaction Between Autophagy and Apoptosis in Mammalian Cells. CPT Pharmacometrics Syst Pharmacol 2015; 4:263-72; http://dx.doi.org/10.1002/psp4.29. PubMed DOI PMC
Tavassoly I. Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells: Mathematical Modeling and Experimental Observations. Springer, 2015.
Borlin CS, Lang V, Hamacher-Brady A, Brady NR. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics. Cell Commun Signal 2014; 12:56; http://dx.doi.org/10.1186/s12964-014-0056-8. PubMed DOI PMC
Martin KR, Barua D, Kauffman AL, Westrate LM, Posner RG, Hlavacek WS, Mackeigan JP. Computational model for autophagic vesicle dynamics in single cells. Autophagy 2013; 9:74-92; http://dx.doi.org/10.4161/auto.22532. PubMed DOI PMC
Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, et al.. A comprehensive glossary of autophagy-related molecules and processes (2nd) edition). Autophagy 2011; 7:1273-94; http://dx.doi.org/10.4161/auto.7.11.17661. PubMed DOI PMC
Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, Gewirtz DA, Kroemer G, Levine B, Mizushima N, et al.. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 2010; 6:438-48; http://dx.doi.org/10.4161/auto.6.4.12244. PubMed DOI PMC
Rosich L, Xargay-Torrent S, Lopez-Guerra M, Campo E, Colomer D, Roue G. Counteracting autophagy overcomes resistance to everolimus in mantle cell lymphoma. Clin Cancer Res 2012; 18:5278-89; http://dx.doi.org/10.1158/1078-0432.CCR-12-0351. PubMed DOI
Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E, Cuervo AM. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat Chem Biol 2013; 9:374-82; http://dx.doi.org/10.1038/nchembio.1230. PubMed DOI PMC
De Mei C, Ercolani L, Parodi C, Veronesi M, Vecchio CL, Bottegoni G, Torrente E, Scarpelli R, Marotta R, Ruffili R, et al.. Dual inhibition of REV-ERBbeta and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. Oncogene 2015; 34:2597-608; http://dx.doi.org/10.1038/onc.2014.203. PubMed DOI PMC
Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 2008; 19:4651-9; http://dx.doi.org/10.1091/mbc.E08-03-0312. PubMed DOI PMC
Vanrell MC, Cueto JA, Barclay JJ, Carrillo C, Colombo MI, Gottlieb RA, Romano PS. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity. Autophagy 2013; 9:1080-93; http://dx.doi.org/10.4161/auto.24709. PubMed DOI PMC
Song W, Zukor H, Liberman A, Kaduri S, Arvanitakis Z, Bennett DA, Schipper HM. Astroglial heme oxygenase-1 and the origin of corpora amylacea in aging and degenerating neural tissues. Exp Neurol 2014; 254:78-89; http://dx.doi.org/10.1016/j.expneurol.2014.01.006. PubMed DOI PMC
Song W, Zukor H, Lin SH, Liberman A, Tavitian A, Mui J, Vali H, Fillebeen C, Pantopoulos K, Wu TD, et al.. Unregulated brain iron deposition in transgenic mice over-expressing HMOX1 in the astrocytic compartment. J Neurochem 2012; 123:325-36; http://dx.doi.org/10.1111/j.1471-4159.2012.07914.x. PubMed DOI
Zukor H, Song W, Liberman A, Mui J, Vali H, Fillebeen C, Pantopoulos K, Wu TD, Guerquin-Kern JL, Schipper HM. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues. J Neurochem 2009; 109:776-91; http://dx.doi.org/10.1111/j.1471-4159.2009.06007.x. PubMed DOI
Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 2009; 421:29-42; http://dx.doi.org/10.1042/BJ20090489. PubMed DOI PMC
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al.. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458:732-6; http://dx.doi.org/10.1038/nature07884. PubMed DOI
Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D, Pan Y, Ding C, Qian J, Wu L, et al.. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res 2012; 72:3360-71; http://dx.doi.org/10.1158/0008-5472.CAN-12-0388. PubMed DOI
Yang D, Zhao Y, Liu J, Sun Y, Jia L. Protective autophagy induced by RBX1/ROC1 knockdown or CRL inactivation via modulating the DEPTOR-MTOR axis. Autophagy 2012; 8:1856-8; http://dx.doi.org/10.4161/auto.22024. PubMed DOI PMC
Zhao Y, Xiong X, Jia L, Sun Y. Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis 2012; 3:e386; http://dx.doi.org/10.1038/cddis.2012.125. PubMed DOI PMC
Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, et al.. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008; 68:8022-30; http://dx.doi.org/10.1158/0008-5472.CAN-08-1385. PubMed DOI
Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM, Garcia-Echevrria C, Yung WK. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 2009; 8:2204-10; http://dx.doi.org/10.1158/1535-7163.MCT-09-0160. PubMed DOI PMC
Pirola L, Frojdo S. Resveratrol: one molecule, many targets. IUBMB Life 2008; 60:323-32; http://dx.doi.org/10.1002/iub.47. PubMed DOI
Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, et al.. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 2010; 285:9100-13; http://dx.doi.org/10.1074/jbc.M109.060061. PubMed DOI PMC
Puissant A, Auberger P. AMPK- and p62/SQSTM1-dependent autophagy mediate Resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy 2010; 6:655-7; http://dx.doi.org/10.4161/auto.6.5.12126. PubMed DOI
Vingtdeux V, Chandakkar P, Zhao H, d'Abramo C, Davies P, Marambaud P. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-[b] peptide degradation. The FASEB J 2011; 25:219-31; http://dx.doi.org/10.1096/fj.10-167361. PubMed DOI PMC
Wong VK, Li T, Law BY, Ma ED, Yip NC, Michelangeli F, Law CK, Zhang MM, Lam KY, Chan PL, et al.. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis 2013; 4:e720; http://dx.doi.org/10.1038/cddis.2013.217. PubMed DOI PMC
Gordon PB, Holen I, Fosse M, Rotnes JS, Seglen PO. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 1993; 268:26107-12. PubMed
Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42:731-43; http://dx.doi.org/10.1016/j.molcel.2011.04.024. PubMed DOI PMC
Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, Guo Y, Zhou G. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. Biochim Biophys Acta 2015; 1853:377-87; http://dx.doi.org/10.1016/j.bbamcr.2014.10.030. PubMed DOI
Casarejos MJ, Solano RM, Gomez A, Perucho J, de Yebenes JG, Mena MA. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int 2011; 58:512-20; http://dx.doi.org/10.1016/j.neuint.2011.01.008. PubMed DOI
Fernandez-Estevez MA, Casarejos MJ, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, Perucho J, de Yebenes JG, Mena MA. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PloS One 2014; 9:e90202; http://dx.doi.org/10.1371/journal.pone.0090202. PubMed DOI PMC
Carpenter JE, Jackson W, Benetti L, Grose C. Autophagosome formation during varicella-zoster virus Infection following endoplasmic reticulum stress and the unfolded protein response. J Virol 2011; 85:9414-24; http://dx.doi.org/10.1128/JVI.00281-11. PubMed DOI PMC
Lu Y, Dong S, Hao B, Li C, Zhu K, Guo W, Wang Q, Cheung KH, Wong CW, Wu WT, et al.. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 2014; 10:1895-905; http://dx.doi.org/10.4161/auto.32200. PubMed DOI PMC
Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I, Ammerer G, Kraft C, Peter M. Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy 2010; 6:1168-78; http://dx.doi.org/10.4161/auto.6.8.13849. PubMed DOI
Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 2010; 30:1049-58; http://dx.doi.org/10.1128/MCB.01344-09. PubMed DOI PMC
Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci USA 2009; 106:17049-54; http://dx.doi.org/10.1073/pnas.0903316106. PubMed DOI PMC
Wei Y, An Z, Zou Z, Sumpter R, Su M, Zang X, Sinha S, Gaestel M, Levine B. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. eLife 2015; 4. PubMed PMC
Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013; 152:290-303; http://dx.doi.org/10.1016/j.cell.2012.12.016. PubMed DOI PMC
Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 1999; 344 Pt 2:427-31; http://dx.doi.org/10.1042/bj3440427. PubMed DOI PMC
Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 2000; 275:7416-23; http://dx.doi.org/10.1074/jbc.275.10.7416. PubMed DOI
Nicot AS, Lo Verso F, Ratti F, Pilot-Storck F, Streichenberger N, Sandri M, Schaeffer L, Goillot E. Phosphorylation of NBR1 by GSK3 modulates protein aggregation. Autophagy 2014; 10:1036-53; http://dx.doi.org/10.4161/auto.28479. PubMed DOI PMC
Rosner M, Fuchs C, Siegel N, Valli A, Hengstschlager M. Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet 2009; 18:3298-310; http://dx.doi.org/10.1093/hmg/ddp271. PubMed DOI PMC
Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO. Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA 2011; 108:E1204-13; http://dx.doi.org/10.1073/pnas.1110195108. PubMed DOI PMC
Ro SH, Semple IA, Park H, Park H, Park HW, Kim M, Kim JS, Lee JH. Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J 2014; 281:3816-27. PubMed PMC
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J-L, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008; 181:497-510; http://dx.doi.org/10.1083/jcb.200712064. PubMed DOI PMC
Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 1999; 14:180-98; http://dx.doi.org/10.1006/mcne.1999.0780. PubMed DOI
Zhang N, Chen Y, Jiang R, Li E, Chen X, Xi Z, Guo Y, Liu X, Zhou Y, Che Y, et al.. PARP and RIP 1 are required for autophagy induced by 11'-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 2011; 7:598-612; http://dx.doi.org/10.4161/auto.7.6.15103. PubMed DOI
Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 2010; 142:590-600; http://dx.doi.org/10.1016/j.cell.2010.07.018. PubMed DOI PMC
Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 2007; 3: 374-6; http://dx.doi.org/10.4161/auto.4237. PubMed DOI
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, et al.. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435:677-81; http://dx.doi.org/10.1038/nature03579. PubMed DOI
Nazarko TY. Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy 2014; 10:1348-9; http://dx.doi.org/10.4161/auto.29073. PubMed DOI PMC
Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A, et al.. Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 2014; 19:431-44; http://dx.doi.org/10.1016/j.cmet.2014.02.010. PubMed DOI PMC
Marino G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso-Santano M, et al.. Regulation of autophagy by cytosolic acetyl-coenzyme a. Mol Cell 2014; 53:710-25; http://dx.doi.org/10.1016/j.molcel.2014.01.016. PubMed DOI
Nandi N, Tyra LK, Stenesen D, Kramer H. Acinus integrates AKT1 and subapoptotic caspase activities to regulate basal autophagy. J Cell Biol 2014; 207:253-68; http://dx.doi.org/10.1083/jcb.201404028. PubMed DOI PMC
Haberman AS, Akbar MA, Ray S, Kramer H. Drosophila acinus encodes a novel regulator of endocytic and autophagic trafficking. Development 2010; 137:2157-66. PubMed PMC
Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, et al.. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 2009; 11:1233-40; http://dx.doi.org/10.1038/ncb1967. PubMed DOI
Till A, Lipinski S, Ellinghaus D, Mayr G, Subramani S, Rosenstiel P, Franke A. Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy 2013; 9:1256-7; http://dx.doi.org/10.4161/auto.25483. PubMed DOI PMC
Eby KG, Rosenbluth JM, Mays DJ, Marshall CB, Barton CE, Sinha S, Johnson KN, Tang L, Pietenpol JA. ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy. Mol Cancer 2010; 9:95; http://dx.doi.org/10.1186/1476-4598-9-95. PubMed DOI PMC
Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ 3rd. The Receptor for Advanced Glycation End-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Sign 2011; 15:2175-84; http://dx.doi.org/10.1089/ars.2010.3378. PubMed DOI PMC
Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ. The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury. Antioxid Redox Sign 2011; 15:2175-84. PubMed PMC
Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C. BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 2011; 12:149-56; http://dx.doi.org/10.1038/embor.2010.203. PubMed DOI PMC
Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J Cell Biol 1998; 143:1883-98; http://dx.doi.org/10.1083/jcb.143.7.1883. PubMed DOI PMC
Viana R, Aguado C, Esteban I, Moreno D, Viollet B, Knecht E, Sanz P. Role of AMP-activated protein kinase in autophagy and proteasome function. Biochem Biophys Res Commun 2008; 369:964-8; http://dx.doi.org/10.1016/j.bbrc.2008.02.126. PubMed DOI
Hadano S, Otomo A, Kunita R, Suzuki-Utsunomiya K, Akatsuka A, Koike M, Aoki M, Uchiyama Y, Itoyama Y, Ikeda JE. Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking. PloS One 2010; 5:e9805; http://dx.doi.org/10.1371/journal.pone.0009805. PubMed DOI PMC
Otomo A, Kunita R, Suzuki-Utsunomiya K, Ikeda JE, Hadano S. Defective relocalization of ALS2/alsin missense mutants to Rac1-induced macropinosomes accounts for loss of their cellular function and leads to disturbed amphisome formation. FEBS Lett 2011; 585:730-6; http://dx.doi.org/10.1016/j.febslet.2011.01.045. PubMed DOI
Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB, Corazzari M, Marsella C, Piselli P, Gretzmeier C, Dengjel J, et al.. AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev Cell 2014; 31:734-46; http://dx.doi.org/10.1016/j.devcel.2014.11.013. PubMed DOI
Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, De Zio D, Nazio F, Antonioli M, D'Orazio M, et al.. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 2015; 17:20-30; http://dx.doi.org/10.1038/ncb3072. PubMed DOI PMC
Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 2013; 24:1153-62; http://dx.doi.org/10.1091/mbc.E12-08-0607. PubMed DOI PMC
Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, Lin YJ, Wu CT, Liu HS. Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 2014; 59:505-17; http://dx.doi.org/10.1002/hep.26659. PubMed DOI PMC
Lee KY, Oh S, Choi YJ, Oh SH, Yang YS, Yang MJ, Lee K, Lee BH. Activation of autophagy rescues amiodarone-induced apoptosis of lung epithelial cells and pulmonary toxicity in rats. Toxicol Sci 2013; 136:193-204; http://dx.doi.org/10.1093/toxsci/kft168. PubMed DOI
Seglen PO, Berg TO, Blankson H, Fengsrud M, Holen I, Stromhaug PE. Structural aspects of autophagy. Adv Exp Med Biol 1996; 389:103-11; http://dx.doi.org/10.1007/978-1-4613-0335-0. PubMed DOI
Meijer AJ, Codogno P. AMP-activated protein kinase and autophagy. Autophagy 2007; 3:238-40; http://dx.doi.org/10.4161/auto.3710. PubMed DOI
Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E. The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. Plant Cell 2011; 23:3026-40; http://dx.doi.org/10.1105/tpc.111.087254. PubMed DOI PMC
Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C, Schwechheimer C, Brunner F, Huckelhoven R, Isono E. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 2013; 25:2236-52; http://dx.doi.org/10.1105/tpc.113.113399. PubMed DOI PMC
Costa R, Morrison A, Wang J, Manithody C, Li J, Rezaie AR. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. J Thromb Haemost 2012; 10:1736-44; http://dx.doi.org/10.1111/j.1538-7836.2012.04833.x. PubMed DOI PMC
Yuga M, Gomi K, Klionsky DJ, Shintani T. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 2011; 286:13704-13; http://dx.doi.org/10.1074/jbc.M110.173906. PubMed DOI PMC
Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 2009; 5:527-49; http://dx.doi.org/10.1016/j.chom.2009.05.016. PubMed DOI PMC
Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, Su DF, Pei G, Miao CY. ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy 2014; 10:1535-48; http://dx.doi.org/10.4161/auto.29203. PubMed DOI PMC
Keller KE, Yang YF, Sun YY, Sykes R, Acott TS, Wirtz MK. Ankyrin repeat and suppressor of cytokine signaling box containing protein-10 is associated with ubiquitin-mediated degradation pathways in trabecular meshwork cells. Mol Vis 2013; 19:1639-55. PubMed PMC
Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I, Harris AL. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 2010; 29:4424-35; http://dx.doi.org/10.1038/onc.2010.191. PubMed DOI
Sheng Z, Ma L, Sun JE, Zhu LJ, Green MR. BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription. Blood 2011; 118:2840-8; http://dx.doi.org/10.1182/blood-2010-12-322537. PubMed DOI PMC
Klionsky DJ, Cregg JM, Dunn WA Jr., Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, et al.. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5:539-45; http://dx.doi.org/10.1016/S1534-5807(03)00296-X. PubMed DOI
Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 1997; 192:245-50; http://dx.doi.org/10.1016/S0378-1119(97)00084-X. PubMed DOI
Shintani T, Suzuki K, Kamada Y, Noda T, Ohsumi Y. Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem 2001; 276:30452-60; http://dx.doi.org/10.1074/jbc.M102346200. PubMed DOI
Wang C-W, Kim J, Huang W-P, Abeliovich H, Stromhaug PE, Dunn WA Jr., Klionsky DJ. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 2001; 276:30442-51; http://dx.doi.org/10.1074/jbc.M102342200. PubMed DOI PMC
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, et al.. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408:488-92; http://dx.doi.org/10.1038/35044114. PubMed DOI
Schlumpberger M, Schaeffeler E, Straub M, Bredschneider M, Wolf DH, Thumm M. AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. J Bacteriol 1997; 179:1068-76. PubMed PMC
Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E. Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 2006; 273:2553-62; http://dx.doi.org/10.1111/j.1742-4658.2006.05260.x. PubMed DOI
Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature 1998; 395:395-8; http://dx.doi.org/10.1038/26506. PubMed DOI
Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 1999; 10:1337-51; http://dx.doi.org/10.1091/mbc.10.5.1337. PubMed DOI PMC
Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell 1999; 10:1367-79; http://dx.doi.org/10.1091/mbc.10.5.1367. PubMed DOI PMC
Noda T, Kim J, Huang W-P, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 2000; 148:465-80; http://dx.doi.org/10.1083/jcb.148.3.465. PubMed DOI PMC
Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, Scherer SW. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 2005; 280:18283-90; http://dx.doi.org/10.1074/jbc.M413957200. PubMed DOI
Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 1999; 18:5234-41; http://dx.doi.org/10.1093/emboj/18.19.5234. PubMed DOI PMC
Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, Baba M, Scott SV, Ohsumi Y, Dunn WA Jr., Klionsky DJ. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 2001; 153:381-96; http://dx.doi.org/10.1083/jcb.153.2.381. PubMed DOI PMC
Kamber RA, Shoemaker CJ, Denic V. receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol Cell 2015; 59:372-81; http://dx.doi.org/10.1016/j.molcel.2015.06.009. PubMed DOI PMC
Lin L, Yang P, Huang X, Zhang H, Lu Q, Zhang H. The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J Cell Biol 2013; 201:113-29; http://dx.doi.org/10.1083/jcb.201209098. PubMed DOI PMC
Li F, Chung T, Vierstra RD. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. 2014. PubMed PMC
Funakoshi T, Matsuura A, Noda T, Ohsumi Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 1997; 192:207-13; http://dx.doi.org/10.1016/S0378-1119(97)00031-0. PubMed DOI
Kametaka S, Okano T, Ohsumi M, Ohsumi Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 1998; 273:22284-91; http://dx.doi.org/10.1074/jbc.273.35.22284. PubMed DOI
Epple UD, Suriapranata I, Eskelinen E-L, Thumm M. Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 2001; 183: 5942-55; http://dx.doi.org/10.1128/JB.183.20.5942-5955.2001. PubMed DOI PMC
Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ. Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 2001; 276:2083-7; http://dx.doi.org/10.1074/jbc.C000739200. PubMed DOI PMC
van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2014; 25:290-301; http://dx.doi.org/10.1091/mbc.E13-08-0448. PubMed DOI PMC
Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 1999; 18:3888-96; http://dx.doi.org/10.1093/emboj/18.14.3888. PubMed DOI PMC
Massey DC, Parkes M. Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn's disease. Autophagy 2007; 3:649-51; http://dx.doi.org/10.4161/auto.5075. PubMed DOI
Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, Kim KM, Ye BD, Kim KJ, Park SH, et al.. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 2014; 63:80-7; http://dx.doi.org/10.1136/gutjnl-2013-305193. PubMed DOI
Chew LH, Setiaputra D, Klionsky DJ, Yip CK. Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy 2013; 9:1467-74; http://dx.doi.org/10.4161/auto.25687. PubMed DOI PMC
Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U, Popelka H, Yip CK, Klionsky DJ. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA 2013; 110:E2875-84; http://dx.doi.org/10.1073/pnas.1300064110. PubMed DOI PMC
Mao K, Chew LH, Yip CK, Klionsky DJ. The role of Atg29 phosphorylation in PAS assembly. Autophagy 2013; 9:2178-9; http://dx.doi.org/10.4161/auto.26740. PubMed DOI PMC
Leber R, Silles E, Sandoval IV, Mazon MJ. Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J Biol Chem 2001; 276:29210-7; http://dx.doi.org/10.1074/jbc.M101438200. PubMed DOI
Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell 2001; 7:1131-41; http://dx.doi.org/10.1016/S1097-2765(01)00263-5. PubMed DOI PMC
Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 2002; 277:30198-207; http://dx.doi.org/10.1074/jbc.M204736200. PubMed DOI PMC
Deng YZ, Qu Z, He Y, Naqvi NI. Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae. Autophagy 2012; 8:1058-70; http://dx.doi.org/10.4161/auto.20217. PubMed DOI PMC
Suriapranata I, Epple UD, Bernreuther D, Bredschneider M, Sovarasteanu K, Thumm M. The breakdown of autophagic vesicles inside the vacuole depends on Aut4p. J Cell Sci 2000; 113:4025-33. PubMed
Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 2006; 17:5094-104; http://dx.doi.org/10.1091/mbc.E06-06-0479. PubMed DOI PMC
Legakis JE, Yen W-L, Klionsky DJ. A cycling protein complex required for selective autophagy. Autophagy 2007; 3:422-32; http://dx.doi.org/10.4161/auto.4129. PubMed DOI
Tucker KA, Reggiori F, Dunn WA Jr., Klionsky DJ. Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 2003; 278:48445-52; http://dx.doi.org/10.1074/jbc.M309238200. PubMed DOI PMC
Monastyrska I, Kiel JAKW, Krikken AM, Komduur JA, Veenhuis M, van der Klei IJ. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy 2005; 1:92-100; http://dx.doi.org/10.4161/auto.1.2.1832. PubMed DOI
Cao Y, Klionsky DJ. Atg26 is not involved in autophagy-related pathways in Saccharomyces cerevisiae. Autophagy 2007; 3:17-20; http://dx.doi.org/10.4161/auto.3371. PubMed DOI
Yamashita S, Oku M, Wasada Y, Ano Y, Sakai Y. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J Cell Biol 2006; 173:709-17; http://dx.doi.org/10.1083/jcb.200512142. PubMed DOI PMC
Yen W-L, Legakis JE, Nair U, Klionsky DJ. Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 2007; 18:581-93; http://dx.doi.org/10.1091/mbc.E06-07-0612. PubMed DOI PMC
Stasyk OV, Stasyk OG, Mathewson RD, Farre JC, Nazarko VY, Krasovska OS, Subramani S, Cregg JM, Sibirny AA. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy 2006; 2:30-8; http://dx.doi.org/10.4161/auto.2226. PubMed DOI
Kawamata T, Kamada Y, Suzuki K, Kuboshima N, Akimatsu H, Ota S, Ohsumi M, Ohsumi Y. Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 2005; 338:1884-9; http://dx.doi.org/10.1016/j.bbrc.2005.10.163. PubMed DOI
Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y. Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 356:405-10; http://dx.doi.org/10.1016/j.bbrc.2007.02.150. PubMed DOI
Watanabe Y, Noda NN, Kumeta H, Suzuki K, Ohsumi Y, Inagaki F. Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. J Biol Chem 2010; 285:30026-33; http://dx.doi.org/10.1074/jbc.M110.143545. PubMed DOI PMC
Meijer WH, van der Klei IJ, Veenhuis M, Kiel JAKW. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 2007; 3:106-16. PubMed
Nazarko VY, Nazarko TY, Farre JC, Stasyk OV, Warnecke D, Ulaszewski S, Cregg JM, Sibirny AA, Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 2011; 7:375-85; http://dx.doi.org/10.4161/auto.7.4.14369. PubMed DOI PMC
Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 2012; 31:2852-68; http://dx.doi.org/10.1038/emboj.2012.151. PubMed DOI PMC
Araki Y, Ku WC, Akioka M, May AI, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol 2013; 203:299-313; http://dx.doi.org/10.1083/jcb.201304123. PubMed DOI PMC
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 2009; 5:973-9; http://dx.doi.org/10.4161/auto.5.7.9296. PubMed DOI
Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 2009; 5:649-62; http://dx.doi.org/10.4161/auto.5.5.8249. PubMed DOI
Honig A, Avin-Wittenberg T, Ufaz S, Galili G. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 2012; 24:288-303; http://dx.doi.org/10.1105/tpc.111.093112. PubMed DOI PMC
Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron MH, Doudnikoff E, Vital A, Vila M, Klein C, Bezard E. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci USA 2012; 109:9611-6; http://dx.doi.org/10.1073/pnas.1112368109. PubMed DOI PMC
Gusdon AM, Zhu J, Van Houten B, Chu CT. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neuobiol Dis 2012; 45:962-72; http://dx.doi.org/10.1016/j.nbd.2011.12.015. PubMed DOI PMC
Niu H, Rikihisa Y. Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 2013; 9:787-8; http://dx.doi.org/10.4161/auto.23693. PubMed DOI PMC
Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc Natl Acad Sci USA 2012; 109:20800-7; http://dx.doi.org/10.1073/pnas.1218674109. PubMed DOI PMC
Isakson P, Bjoras M, Boe SO, Simonsen A. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 2010; 116:2324-31; http://dx.doi.org/10.1182/blood-2010-01-261040. PubMed DOI
Orfali N, McKenna SL, Cahill MR, Gudas LJ, Mongan NP. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia. Exp Cell Res 2014; 324:1-12; http://dx.doi.org/10.1016/j.yexcr.2014.03.018. PubMed DOI PMC
Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 2011; 23:785-805; http://dx.doi.org/10.1105/tpc.110.081570. PubMed DOI PMC
Papp D, Kovacs T, Billes V, Varga M, Tarnoci A, Hackler L Jr, et al. AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects. Autophagy 2015; 11:in press. PubMed PMC
Dunn WA., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 1990; 110:1923-33; http://dx.doi.org/10.1083/jcb.110.6.1923. PubMed DOI PMC
Schulze RJ, Weller SG, Schroeder B, Krueger EW, Chi S, Casey CA, McNiven MA. Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 2013; 203:315-26; http://dx.doi.org/10.1083/jcb.201306140. PubMed DOI PMC
Gundara JS, Robinson BG, Sidhu SB. Evolution of the “autophagamiR”. Autophagy 2011; 7:1553-4; http://dx.doi.org/10.4161/auto.7.12.17762. PubMed DOI PMC
Mijaljica D, Nazarko TY, Brumell JH, Huang WP, Komatsu M, Prescott M, Simonsen A, Yamamoto A, Zhang H, Klionsky DJ, et al.. Receptor protein complexes are in control of autophagy. Autophagy 2012; 8:1701-5; http://dx.doi.org/10.4161/auto.21332. PubMed DOI PMC
Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, Elazar Z. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 2015; 34:2117-31; http://dx.doi.org/10.15252/embj.201490315. PubMed DOI PMC
Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 2009; 28:889-901; http://dx.doi.org/10.1038/emboj.2009.29. PubMed DOI PMC
Sebti S, Prebois C, Perez-Gracia E, Bauvy C, Desmots F, Pirot N, Gongora C, Bach AS, Hubberstey AV, Palissot V, et al.. BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proc Natl Acad Sci USA 2014; 111:4115-20; http://dx.doi.org/10.1073/pnas.1313618111. PubMed DOI PMC
Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F. Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem 2012; 287:16256-66; http://dx.doi.org/10.1074/jbc.M112.348250. PubMed DOI PMC
Lindqvist LM, Heinlein M, Huang DC, Vaux DL. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci USA 2014; 111:8512-7; http://dx.doi.org/10.1073/pnas.1406425111. PubMed DOI PMC
Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, et al.. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 2015; 6:7527; http://dx.doi.org/10.1038/ncomms8527. PubMed DOI PMC
Paul S, Kashyap AK, Jia W, He YW, Schaefer BC. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 2012; 36:947-58; http://dx.doi.org/10.1016/j.immuni.2012.04.008. PubMed DOI PMC
Liang X, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402:672-6; http://dx.doi.org/10.1038/45257. PubMed DOI
Hurley JH, Schulman BA. Atomistic autophagy: the structures of cellular self-digestion. Cell 2014; 157:300-11; http://dx.doi.org/10.1016/j.cell.2014.01.070. PubMed DOI PMC
Cheng B, Xu A, Qiao M, Wu Q, Wang W, Mei Y, Wu M. BECN1s, a short splice variant of BECN1, functions in mitophagy. Autophagy 2015; in press. PubMed PMC
He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch LN, Khan S, Sinha S, et al.. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell 2013; 154:1085-99; http://dx.doi.org/10.1016/j.cell.2013.07.035. PubMed DOI PMC
Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao J, Zhang BP, Cui GH. Betulinic acid inhibits autophagic flux and induces apoptosis in human multiple myeloma cells in vitro. Acta Pharmacol Sin 2012; 33:1542-8; http://dx.doi.org/10.1038/aps.2012.102. PubMed DOI PMC
Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, Poletti A, Krom S, Reits E, Kampinga HH, Carra S. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: Implications for a proteasome-to-autophagy switch. Autophagy 2014; 10. PubMed PMC
Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 1994; 79:341-51; http://dx.doi.org/10.1016/0092-8674(94)90202-X. PubMed DOI
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 2012; 287:19094-104; http://dx.doi.org/10.1074/jbc.M111.322933. PubMed DOI PMC
Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metab 2015; 3:4; http://dx.doi.org/10.1186/s40170-015-0130-8. PubMed DOI PMC
Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 2010; 11:459-65; http://dx.doi.org/10.1038/embor.2010.50. PubMed DOI PMC
Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino TA, Cleveland JL, Brindle PK. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 2005; 24:3846-58; http://dx.doi.org/10.1038/sj.emboj.7600846. PubMed DOI PMC
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007; 27:6229-42; http://dx.doi.org/10.1128/MCB.02246-06. PubMed DOI PMC
Feng X, Liu X, Zhang W, Xiao W. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J 2011; 30:3397-415; http://dx.doi.org/10.1038/emboj.2011.248. PubMed DOI PMC
Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F, Weidman D, Scramstad C, Weisman H, Kirshenbaum LA. Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci USA 2008; 105:20734-9; http://dx.doi.org/10.1073/pnas.0807735105. PubMed DOI PMC
Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, et al.. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007; 117:2825-33; http://dx.doi.org/10.1172/JCI32490. PubMed DOI PMC
Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW 2nd, Brady MJ, Macleod KF. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 2012; 32:2570-84; http://dx.doi.org/10.1128/MCB.00167-12. PubMed DOI PMC
Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, et al.. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17:719-30; http://dx.doi.org/10.1016/j.cmet.2013.03.014. PubMed DOI
Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V, Halloran MA, Gleeson PA, Blair IP, Soo KY, et al.. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 2014; 23:3579-95; http://dx.doi.org/10.1093/hmg/ddu068. PubMed DOI PMC
O'Farrell F, Wang S, Katheder N, Rusten TE, Samakovlis C. Two-tiered control of epithelial growth and autophagy by the insulin receptor and the ret-like receptor, stitcher. PLoS Biol 2013; 11:e1001612. PubMed PMC
Ikeda H, Hideshima T, Fulciniti M, Perrone G, Mimura N, Yasui H, Okawa Y, Kiziltepe T, Santo L, Vallet S, et al.. PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 2010; 116:1460-8; http://dx.doi.org/10.1182/blood-2009-06-222943. PubMed DOI PMC
Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, Ma X, Ma D, Yuan J. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 2010; 6:61-6; http://dx.doi.org/10.4161/auto.6.1.10326. PubMed DOI PMC
Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 2010; 16:3100-4; http://dx.doi.org/10.1158/1078-0432.CCR-09-2891. PubMed DOI
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al.. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13:54-61; http://dx.doi.org/10.1038/nm1523. PubMed DOI
Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photoch Photobio Sci 2014; 13:474-87; http://dx.doi.org/10.1039/c3pp50333j. PubMed DOI
Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 2005; 280:29060-6; http://dx.doi.org/10.1074/jbc.M503824200. PubMed DOI
Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen E-L, Schneider C. Calpain is required for macroautophagy in mammalian cells. J Cell Biol 2006; 175:595-605; http://dx.doi.org/10.1083/jcb.200601024. PubMed DOI PMC
Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen Q. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 2010; 1:468-77; http://dx.doi.org/10.1007/s13238-010-0048-4. PubMed DOI PMC
Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J, Zhang L. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res 2011; 71:3625-34; http://dx.doi.org/10.1158/0008-5472.CAN-10-4475. PubMed DOI PMC
Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P. A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Mol Biol Cell 2011; 22:673-86; http://dx.doi.org/10.1091/mbc.E10-08-0738. PubMed DOI PMC
Latterich M, Frohlich KU, Schekman R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 1995; 82:885-93; http://dx.doi.org/10.1016/0092-8674(95)90268-6. PubMed DOI
Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen E-L, Thumm M. Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 2010; 190:965-73; http://dx.doi.org/10.1083/jcb.201002075. PubMed DOI PMC
Joubert PE, Meiffren G, Gregoire IP, Pontini G, Richetta C, Flacher M, Azocar O, Vidalain PO, Vidal M, Lotteau V, et al.. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 2009; 6:354-66; http://dx.doi.org/10.1016/j.chom.2009.09.006. PubMed DOI
Orlotti NI, Cimino-Reale G, Borghini E, Pennati M, Sissi C, Perrone F, Palumbo M, Daidone MG, Folini M, Zaffaroni N. Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy 2012; 8:1185-96; http://dx.doi.org/10.4161/auto.20519. PubMed DOI
Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, et al.. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9:218-24; http://dx.doi.org/10.1038/ncb1537. PubMed DOI
Budina-Kolomets A, Hontz RD, Pimkina J, Murphy ME. A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction. Autophagy 2013; 9:1553-65; http://dx.doi.org/10.4161/auto.25831. PubMed DOI PMC
Cuervo AM. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 2010; 21:142-50; http://dx.doi.org/10.1016/j.tem.2009.10.003. PubMed DOI PMC
Dice J. Chaperone-mediated autophagy. Autophagy 2007; 3:295-9; http://dx.doi.org/10.4161/auto.4144. PubMed DOI
Agarraberes F, Terlecky S, Dice J. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 1997; 137:825-34; http://dx.doi.org/10.1083/jcb.137.4.825. PubMed DOI PMC
Cuervo A, Dice J. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501-3; http://dx.doi.org/10.1126/science.273.5274.501. PubMed DOI
Mitsuhashi S, Hatakeyama H, Karahashi M, Koumura T, Nonaka I, Hayashi YK, Noguchi S, Sher RB, Nakagawa Y, Manfredi G, et al.. Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet 2011; 20:3841-51; http://dx.doi.org/10.1093/hmg/ddr305. PubMed DOI PMC
Fedorko M. Effect of chloroquine on morphology of cytoplasmic granules in maturing human leukocytes–an ultrastructural study. J Clin Invest 1967; 46:1932-42; http://dx.doi.org/10.1172/JCI105683. PubMed DOI PMC
Chang NC, Nguyen M, Germain M, Shore GC. Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J 2010; 29:606-18; http://dx.doi.org/10.1038/emboj.2009.369. PubMed DOI PMC
Chen YF, Kao CH, Chen YT, Wang CH, Wu CY, Tsai CY, Liu FC, Yang CW, Wei YH, Hsu MT, et al.. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev 2009; 23:1183-94; http://dx.doi.org/10.1101/gad.1779509. PubMed DOI PMC
Yang Z, Geng J, Yen W-L, Wang K, Klionsky DJ. Positive or negative regulatory roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae Mol Cell 2010; 38:250-64; http://dx.doi.org/10.1016/j.molcel.2010.02.033. PubMed DOI PMC
Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 2006; 281:20483-93; http://dx.doi.org/10.1074/jbc.M602180200. PubMed DOI
Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M, Oh H, Wolf P, Zhao WN, Norton S, et al.. Unbiased Cell-based Screening in a Neuronal Cell Model of Batten Disease Highlights an Interaction between Ca2+ Homeostasis, Autophagy, and CLN3 Protein Function. J Biol Chem 2015; 290:14361-80; http://dx.doi.org/10.1074/jbc.M114.621706. PubMed DOI PMC
Cortese A, Tucci A, Piccolo G, Galimberti CA, Fratta P, Marchioni E, Grampa G, Cereda C, Grieco G, Ricca I, et al.. Novel CLN3 mutation causing autophagic vacuolar myopathy. Neurology 2014; 82:2072-6; http://dx.doi.org/10.1212/WNL.0000000000000490. PubMed DOI PMC
Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, Bowne SJ, Sullivan LS, Luo H, Zhao L, et al.. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet 2014; 133:331-45; http://dx.doi.org/10.1007/s00439-013-1381-5. PubMed DOI PMC
Yen W-L, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M, Klionsky DJ. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 2010; 188:101-14; http://dx.doi.org/10.1083/jcb.200904075. PubMed DOI PMC
Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B, Ballot C, Blazejewski C, Corseaux D, Lescure B, et al.. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PloS One 2012; 7:e41836; http://dx.doi.org/10.1371/journal.pone.0041836. PubMed DOI PMC
Chen LL, Song JX, Lu JH, Yuan ZW, Liu LF, Durairajan SS, Li M. Corynoxine, a Natural Autophagy Enhancer, Promotes the Clearance of Alpha-Synuclein via Akt/mTOR Pathway. J Neuroimmune Pharm 2014:380-7; http://dx.doi.org/10.1007/s11481-014-9528-2. PubMed DOI
Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L, Shen HM, Chan HY, Li M. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 2012; 8:98-108 (see also the erratum in Autophagy 2012; 8:864-6); 10.4161/auto.8.1.18313. PubMed DOI
Smith RE, Farquhar MG. Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J Cell Biol 1966; 31:319-47; http://dx.doi.org/10.1083/jcb.31.2.319. PubMed DOI PMC
Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HWI, Kyei GB, Johansen T, Vergne I, et al.. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 2010; 32:329-41; http://dx.doi.org/10.1016/j.immuni.2010.02.009. PubMed DOI PMC
Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, et al.. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy 2015:0. PubMed PMC
Sun LL, Li M, Suo F, Liu XM, Shen EZ, Yang B, Dong MQ, He WZ, Du LL. Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet 2013; 9:e1003715; http://dx.doi.org/10.1371/journal.pgen.1003715. PubMed DOI PMC
Campbell EM, Fares H. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 2010; 11:40; http://dx.doi.org/10.1186/1471-2121-11-40. PubMed DOI PMC
Fares H, Greenwald I. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 2001; 28:64-8. PubMed
Hersh BM, Hartwieg E, Horvitz HR. The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 2002; 99:4355-60; http://dx.doi.org/10.1073/pnas.062065399. PubMed DOI PMC
Sun T, Wang X, Lu Q, Ren H, Zhang H. CUP-5, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes. Autophagy 2011; 7:1308-15; http://dx.doi.org/10.4161/auto.7.11.17759. PubMed DOI
Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 2011; 195:979-92; http://dx.doi.org/10.1083/jcb.201106098. PubMed DOI PMC
Wang M, Tan W, Zhou J, Leow J, Go M, Lee HS, Casey PJ. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells. J Biol Chem 2008; 283:18678-84; http://dx.doi.org/10.1074/jbc.M801855200. PubMed DOI
Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 1995; 131:591-602; http://dx.doi.org/10.1083/jcb.131.3.591. PubMed DOI PMC
Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4:e24; http://dx.doi.org/10.1371/journal.pgen.0040024. PubMed DOI PMC
Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 2011; 21:1507-14; http://dx.doi.org/10.1016/j.cub.2011.07.042. PubMed DOI PMC
Netea-Maier RT, Plantinga TS, Van De Veerdonk FL, Smit JW, Netea MG. Modulation of inflammation by autophagy: consequences for human disease. Autophagy 2015:0; http://dx.doi.org/10.1080/15548627.2015.1071759. PubMed DOI PMC
Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol 2010; 20:1093-8; http://dx.doi.org/10.1016/j.cub.2010.04.041. PubMed DOI
Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 2002; 157:455-68; http://dx.doi.org/10.1083/jcb.200109094. PubMed DOI PMC
Buraschi S, Neill T, Goyal A, Poluzzi C, Smythies J, Owens RT, Schaefer L, Torres A, Iozzo RV. Decorin causes autophagy in endothelial cells via Peg3. Proc Natl Acad Sci USA 2013; 110:E2582-91; http://dx.doi.org/10.1073/pnas.1305732110. PubMed DOI PMC
DeVorkin L, Go NE, Hou Y-CC, Moradian A, Morin GB, Gorski SM. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB. J Cell Biol 2014; 205:477-92; http://dx.doi.org/10.1083/jcb.201303144. PubMed DOI PMC
Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, Zhang N, Waterman SR, Blewett NH, Myers TG, et al.. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 2015; 17:930-42; http://dx.doi.org/10.1038/ncb3189. PubMed DOI PMC
Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Finkel TH, Matsuyama S, Distelhorst CW. Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem 2011; 286:30181-9; http://dx.doi.org/10.1074/jbc.M111.245423. PubMed DOI PMC
Slavov N, Botstein D. Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression. Mol Biol Cell 2013; 24:157-68; http://dx.doi.org/10.1091/mbc.E12-09-0670. PubMed DOI PMC
Kohler K, Brunner E, Guan XL, Boucke K, Greber UF, Mohanty S, Barth JM, Wenk MR, Hafen E. A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila. Autophagy 2009; 5:980-90; http://dx.doi.org/10.4161/auto.5.7.9325. PubMed DOI
Shahnazari S, Yen W-L, Birmingham CL, Shiu J, Namolovan A, Zheng YT, Nakayama K, Klionsky DJ, Brumell JH. A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 2010; 8:137-46; http://dx.doi.org/10.1016/j.chom.2010.07.002. PubMed DOI PMC
Lu Z, Baquero MT, Yang H, Yang M, Reger AS, Kim C, Levine DA, Clarke CH, Liao WS, Bast RC Jr. DIRAS3 regulates the autophagosome initiation complex in dormant ovarian cancer cells. Autophagy 2014; 10:1071-92; http://dx.doi.org/10.4161/auto.28577. PubMed DOI PMC
Mao K, Liu X, Feng Y, Klionsky DJ. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 2014; 10:652-61; http://dx.doi.org/10.4161/auto.27852. PubMed DOI PMC
Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, Van Houten B, Cherra SJ 3rd, Chu CT. Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease. Cell Death Differ 2011; 18:1914-23; http://dx.doi.org/10.1038/cdd.2011.74. PubMed DOI PMC
Kwon MH, Callaway H, Zhong J, Yedvobnick B. A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster. G3 (Bethesda) 2013; 3:815-25; http://dx.doi.org/10.1534/g3.112.005496. PubMed DOI PMC
Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J, Ambrosio S. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 2003; 73:341-50; http://dx.doi.org/10.1002/jnr.10663. PubMed DOI
McPhee CK, Logan MA, Freeman MR, Baehrecke EH. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 2010; 465:1093-6; http://dx.doi.org/10.1038/nature09127. PubMed DOI PMC
Ragusa MJ, Stanley RE, Hurley JH. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 2012; 151:1501-12; http://dx.doi.org/10.1016/j.cell.2012.11.028. PubMed DOI PMC
Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 2007; 3:597-9; http://dx.doi.org/10.4161/auto.4989. PubMed DOI
Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, et al.. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 2008; 4:330-8; http://dx.doi.org/10.4161/auto.5618. PubMed DOI
Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM. Identification of regulators of chaperone-mediated autophagy. Mol Cell 2010; 39:535-47; http://dx.doi.org/10.1016/j.molcel.2010.08.004. PubMed DOI PMC
Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 2005; 19:15-26; http://dx.doi.org/10.1016/j.molcel.2005.05.020. PubMed DOI
Talloczy Z, Jiang W, Virgin HWT, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 2002; 99:190-5; http://dx.doi.org/10.1073/pnas.012485299. PubMed DOI PMC
Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, Lai H, Meng L, Wang D, Zheng Z, et al.. Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy 2015:0. PubMed PMC
Kim S, Naylor SA, DiAntonio A. Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function. Proc Natl Acad Sci USA 2012; 109:E1072-81; http://dx.doi.org/10.1073/pnas.1120320109. PubMed DOI PMC
Berge T, Leikfoss IS, Harbo HF. From Identification to Characterization of the Multiple Sclerosis Susceptibility Gene CLEC16A. Int J Mol Sci 2013; 14:4476-97; http://dx.doi.org/10.3390/ijms14034476. PubMed DOI PMC
Soleimanpour SA, Gupta A, Bakay M, Ferrari AM, Groff DN, Fadista J, Spruce LA, Kushner JA, Groop L, Seeholzer SH, et al.. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 2014; 157:1577-90; http://dx.doi.org/10.1016/j.cell.2014.05.016. PubMed DOI PMC
Li Y, Zhao Y, Hu J, Xiao J, Qu L, Wang Z, Ma D, Chen Y. A novel ER-localized transmembrane protein, EMC6, interacts with RAB5A and regulates cell autophagy. Autophagy 2013; 9:150-63; http://dx.doi.org/10.4161/auto.22742. PubMed DOI PMC
Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endorepellin evokes autophagy in endothelial cells. J Biol Chem 2014; 289:16114-28; http://dx.doi.org/10.1074/jbc.M114.556530. PubMed DOI PMC
Tian E, Wang F, Han J, Zhang H. epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans. Autophagy 2009; 5:608-15; http://dx.doi.org/10.4161/auto.5.5.8624. PubMed DOI
Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, et al.. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 2013; 45:83-7; http://dx.doi.org/10.1038/ng.2497. PubMed DOI PMC
Li S, Yang P, Tian E, Zhang H. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. Mol Cell 2013; 52:421-33; http://dx.doi.org/10.1016/j.molcel.2013.09.014. PubMed DOI
Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Cordoba SR, Knecht E, Rubinsztein DC. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 2010; 19:2867-76; http://dx.doi.org/10.1093/hmg/ddq190. PubMed DOI PMC
Bockler S, Westermann B. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell 2014; 28:450-8; http://dx.doi.org/10.1016/j.devcel.2014.01.012. PubMed DOI
Sinha S, Roy S, Reddy BS, Pal K, Sudhakar G, Iyer S, Dutta S, Wang E, Vohra PK, Roy KR, et al.. A lipid-modified estrogen derivative that treats breast cancer independent of estrogen receptor expression through simultaneous induction of autophagy and apoptosis. Mol Cancer Res 2011; 9:364-74; http://dx.doi.org/10.1158/1541-7786.MCR-10-0526. PubMed DOI PMC
Wang L, Yu C, Lu Y, He P, Guo J, Zhang C, Song Q, Ma D, Shi T, Chen Y. TMEM166, a novel transmembrane protein, regulates cell autophagy and apoptosis. Apoptosis 2007; 12:1489-502; http://dx.doi.org/10.1007/s10495-007-0073-9. PubMed DOI
Yu C, Wang L, Lv B, Lu Y, Zeng L, Chen Y, Ma D, Shi T. TMEM74, a lysosome and autophagosome protein, regulates autophagy. Biochem Biophys Res Commun 2008; 369:622-9; http://dx.doi.org/10.1016/j.bbrc.2008.02.055. PubMed DOI
Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, et al.. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 2011; 144:253-67; http://dx.doi.org/10.1016/j.cell.2010.12.018. PubMed DOI PMC
Abrahamsen H, Stenmark H. Protein secretion: unconventional exit by exophagy. Curr Biol 2010; 20:R415-8; http://dx.doi.org/10.1016/j.cub.2010.03.011. PubMed DOI
Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V. Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol 2010; 188:527-36; http://dx.doi.org/10.1083/jcb.200911154. PubMed DOI PMC
Manjithaya R, Anjard C, Loomis WF, Subramani S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol 2010; 188:537-46; http://dx.doi.org/10.1083/jcb.200911149. PubMed DOI PMC
Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, et al.. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 2010; 107:14621-6; http://dx.doi.org/10.1073/pnas.1000138107. PubMed DOI PMC
Lisa-Santamaria P, Jimenez A, Revuelta JL. The protein factor-arrest 11 (Far11) is essential for the toxicity of human caspase-10 in yeast and participates in the regulation of autophagy and the DNA damage signaling. J Biol Chem 2012; 287:29636-47; http://dx.doi.org/10.1074/jbc.M112.344192. PubMed DOI PMC
McKnight NC, Jefferies HB, Alemu EA, Saunders RE, Howell M, Johansen T, Tooze SA. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J 2012; 31:1931-46; http://dx.doi.org/10.1038/emboj.2012.36. PubMed DOI PMC
Vaccari I, Carbone A, Previtali SC, Mironova YA, Alberizzi V, Noseda R, Rivellini C, Bianchi F, Del Carro U, D'Antonio M, et al.. Loss of Fig4 in both Schwann cells and motor neurons contributes to CMT4J neuropathy. Hum Mol Genet 2015; 24:383-96; http://dx.doi.org/10.1093/hmg/ddu451. PubMed DOI PMC
Romano S, D'Angelillo A, Pacelli R, Staibano S, De Luna E, Bisogni R, Eskelinen EL, Mascolo M, Cali G, Arra C, et al.. Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells. Cell Death Differ 2010; 17:145-57; http://dx.doi.org/10.1038/cdd.2009.115. PubMed DOI
Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, et al.. Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med 2014; 11:e1001755; http://dx.doi.org/10.1371/journal.pmed.1001755. PubMed DOI PMC
Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, Duray P, Merino M, Choyke P, Pavlovich CP, et al.. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2002; 2:157-64; http://dx.doi.org/10.1016/S1535-6108(02)00104-6. PubMed DOI
Dunlop EA, Seifan S, Claessens T, Behrends C, Kamps MA, Rozycka E, Kemp AJ, Nookala RK, Blenis J, Coull BJ, et al.. FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy 2014; 10:1749-60; http://dx.doi.org/10.4161/auto.29640. PubMed DOI PMC
Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J Cell Biol 2013; 202:1107-22; http://dx.doi.org/10.1083/jcb.201307084. PubMed DOI PMC
Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013; 52: 495-505; http://dx.doi.org/10.1016/j.molcel.2013.09.016. PubMed DOI PMC
Huett A, Ng A, Cao Z, Kuballa P, Komatsu M, Daly MJ, Podolsky DK, Xavier RJ. A novel hybrid yeast-human network analysis reveals an essential role for FNBP1L in antibacterial autophagy. J Immunol 2009; 182:4917-30; http://dx.doi.org/10.4049/jimmunol.0803050. PubMed DOI PMC
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12:665-75; http://dx.doi.org/10.1038/ncb2069. PubMed DOI
Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circulation Research 2010; 107:1470-82; http://dx.doi.org/10.1161/CIRCRESAHA.110.227371. PubMed DOI PMC
Attaix D, Bechet D. FoxO3 controls dangerous proteolytic liaisons. Cell Metab 2007; 6:425-7; http://dx.doi.org/10.1016/j.cmet.2007.11.005. PubMed DOI
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, et al.. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012; 14:177-85; http://dx.doi.org/10.1038/ncb2422. PubMed DOI
Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, Lee JA. Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 2014; 35:2822-31; http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.026. PubMed DOI
Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, {O}vervatn A, Bjorkoy G, Johansen T. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 2010; 188:253-69; http://dx.doi.org/10.1083/jcb.200907015. PubMed DOI PMC
Lakhani R, Vogel KR, Till A, Liu J, Burnett SF, Gibson KM, Subramani S. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO Mol Med 2014; 6:551-66; http://dx.doi.org/10.1002/emmm.201303356. PubMed DOI PMC
Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, Isidoro C, Laburthe M, Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 1995; 270:13-6; http://dx.doi.org/10.1074/jbc.270.1.13. PubMed DOI
Ogier-Denis E, Houri JJ, Bauvy C, Codogno P. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J Biol Chem 1996; 271:28593-600; http://dx.doi.org/10.1074/jbc.271.45.28593. PubMed DOI
Tanida I, Tanida-Miyake E, Ueno T, Kominami E. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 2001; 276:1701-6; http://dx.doi.org/10.1074/jbc.C000752200. PubMed DOI
Mata IF, Samii A, Schneer SH, Roberts JW, Griffith A, Leis BC, Schellenberg GD, Sidransky E, Bird TD, Leverenz JB, et al.. Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch Neurol 2008; 65:379-82; http://dx.doi.org/10.1001/archneurol.2007.68. PubMed DOI PMC
Mitsui J, Mizuta I, Toyoda A, Ashida R, Takahashi Y, Goto J, Fukuda Y, Date H, Iwata A, Yamamoto M, et al.. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol 2009; 66:571-6; http://dx.doi.org/10.1001/archneurol.2009.72. PubMed DOI
Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, et al.. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. New Engl J Med 2009; 361:1651-61; http://dx.doi.org/10.1056/NEJMoa0901281. PubMed DOI PMC
Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, Waddington SN, Schapira AH, Duchen MR. Mitochondria and quality control defects in a mouse model of Gaucher disease–links to Parkinson's disease. Cell Metab 2013; 17:941-53; http://dx.doi.org/10.1016/j.cmet.2013.04.014. PubMed DOI PMC
Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, Malide D, Chen Y, Samsel L, Connelly PS, et al.. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J Cell Sci 2013; 126:4843-9; http://dx.doi.org/10.1242/jcs.131300. PubMed DOI PMC
Moreau K, Rubinsztein DC. The plasma membrane as a control center for autophagy. Autophagy 2012; 8:861-3; http://dx.doi.org/10.4161/auto.20060. PubMed DOI PMC
Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR, Sankar U. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 2010; 21:1225-36; http://dx.doi.org/10.1091/mbc.E09-11-0937. PubMed DOI PMC
Kalamidas SA, Kotoulas OB. Glycogen autophagy in newborn rat hepatocytes. Histol Histopathol 2000; 15:1011-8. PubMed
Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial autophagic energy stress responses–macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 2015; 308:H1194-204; http://dx.doi.org/10.1152/ajpheart.00002.2015. PubMed DOI PMC
Mellor KM, Varma U, Stapleton DI, Delbridge LM. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol 2014; 306:H1240-5; http://dx.doi.org/10.1152/ajpheart.00059.2014. PubMed DOI
Li B, Castano AP, Hudson TE, Nowlin BT, Lin S-L, Bonventre JV, Swanson KD, Duffield JS. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. FASEB J 2010; 24:4767-81; http://dx.doi.org/10.1096/fj.10-154757. PubMed DOI PMC
Buchan JR, Kolaitis RM, Taylor JP, Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013; 153: 1461-74; http://dx.doi.org/10.1016/j.cell.2013.05.037. PubMed DOI PMC
Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, et al.. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012; 336:477-81; http://dx.doi.org/10.1126/science.1217032. PubMed DOI
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, et al.. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 2010; 29:969-80; http://dx.doi.org/10.1038/emboj.2009.405. PubMed DOI PMC
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003; 115:727-38; http://dx.doi.org/10.1016/S0092-8674(03)00939-5. PubMed DOI
Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V. HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 2007; 3:207-14; http://dx.doi.org/10.4161/auto.3708. PubMed DOI
Mellor HR, Harris AL. The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev 2007; 26:553-66; http://dx.doi.org/10.1007/s10555-007-9080-0. PubMed DOI
Mimouna S, Bazin M, Mograbi B, Darfeuille-Michaud A, Brest P, Hofman P, Vouret-Craviari V. HIF1A regulates xenophagic degradation of adherent and invasive Escherichia coli (AIEC). Autophagy 2014; 10:2333-45; http://dx.doi.org/10.4161/15548627.2014.984275. PubMed DOI PMC
Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 2015; 22:248-57; http://dx.doi.org/10.1038/cdd.2014.173. PubMed DOI PMC
Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, et al.. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010; 29:5299-310; http://dx.doi.org/10.1038/onc.2010.261. PubMed DOI PMC
Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 2009; 16:175-83; http://dx.doi.org/10.1038/cdd.2008.143. PubMed DOI PMC
Mao K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 2011; 193:755-67; http://dx.doi.org/10.1083/jcb.201102092. PubMed DOI PMC
Pfaffenwimmer T, Reiter W, Brach T, Nogellova V, Papinski D, Schuschnig M, Abert C, Ammerer G, Martens S, Kraft C. Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep 2014; 15:862-70; http://dx.doi.org/10.15252/embr.201438932. PubMed DOI PMC
Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, Sakoh-Nakatogawa M, Ohsumi Y, Nakatogawa H. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J Cell Biol 2014; 207:91-105; http://dx.doi.org/10.1083/jcb.201402128. PubMed DOI PMC
Leu JI, Pimkina J, Frank A, Murphy ME, George DL. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36:15-27; http://dx.doi.org/10.1016/j.molcel.2009.09.023. PubMed DOI PMC
Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008; 15:1460-71; http://dx.doi.org/10.1038/cdd.2008.81. PubMed DOI PMC
Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246:382-5; http://dx.doi.org/10.1126/science.2799391. PubMed DOI
Kaushik S, Massey AC, Cuervo AM. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 2006; 25:3921-33; http://dx.doi.org/10.1038/sj.emboj.7601283. PubMed DOI PMC
Garcia-Mata R, Gao YS, Sztul E. Hassles with taking out the garbage: aggravating aggresomes. Traffic 2002; 3:388-96; http://dx.doi.org/10.1034/j.1600-0854.2002.30602.x. PubMed DOI
Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. FASEB J 2011; 25:2700-10; http://dx.doi.org/10.1096/fj.10-167676. PubMed DOI PMC
Bandhyopadhyay U, Kaushik S, Vartikovsky L, Cuervo AM. Dynamic organization of the receptor for chaperone-mediated autophagy at the lysosomal membrane. Mol Cell Biol 2008; 28:5747-63; http://dx.doi.org/10.1128/MCB.02070-07. PubMed DOI PMC
Li B, Hu Q, Wang H, Man N, Ren H, Wen L, Nukina N, Fei E, Wang G. Omi/HtrA2 is a positive regulator of autophagy that facilitates the degradation of mutant proteins involved in neurodegenerative diseases. Cell Death Differ 2010; 17:1773-84; http://dx.doi.org/10.1038/cdd.2010.55. PubMed DOI
Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. Biochim Biophys Acta 2014; 1843:1295-307; http://dx.doi.org/10.1016/j.bbamcr.2014.03.027. PubMed DOI
Kang S, Fernandes-Alnemri T, Alnemri ES. A novel role for the mitochondrial HTRA2/OMI protease in aging. Autophagy 2013; 9:420-1; http://dx.doi.org/10.4161/auto.22920. PubMed DOI PMC
Kang S, Louboutin JP, Datta P, Landel CP, Martinez D, Zervos AS, Strayer DS, Fernandes-Alnemri T, Alnemri ES. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging. Cell Death Differ 2013; 20: 259-69; http://dx.doi.org/10.1038/cdd.2012.117. PubMed DOI PMC
Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 2014; 21:1399-408; http://dx.doi.org/10.1038/cdd.2014.50. PubMed DOI PMC
Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, Lim YM, Oh SH, Jin SM, Kim JH, et al.. Amyloidogenic peptide oligomer accumulation in autophagy-deficient beta cells induces diabetes. J Clin Invest 2014; 124:3311-24; http://dx.doi.org/10.1172/JCI69625. PubMed DOI PMC
Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 2014; 124:3489-500; http://dx.doi.org/10.1172/JCI71981. PubMed DOI PMC
Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, Uchida T, Abe H, Toyofuku Y, Tamaki M, Ogihara T, et al.. Human IAPP-induced pancreatic beta cell toxicity and its regulation by autophagy. J Clin Invest 2014; 124:3634-44; http://dx.doi.org/10.1172/JCI69866. PubMed DOI PMC
Lotze MT, Buchser WJ, Liang X. Blocking the interleukin 2 (IL2)-induced systemic autophagic syndrome promotes profound antitumor effects and limits toxicity. Autophagy 2012; 8:1264-6; http://dx.doi.org/10.4161/auto.20752. PubMed DOI
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al.. Intrinsically disordered protein. J Mol Graph Model 2001; 19:26-59; http://dx.doi.org/10.1016/S1093-3263(00)00138-8. PubMed DOI
Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; http://dx.doi.org/10.1016/S0968-0004(02)02169-2. PubMed DOI
Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7. PubMed DOI
Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; http://dx.doi.org/10.1006/jmbi.1999.3110. PubMed DOI
Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L. Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 2015; 72:137-51; http://dx.doi.org/10.1007/s00018-014-1661-9. PubMed DOI PMC
De Guzman RN, Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE. CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. Biochemistry 2005; 44:490-7; http://dx.doi.org/10.1021/bi048161t. PubMed DOI
Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z. Intrinsic disorder and protein function. Biochemistry 2002; 41:6573-82; http://dx.doi.org/10.1021/bi012159+. PubMed DOI
Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol 2008; 18:756-64; http://dx.doi.org/10.1016/j.sbi.2008.10.002. PubMed DOI
Tompa P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 2005; 579:3346-54; http://dx.doi.org/10.1016/j.febslet.2005.03.072. PubMed DOI
Peng Z, Xue B, Kurgan L, Uversky VN. Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 2013; 20:1257-67; http://dx.doi.org/10.1038/cdd.2013.65. PubMed DOI PMC
Popelka H, Uversky VN, Klionsky DJ. Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast. Autophagy 2014; 10:1093-104; http://dx.doi.org/10.4161/auto.28616. PubMed DOI PMC
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al.. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631; http://dx.doi.org/10.1021/cr400525m. PubMed DOI PMC
Uversky VN. Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 2013; 19:4191-213; http://dx.doi.org/10.2174/1381612811319230005. PubMed DOI
Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014; 23:1077-93; http://dx.doi.org/10.1002/pro.2494. PubMed DOI PMC
Chiang HS, Maric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radical Bio Med 2011; 51:688-99; http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.015. PubMed DOI
Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, et al.. The IKK complex contributes to the induction of autophagy. EMBO J 2010; 29:619-31; http://dx.doi.org/10.1038/emboj.2009.364. PubMed DOI PMC
Wu X, Tu BP. Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol Biol Cell 2011; 22:4124-33; http://dx.doi.org/10.1091/mbc.E11-06-0525. PubMed DOI PMC
Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, et al.. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2010; 32:654-69; http://dx.doi.org/10.1016/j.immuni.2010.04.011. PubMed DOI PMC
Deretic V. Autophagy in innate and adaptive immunity. Trends Immunol 2005; 26:523-8; http://dx.doi.org/10.1016/j.it.2005.08.003. PubMed DOI
Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA, Wiemer EA, Dussurget O, Cossart P. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 2011; 7:e1002168. PubMed PMC
Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313:1438-41; http://dx.doi.org/10.1126/science.1129577. PubMed DOI
Bugnicourt A, Mari M, Reggiori F, Haguenauer-Tsapis R, Galan JM. Irs4p and Tax4p: two redundant EH domain proteins involved in autophagy. Traffic 2008; 9:755-69; http://dx.doi.org/10.1111/j.1600-0854.2008.00715.x. PubMed DOI
Namkoong S, Lee KI, Lee JI, Park R, Lee EJ, Jang IS, Park J. The integral membrane protein ITM2A, a transcriptional target of PKA-CREB, regulates autophagic flux via interaction with the vacuolar ATPase. Autophagy 2015; 11:756-68; http://dx.doi.org/10.1080/15548627.2015.1034412. PubMed DOI PMC
Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E. Jun proteins are starvation-regulated inhibitors of autophagy. Cancer Res 2010; 70:2318-27; http://dx.doi.org/10.1158/0008-5472.CAN-09-3408. PubMed DOI
Taylor R Jr., Chen PH, Chou CC, Patel J, Jin SV. KCS1 deletion in Saccharomyces cerevisiae leads to a defect in translocation of autophagic proteins and reduces autophagosome formation. Autophagy 2012; 8:1300-11; http://dx.doi.org/10.4161/auto.20681. PubMed DOI PMC
Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y, Shen J, Chen CT, Huo L, Hsu MC, et al.. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 2009; 36:131-40; http://dx.doi.org/10.1016/j.molcel.2009.07.025. PubMed DOI PMC
Stepkowski TM, Kruszewski MK. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radical Bio Med 2011; 50:1186-95; http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.033. PubMed DOI
Puustinen P, Rytter A, Mortensen M, Kohonen P, Moreira JM, Jaattela M. CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation. J Cell Biol 2014; 204:713-27; http://dx.doi.org/10.1083/jcb.201304012. PubMed DOI PMC
Feng MM, Baryla J, Liu H, Laurie GW, McKown RL, Ashki N, Bhayana D, Hutnik CM. Cytoprotective effect of lacritin on human corneal epithelial cells exposed to benzalkonium chloride in vitro. Curr Eye Res 2014; 39:604-10; http://dx.doi.org/10.3109/02713683.2013.859275. PubMed DOI PMC
Ma P, Beck SL, Raab RW, McKown RL, Coffman GL, Utani A, Chirico WJ, Rapraeger AC, Laurie GW. Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J Cell Biol 2006; 174:1097-106; http://dx.doi.org/10.1083/jcb.200511134. PubMed DOI PMC
Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CM, Talla V, Tyler MFT, Lee JK, Laurie GW. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J Biol Chem 2013; 288:18146-61; http://dx.doi.org/10.1074/jbc.M112.436584. PubMed DOI PMC
Eskelinen E-L, Illert A, Tanaka Y, Schwarzmann G, Blanz J, Von Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002; 13:3355-68; http://dx.doi.org/10.1091/mbc.E02-02-0114. PubMed DOI PMC
Eskelinen E-L, Schmidt C, Neu S, Willenborg M, Fuertes G, Salvador N, Tanaka Y, Lullmann-Rauch R, Hartmann D, Heeren J, et al.. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 2004; 15: 3132-45; http://dx.doi.org/10.1091/mbc.E04-02-0103. PubMed DOI PMC
Tanaka Y, Guhde G, Suter A, Eskelinen E-L, Hartmann D, Lullmann-Rauch R, Janssen P, Blanz J, von Figura K, Saftig P. Accumulation of autophagic vacuoles and cardiomyopathy in Lamp-2-deficient mice. Nature 2000; 406:902-6; http://dx.doi.org/10.1038/35022595. PubMed DOI
Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, et al.. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000; 406:906-10; http://dx.doi.org/10.1038/35022604. PubMed DOI
Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, et al.. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 2013; 162:621-30; http://dx.doi.org/10.1111/bjh.12440. PubMed DOI PMC
Boya P. Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Sign 2012; 17:766-74; http://dx.doi.org/10.1089/ars.2011.4405. PubMed DOI
Gabande-Rodriguez E, Boya P, Labrador V, Dotti CG, Ledesma MD. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 2014; 21:864-75; http://dx.doi.org/10.1038/cdd.2014.4. PubMed DOI PMC
Rodriguez-Muela N, Hernandez-Pinto AM, Serrano-Puebla A, Garcia-Ledo L, Latorre SH, de la Rosa EJ, Boya P. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ 2014. PubMed PMC
Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 2013; 25:4085-100; http://dx.doi.org/10.1105/tpc.113.113407. PubMed DOI PMC
Carew JS, Espitia CM, Esquivel JA II, Mahalingam D, Kelly KR, Reddy G, Giles FJ, Nawrocki ST. Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem 2011; 286:6602-13; http://dx.doi.org/10.1074/jbc.M110.151324. PubMed DOI PMC
Zou J, Yue F, Jiang X, Li W, Yi J, Liu L. Mitochondrion-associated protein LRPPRC suppresses the initiation of basal levels of autophagy via enhancing Bcl-2 stability. Biochem J 2013; 454:447-57; http://dx.doi.org/10.1042/BJ20130306. PubMed DOI PMC
Zou J, Yue F, Li W, Song K, Jiang X, Yi J, Liu L. Autophagy inhibitor LRPPRC suppresses mitophagy through interaction with mitophagy initiator Parkin. PloS One 2014; 9:e94903; http://dx.doi.org/10.1371/journal.pone.0094903. PubMed DOI PMC
Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 2009; 18:4022-34; http://dx.doi.org/10.1093/hmg/ddp346. PubMed DOI PMC
Ng ACY, Eisenberg JM, Heath RJW, Huett A, Robinson CM, Nau GJ, Xavier RJ. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc Natl Acad Sci USA 2011; 108:4631-8; http://dx.doi.org/10.1073/pnas.1000093107. PubMed DOI PMC
Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 1997; 243:240-6; http://dx.doi.org/10.1111/j.1432-1033.1997.0240a.x. PubMed DOI
McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, Lynch JP, Uehara T, Sepulveda AR, Davis LE, et al.. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 2012; 109:8253-8; http://dx.doi.org/10.1073/pnas.1118193109. PubMed DOI PMC
Amaravadi RK, Winkler JD. Lys05: a new lysosomal autophagy inhibitor. Autophagy 2012; 8:1383-4; http://dx.doi.org/10.4161/auto.20958. PubMed DOI PMC
Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, White MA, Potts PR. Degradation of AMPK by a Cancer-Specific Ubiquitin Ligase. Cell 2015; 160:715-28; http://dx.doi.org/10.1016/j.cell.2015.01.034. PubMed DOI PMC
Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 1994; 269:11492-7. PubMed
Xie R, Nguyen S, McKeehan K, Wang F, McKeehan WL, Liu L. Microtubule-associated protein 1S (MAP1S) bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. J Biol Chem 2011; 286:10367-77; http://dx.doi.org/10.1074/jbc.M110.206532. PubMed DOI PMC
Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 2009; 28:677-85; http://dx.doi.org/10.1038/emboj.2009.8. PubMed DOI PMC
Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 2000; 275: 39090-5; http://dx.doi.org/10.1074/jbc.M006198200. PubMed DOI
Fu MM, Nirschl JJ, Holzbaur EL. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell 2014; 29:577-90; http://dx.doi.org/10.1016/j.devcel.2014.04.015. PubMed DOI PMC
Raciti M, Lotti LV, Valia S, Pulcinelli FM, Di Renzo L. JNK2 is activated during ER stress and promotes cell survival. Cell Death Dis 2012; 3:e429; http://dx.doi.org/10.1038/cddis.2012.167. PubMed DOI PMC
Keil E, Hocker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I. Phosphorylation of Atg5 by the Gadd45beta-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ 2013; 20:321-32; http://dx.doi.org/10.1038/cdd.2012.129. PubMed DOI PMC
Menon MB, Dhamija S, Kotlyarov A, Gaestel M. The problem of pyridinyl imidazole class inhibitors of MAPK14/p38alpha and MAPK11/p38beta in autophagy research. Autophagy 2015; 11:1425-7; http://dx.doi.org/10.1080/15548627.2015.1059562. PubMed DOI PMC
Menon MB, Kotlyarov A, Gaestel M. SB202190-induced cell type-specific vacuole formation and defective autophagy do not depend on p38 MAP kinase inhibition. PloS One 2011; 6:e23054; http://dx.doi.org/10.1371/journal.pone.0023054. PubMed DOI PMC
Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall'Armi C, Piccioni F, Verrotti Di Pianella A, Chiariello M. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy 2012; 8:1724-40; http://dx.doi.org/10.4161/auto.21857. PubMed DOI PMC
Wang Z, Zhang J, Wang Y, Xing R, Yi C, Zhu H, Chen X, Guo J, Guo W, Li W, et al.. Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis 2013; 34:128-38; http://dx.doi.org/10.1093/carcin/bgs295. PubMed DOI
Liang Q, Seo GJ, Choi YJ, Kwak MJ, Ge J, Rodgers MA, Shi M, Leslie BJ, Hopfner KP, Ha T, et al.. Crosstalk between the cGAS DNA Sensor and Beclin-1 Autophagy Protein Shapes Innate Antimicrobial Immune Responses. Cell Host Microbe 2014; 15:228-38; http://dx.doi.org/10.1016/j.chom.2014.01.009. PubMed DOI PMC
Lorente M, Torres S, Salazar M, Carracedo A, Hernandez-Tiedra S, Rodriguez-Fornes F, Garcia-Taboada E, Melendez B, Mollejo M, Campos-Martin Y, et al.. Stimulation of ALK by the growth factor midkine renders glioma cells resistant to autophagy-mediated cell death. Autophagy 2011; 7:1071-3; http://dx.doi.org/10.4161/auto.7.9.15866. PubMed DOI
Lorente M, Torres S, Salazar M, Carracedo A, Hernandez-Tiedra S, Rodriguez-Fornes F, Garcia-Taboada E, Melendez B, Mollejo M, Campos-Martin Y, et al.. Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action. Cell Death Differ 2011; 18:959-73; http://dx.doi.org/10.1038/cdd.2010.170. PubMed DOI PMC
Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T, Deretic V. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol 2015; in press. PubMed PMC
Bagniewska-Zadworna A, Byczyk J, Eissenstat DM, Oleksyn J, Zadworny M. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions. Am J Bot 2012; 99:1417-26; http://dx.doi.org/10.3732/ajb.1100552. PubMed DOI
van Doorn WG, Woltering EJ. Many ways to exit? Cell death categories in plants. Trends Plant Sci 2005; 10:117-22; http://dx.doi.org/10.1016/j.tplants.2005.01.006. PubMed DOI
Eastwood MD, Cheung SW, Lee KY, Moffat J, Meneghini MD. Developmentally programmed nuclear destruction during yeast gametogenesis. Dev Cell 2012; 23:35-44; http://dx.doi.org/10.1016/j.devcel.2012.05.005. PubMed DOI
Wang P, Lazarus BD, Forsythe ME, Love DC, Krause MW, Hanover JA. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc Natl Acad Sci USA 2012; 109:17669-74; http://dx.doi.org/10.1073/pnas.1205748109. PubMed DOI PMC
Oku M, Warnecke D, Noda T, Muller F, Heinz E, Mukaiyama H, Kato N, Sakai Y. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J 2003; 22:3231-41; http://dx.doi.org/10.1093/emboj/cdg331. PubMed DOI PMC
Ding WX, Guo F, Ni HM, Bockus A, Manley S, Stolz DB, Eskelinen EL, Jaeschke H, Yin XM. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation. J Biol Chem 2012; 287:42379-88; http://dx.doi.org/10.1074/jbc.M112.413682. PubMed DOI PMC
Ding WX, Li M, Biazik JM, Morgan DG, Guo F, Ni HM, Goheen M, Eskelinen EL, Yin XM. Electron microscopic analysis of a spherical mitochondrial structure. J Biol Chem 2012; 287:42373-8; http://dx.doi.org/10.1074/jbc.M112.413674. PubMed DOI PMC
Seca H, Lima RT, Lopes-Rodrigues V, Guimaraes JE, Almeida GM, Vasconcelos MH. Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells. Curr Drug Targets 2013; 14:1135-43; http://dx.doi.org/10.2174/13894501113149990185. PubMed DOI
Pennati M, Lopergolo A, Profumo V, De Cesare M, Sbarra S, Valdagni R, Zaffaroni N, Gandellini P, Folini M. miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol 2014; 87:579-97; http://dx.doi.org/10.1016/j.bcp.2013.12.009. PubMed DOI
Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, Puertollano R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014; 7:ra9. PubMed PMC
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005; 8:3-5; http://dx.doi.org/10.1089/rej.2005.8.3. PubMed DOI
Choi YJ, Hwang KC, Park JY, Park KK, Kim JH, Park SB, Hwang S, Park H, Park C, Kim JH. Identification and characterization of a novel mouse and human MOPT gene containing MORN-motif protein in testis. Theriogenology 2010; 73:273-81; http://dx.doi.org/10.1016/j.theriogenology.2009.09.010. PubMed DOI
Frost LS, Lopes VS, Bragin A, Reyes-Reveles J, Brancato J, Cohen A, Mitchell CH, Williams DS, Boesze-Battaglia K. The Contribution of Melanoregulin to Microtubule-Associated Protein 1 Light Chain 3 (LC3) Associated Phagocytosis in Retinal Pigment Epithelium. Mol Neurobiol 2014. PubMed PMC
Frost LS, Mitchell CH, Boesze-Battaglia K. Autophagy in the eye: implications for ocular cell health. Exp Eye Res 2014; 124:56-66; http://dx.doi.org/10.1016/j.exer.2014.04.010. PubMed DOI PMC
Bhutia SK, Kegelman TP, Das SK, Azab B, Su ZZ, Lee SG, Sarkar D, Fisher PB. Astrocyte elevated gene-1 induces protective autophagy. Proc Natl Acad Sci USA 2010; 107:22243-8; http://dx.doi.org/10.1073/pnas.1009479107. PubMed DOI PMC
Wu Y, Cheng S, Zhao H, Zou W, Yoshina S, Mitani S, Zhang H, Wang X. PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation. EMBO Rep 2014; 15:973-81; http://dx.doi.org/10.15252/embr.201438618. PubMed DOI PMC
Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel JL, Laporte J. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 2013; 27:3384-94; http://dx.doi.org/10.1096/fj.12-220947. PubMed DOI
Taguchi-Atarashi N, Hamasaki M, Matsunaga K, Omori H, Ktistakis NT, Yoshimori T, Noda T. Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic 2010; 11:468-78; http://dx.doi.org/10.1111/j.1600-0854.2010.01034.x. PubMed DOI
Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T, Laporte J, Deretic V. Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy. EMBO J 2009; 28:2244-58; http://dx.doi.org/10.1038/emboj.2009.159. PubMed DOI PMC
Zou J, Zhang C, Marjanovic J, Kisseleva MV, Majerus PW, Wilson MP. Myotubularin-related protein (MTMR) 9 determines the enzymatic activity, substrate specificity, and role in autophagy of MTMR8. Proc Natl Acad Sci USA 2012; 109:9539-44; http://dx.doi.org/10.1073/pnas.1207021109. PubMed DOI PMC
Hnia K, Kretz C, Amoasii L, Bohm J, Liu X, Messaddeq N, Qu CK, Laporte J. Primary T-tubule and autophagy defects in the phosphoinositide phosphatase Jumpy/MTMR14 knockout mice muscle. Adv Biol Reg 2012; 52:98-107; http://dx.doi.org/10.1016/j.advenzreg.2011.09.007. PubMed DOI
Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, et al.. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 2007; 17:1817-25; http://dx.doi.org/10.1016/j.cub.2007.09.032. PubMed DOI
Brandstaetter H, Kishi-Itakura C, Tumbarello DA, Manstein DJ, Buss F. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy 2014; 10:2310-23; http://dx.doi.org/10.4161/15548627.2014.984272. PubMed DOI PMC
Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 2012; 14:1024-35; http://dx.doi.org/10.1038/ncb2589. PubMed DOI PMC
Kuo HP, Lee DF, Chen CT, Liu M, Chou CK, Lee HJ, Du Y, Xie X, Wei Y, Xia W, et al.. ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 2010; 3:ra9; http://dx.doi.org/10.1126/scisignal.2000590. PubMed DOI PMC
Zhang Y, Cheng Y, Ren X, Zhang L, Yap KL, Wu H, Patel R, Liu D, Qin ZH, Shih IM, et al.. NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene 2012; 31:1055-64; http://dx.doi.org/10.1038/onc.2011.290. PubMed DOI PMC
Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 2012; 8:77-87; http://dx.doi.org/10.4161/auto.8.1.18274. PubMed DOI
Naydenov NG, Harris G, Morales V, Ivanov AI. Loss of a membrane trafficking protein alphaSNAP induces non-canonical autophagy in human epithelia. Cell Cycle 2012; 11:4613-25; http://dx.doi.org/10.4161/cc.22885. PubMed DOI PMC
Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135:1311-23; http://dx.doi.org/10.1016/j.cell.2008.10.044. PubMed DOI PMC
Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK, Schafer BW, Schrappe M, Stanulla M, Bourquin JP. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120:1310-23; http://dx.doi.org/10.1172/JCI39987. PubMed DOI PMC
Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Codogno P. Regulation of autophagy by NF{kappa}B transcription factor and reactives oxygen species. Autophagy 2007; 3:390-2; http://dx.doi.org/10.4161/auto.4248. PubMed DOI
Criado O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, Vernia S, San Millan B, Heredia M, Roma-Mateo C, Mouron S, et al.. Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet 2012; 21:1521-33; http://dx.doi.org/10.1093/hmg/ddr590. PubMed DOI
Cervia D, Perrotta C, Moscheni C, De Palma C, Clementi E. Nitric oxide and sphingolipids control apoptosis and autophagy with a significant impact on Alzheimer's disease. J Biol Reg Homeos Ag 2013; 27:11-22. PubMed
Rabkin SW. Nitric oxide-induced cell death in the heart: the role of autophagy. Autophagy 2007; 3:347-9; http://dx.doi.org/10.4161/auto.4054. PubMed DOI
Zang L, He H, Ye Y, Liu W, Fan S, Tashiro S, Onodera S, Ikejima T. Nitric oxide augments oridonin-induced efferocytosis by human histocytic lymphoma U937 cells via autophagy and the NF-kappaB-COX-2-IL-1beta pathway. Free Rad Res 2012; 46:1207-19; http://dx.doi.org/10.3109/10715762.2012.700515. PubMed DOI
Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, et al.. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11:55-62; http://dx.doi.org/10.1038/ni.1823. PubMed DOI
Aveleira CA, Botelho M, Carmo-Silva S, Pascoal JF, Ferreira-Marques M, Nobrega C, Cortes L, Valero J, Sousa-Ferreira L, Alvaro AR, et al.. Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proc Natl Acad Sci USA 2015; 112:E1642-51; http://dx.doi.org/10.1073/pnas.1416609112. PubMed DOI PMC
Cao Y, Wang Y, Abi Saab WF, Yang F, Pessin JE, Backer JM. NRBF2 regulates macroautophagy as a component of Vps34 Complex I. Biochem J 2014; 461:315-22; http://dx.doi.org/10.1042/BJ20140515. PubMed DOI PMC
Lu J, He L, Behrends C, Araki M, Araki K, Jun Wang Q, Catanzaro JM, Friedman SL, Zong WX, Fiel MI, et al.. NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. Nat Commun 2014; 5:3920. PubMed PMC
Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas-Hourani M, Cayet N, Jacob Y, Prevost MC, Pierre P, et al.. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep 2013; 14:534-44; http://dx.doi.org/10.1038/embor.2013.51. PubMed DOI PMC
Kong DK, Georgescu SP, Cano C, Aronovitz MJ, Iovanna JL, Patten RD, Kyriakis JM, Goruppi S. Deficiency of the transcriptional regulator p8 results in increased autophagy and apoptosis, and causes impaired heart function. Mol Biol Cell 2010; 21:1335-49; http://dx.doi.org/10.1091/mbc.E09-09-0818. PubMed DOI PMC
Chang KY, Tsai SY, Wu CM, Yen CJ, Chuang BF, Chang JY. Novel phosphoinositide 3-kinase/mTOR dual inhibitor, NVP-BGT226, displays potent growth-inhibitory activity against human head and neck cancer cells in vitro and in vivo. Clin Cancer Res 2011; 17:7116-26; http://dx.doi.org/10.1158/1078-0432.CCR-11-0796. PubMed DOI
Liu XM, Sun LL, Hu W, Ding YH, Dong MQ, Du LL. ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos. Mol Cell 2015; 59:1035-42; http://dx.doi.org/10.1016/j.molcel.2015.07.034. PubMed DOI
Gundara JS, Zhao J, Robinson BG, Sidhu SB. Oncophagy: harnessing regulation of autophagy in cancer therapy. Endocr Relat Cancer 2012; 19:R281-95; http://dx.doi.org/10.1530/ERC-12-0325. PubMed DOI
Mijaljica D. Autophagy in 2020 and beyond: eating our way into a healthy future. Autophagy 2010; 6:194-6; http://dx.doi.org/10.4161/auto.6.1.10992. PubMed DOI
Zhang CF, Gruber F, Ni C, Mildner M, Koenig U, Karner S, Barresi C, Rossiter H, Narzt MS, Nagelreiter IM, et al.. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes. J Invest Dermatol 2015; 135:1348-57; http://dx.doi.org/10.1038/jid.2014.439. PubMed DOI
Zhao Y, Zhang CF, Rossiter H, Eckhart L, Konig U, Karner S, Mildner M, Bochkov VN, Tschachler E, Gruber F. Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. J Invest Dermatol 2013; 133:1629-37; http://dx.doi.org/10.1038/jid.2013.26. PubMed DOI
Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, Dauphin A, Waharte F, Bayot A, Salamero J, et al.. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. Autophagy 2013; 9:1801-17; http://dx.doi.org/10.4161/auto.25884. PubMed DOI
Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012; 13:378-85; http://dx.doi.org/10.1038/embor.2012.14. PubMed DOI PMC
Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013; 9:1750-7; http://dx.doi.org/10.4161/auto.26122. PubMed DOI PMC
Meissner C, Lorenz H, Hehn B, Lemberg MK. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 2015:0. PubMed PMC
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2012; 2:1002; http://dx.doi.org/10.1038/srep01002. PubMed DOI PMC
Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA, McLelland GL, Gros P, Shaler TA, Faubert D, Coulombe B, et al.. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 2014. PubMed PMC
Ren H, Fu K, Mu C, Li B, Wang D, Wang G. DJ-1, a cancer and Parkinson's disease associated protein, regulates autophagy through JNK pathway in cancer cells. Cancer Lett 2010; 297:101-8; http://dx.doi.org/10.1016/j.canlet.2010.05.001. PubMed DOI
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010; 191:933-42; http://dx.doi.org/10.1083/jcb.201008084. PubMed DOI PMC
Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 2011; 117:856-67; http://dx.doi.org/10.1111/j.1471-4159.2011.07253.x. PubMed DOI
Shi G, Lee JR, Grimes DA, Racacho L, Ye D, Yang H, Ross OA, Farrer M, McQuibban GA, Bulman DE. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum Mol Genet 2011; 20:1966-74; http://dx.doi.org/10.1093/hmg/ddr077. PubMed DOI
Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodovar M, Oliver FJ. PARP-1 is involved in autophagy induced by DNA damage. Autophagy 2009; 5:61-74; http://dx.doi.org/10.4161/auto.5.1.7272. PubMed DOI
Huang Q, Shen HM. To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 2009; 5:273-6; http://dx.doi.org/10.4161/auto.5.2.7640. PubMed DOI
Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S. ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 2014; 4:763-76; http://dx.doi.org/10.1016/j.fob.2014.08.005. PubMed DOI PMC
Wang LJ, Chen PR, Hsu LP, Hsu WL, Liu DW, Chang CH, Hsu YC, Lee JW. Concomitant induction of apoptosis and autophagy by prostate apoptosis response-4 in hypopharyngeal carcinoma cells. Am J Pathol 2014; 184:418-30; http://dx.doi.org/10.1016/j.ajpath.2013.10.012. PubMed DOI
Silvente-Poirot S, Poirot M. Cholesterol metabolism and cancer: the good, the bad and the ugly. Current Opin Pharmacol 2012; 12:673-6; http://dx.doi.org/10.1016/j.coph.2012.10.004. PubMed DOI
Bock BC, Tagscherer KE, Fassl A, Kramer A, Oehme I, Zentgraf HW, Keith M, Roth W. The PEA-15 protein regulates autophagy via activation of JNK. J Biol Chem 2010; 285:21644-54; http://dx.doi.org/10.1074/jbc.M109.096628. PubMed DOI PMC
Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 2015; 17:300-10; http://dx.doi.org/10.1038/ncb3112. PubMed DOI PMC
Leu JI-J, Pimkina J, Frank A, Murphy ME, George DL. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36:15-27; http://dx.doi.org/10.1016/j.molcel.2009.09.023. PubMed DOI PMC
Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 2013; 25:4967-83; http://dx.doi.org/10.1105/tpc.113.116947. PubMed DOI PMC
Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y, Kato N, Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell 2005; 16:446-57; http://dx.doi.org/10.1091/mbc.E04-09-0842. PubMed DOI PMC
Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, et al.. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol 2008; 9:908-16; http://dx.doi.org/10.1038/ni.1634. PubMed DOI PMC
Seglen PO, Gordon PB, Holen I. Non-selective autophagy. Semin Cell Biol 1990; 1:441-8. PubMed
He C, Klionsky DJ. Atg9 trafficking in autophagy-related pathways. Autophagy 2007; 3:271-4; http://dx.doi.org/10.4161/auto.3912. PubMed DOI
Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi Y, Fukusaki E. Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. EMBO J 2015; 34:154-68; http://dx.doi.org/10.15252/embj.201489083. PubMed DOI PMC
Meijer AJ, Klionsky DJ. Vps34 is a phosphatidylinositol 3-kinase, not a phosphoinositide 3-kinase. Autophagy 2011; 7:563-4; http://dx.doi.org/10.4161/auto.7.6.14873. PubMed DOI PMC
Devereaux K, Dall'Armi C, Alcazar-Roman A, Ogasawara Y, Zhou X, Wang F, Yamamoto A, De Camilli P, Di Paolo G. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PloS One 2013; 8:e76405. PubMed PMC
Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005; 280:33076-82; http://dx.doi.org/10.1074/jbc.M507201200. PubMed DOI
Roppenser B, Grinstein S, Brumell JH. Modulation of host phosphoinositide metabolism during Salmonella invasion by the type III secreted effector SopB. Methods Cell Biol 2012; 108:173-86; http://dx.doi.org/10.1016/B978-0-12-386487-1.00009-2. PubMed DOI
Cuesta-Geijo MA, Galindo I, Hernaez B, Quetglas JI, Dalmau-Mena I, Alonso C. Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PloS One 2012; 7:e48853; http://dx.doi.org/10.1371/journal.pone.0048853. PubMed DOI PMC
Jin N, Mao K, Jin Y, Tevzadze G, Kauffman EJ, Park S, Bridges D, Loewith R, Saltiel AR, Klionsky DJ, et al.. Roles for PI(3,5)P2 in nutrient sensing through TORC1. Mol Biol Cell 2014; 25:1171-85. PubMed PMC
Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, Levine B, Yin H. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc Natl Acad Sci USA 2015; 112:7015-20; http://dx.doi.org/10.1073/pnas.1507263112. PubMed DOI PMC
Dou Z, Chattopadhyay M, Pan JA, Guerriero JL, Jiang YP, Ballou LM, Yue Z, Lin RZ, Zong WX. The class IA phosphatidylinositol 3-kinase p110-β subunit is a positive regulator of autophagy. J Cell Biol 2010; 191:827-43; http://dx.doi.org/10.1083/jcb.201006056. PubMed DOI PMC
Lindmo K, Brech A, Finley KD, Gaumer S, Contamine D, Rusten TE, Stenmark H. The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy 2008; 4:500-6; http://dx.doi.org/10.4161/auto.5829. PubMed DOI
Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 2002; 3:416-27; http://dx.doi.org/10.1034/j.1600-0854.2002.30605.x. PubMed DOI
Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet 2010; 19:R28-37; http://dx.doi.org/10.1093/hmg/ddq143. PubMed DOI PMC
Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, et al.. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 2010; 107:378-83; http://dx.doi.org/10.1073/pnas.0911187107. PubMed DOI PMC
Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 2004; 279:20663-71; http://dx.doi.org/10.1074/jbc.M400272200. PubMed DOI PMC
Shahab S, Namolovan A, Mogridge J, Kim PK, Brumell JH. Bacterial toxins can inhibit host cell autophagy through cAMP generation. Autophagy 2011; 7:957-65. PubMed
Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2 regulates autophagosome formation. Autophagy 2015; 11:in press. PubMed PMC
McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, et al.. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 2015; 57: 39-54; http://dx.doi.org/10.1016/j.molcel.2014.11.006. PubMed DOI
Broadley K, Larsen L, Herst PM, Smith RA, Berridge MV, McConnell MJ. The novel phloroglucinol PMT7 kills glycolytic cancer cells by blocking autophagy and sensitizing to nutrient stress. J Cell Biochem 2011; 112:1869-79; http://dx.doi.org/10.1002/jcb.23107. PubMed DOI
Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T, Deretic V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 2014; 24:609-20; http://dx.doi.org/10.1016/j.cub.2014.02.008. PubMed DOI PMC
Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev 2013; 2013:891748; http://dx.doi.org/10.1155/2013/891748. PubMed DOI PMC
Macedo D, Tavares L, McDougall GJ, Vicente Miranda H, Stewart D, Ferreira RB, Tenreiro S, Outeiro TF, Santos CN. (Poly)phenols protect from alpha-synuclein toxicity by reducing oxidative stress and promoting autophagy. Hum Mol Genet 2015; 24:1717-32; http://dx.doi.org/10.1093/hmg/ddu585. PubMed DOI
Hasima N, Ozpolat B. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 2014; 5:e1509; http://dx.doi.org/10.1038/cddis.2014.467. PubMed DOI PMC
Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126:1713-9; http://dx.doi.org/10.1242/jcs.125773. PubMed DOI PMC
Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso E, Davidson MM, Michalik L, Wahli W, Vazquez-Carrera M. PPARbeta/delta attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. Int J Cardiol 2014; 174:110-8; http://dx.doi.org/10.1016/j.ijcard.2014.03.176. PubMed DOI
Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev 2000; 14:1027-47. PubMed
Phizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev 1995; 59:94-123. PubMed PMC
Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench 2014; 7:17-31. PubMed PMC
Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 2012; 16:68-80; http://dx.doi.org/10.1016/j.cmet.2012.06.003. PubMed DOI
Uddin MN, Ito S, Nishio N, Suganya T, Isobe KI. Gadd34 induces autophagy through the suppression of the mTOR pathway during starvation. Biochem Biophys Res Comm 2011; 407:692-8. PubMed
Peti W, Nairn AC, Page R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J 2013; 280:596-611; http://dx.doi.org/10.1111/j.1742-4658.2012.08509.x. PubMed DOI PMC
Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, et al.. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288-99; http://dx.doi.org/10.1038/ncb3114. PubMed DOI PMC
Eisenberg-Lerner A, Kimchi A. PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ 2012; 19:788-97; http://dx.doi.org/10.1038/cdd.2011.149. PubMed DOI PMC
Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 2012; 20:15-27; http://dx.doi.org/10.1016/j.str.2011.11.012. PubMed DOI PMC
Baskaran S, Ragusa MJ, Boura E, Hurley JH. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell 2012; 47:339-48; http://dx.doi.org/10.1016/j.molcel.2012.05.027. PubMed DOI PMC
Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, Thumm M, Kuhnel K. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci USA 2012; 109:E2042-9; http://dx.doi.org/10.1073/pnas.1205128109. PubMed DOI PMC
Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Inagaki F, Ohsumi Y, Noda NN. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem 2012; 287:31681-90; http://dx.doi.org/10.1074/jbc.M112.397570. PubMed DOI PMC
Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. Mol Cell 2015; 58:1053-66; http://dx.doi.org/10.1016/j.molcel.2015.04.023. PubMed DOI PMC
Starokadomskyy P, Dmytruk KV. A bird's-eye view of autophagy. Autophagy 2013; 9:1121-6; http://dx.doi.org/10.4161/auto.24544. PubMed DOI PMC
Neely KM, Green KN, Laferla FM. Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a {gamma}-secretase-independent manner. J Neurosci 2011; 31:2781-91; http://dx.doi.org/10.1523/JNEUROSCI.5156-10.2010. PubMed DOI PMC
Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr.. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005; 44:7342-72; http://dx.doi.org/10.1002/anie.200501023. PubMed DOI
Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods 2007; 4:798-806; http://dx.doi.org/10.1038/nmeth1100. PubMed DOI
Popelka H, Klionsky DJ. Posttranslationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 2015; 282:3474-88. PubMed PMC
Huang YH, Al-Aidaroos AQ, Yuen HF, Zhang SD, Shen HM, Rozycka E, McCrudden CM, Tergaonkar V, Gupta A, Lin YB, et al.. A role of autophagy in PTP4A3-driven cancer progression. Autophagy 2014; 10:1787-800; http://dx.doi.org/10.4161/auto.29989. PubMed DOI PMC
Martin KR, Xu Y, Looyenga BD, Davis RJ, Wu CL, Tremblay ML, Xu HE, MacKeigan JP. Identification of PTPsigma as an autophagic phosphatase. J Cell Sci 2011; 124:812-9; http://dx.doi.org/10.1242/jcs.080341. PubMed DOI PMC
Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Dinkins C, Silvestri G, Munch J, Kirchhoff F, Simonsen A, et al.. TRIM Proteins Regulate Autophagy and Can Target Autophagic Substrates by Direct Recognition. Dev Cell 2014; 30:394-409; http://dx.doi.org/10.1016/j.devcel.2014.06.013. PubMed DOI PMC
Nagy G, Ward J, Mosser DD, Koncz A, Gergely P Jr., Stancato C, Qian Y, Fernandez D, Niland B, Grossman CE, et al.. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. J Biol Chem 2006; 281:34574-91; http://dx.doi.org/10.1074/jbc.M606301200. PubMed DOI
Fernandez DR, Telarico T, Bonilla E, Li Q, Banerjee S, Middleton FA, Phillips PE, Crow MK, Oess S, Muller-Esterl W, et al.. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J Immunol 2009; 182:2063-73; http://dx.doi.org/10.4049/jimmunol.0803600. PubMed DOI PMC
Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP, Lai ZW, Miklossy G, Singh RR, Chudakov DM, et al.. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann Rheum Dis 2014; 73:1888-97; http://dx.doi.org/10.1136/annrheumdis-2013-203794. PubMed DOI PMC
Talaber G, Miklossy G, Oaks Z, Liu Y, Tooze SA, Chudakov DM, Banki K, Perl A. HRES-1/Rab4 promotes the formation of LC3(+) autophagosomes and the accumulation of mitochondria during autophagy. PloS One 2014; 9:e84392; http://dx.doi.org/10.1371/journal.pone.0084392. PubMed DOI PMC
Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 2011; 80:125-56; http://dx.doi.org/10.1146/annurev-biochem-052709-094552. PubMed DOI
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nature Rev Mol Cell Biol 2009; 10:513-25; http://dx.doi.org/10.1038/nrm2728. PubMed DOI
Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 2004; 117:4837-48; http://dx.doi.org/10.1242/jcs.01370. PubMed DOI
Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, et al.. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37:223-34; http://dx.doi.org/10.1016/j.immuni.2012.04.015. PubMed DOI PMC
Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 2012; 197:659-75; http://dx.doi.org/10.1083/jcb.201111079. PubMed DOI PMC
Matsui T, Fukuda M. Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep 2013; 14:450-7; http://dx.doi.org/10.1038/embor.2013.32. PubMed DOI PMC
Jean S, Cox S, Nassari S, Kiger AA. Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion. EMBO Rep 2015; 16:297-311; http://dx.doi.org/10.15252/embr.201439464. PubMed DOI PMC
Munafo DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 2002; 3:472-82; http://dx.doi.org/10.1034/j.1600-0854.2002.30704.x. PubMed DOI
Ylä-Anttila P, Mikkonen E, Happonen KE, Holland P, Ueno T, Simonsen A, Eskelinen E-L: RAB24 facilitates clearance of autophagic compartments during basal conditions. Autophagy 2015, 10:1833-48 DOI: 10.1080/15548627.2015.108652210.1080/15548627.2015.1086522 PubMed DOI PMC
Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66:2913-32; http://dx.doi.org/10.1007/s00018-009-0080-9. PubMed DOI PMC
Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 2008; 19:2916-25; http://dx.doi.org/10.1091/mbc.E07-12-1231. PubMed DOI PMC
Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 2011; 192:839-53; http://dx.doi.org/10.1083/jcb.201008107. PubMed DOI PMC
Chen XW, Leto D, Xiong T, Yu G, Cheng A, Decker S, Saltiel AR. A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action. Mol Biol Cell 2011; 22:141-52; http://dx.doi.org/10.1091/mbc.E10-08-0665. PubMed DOI PMC
Gentry LR, Martin TD, Reiner DJ, Der CJ. Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. Biochim Biophys Acta 2014; 1843:2976-88; http://dx.doi.org/10.1016/j.bbamcr.2014.09.004. PubMed DOI PMC
Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, Der CJ. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell 2014; 53:209-20; http://dx.doi.org/10.1016/j.molcel.2013.12.004. PubMed DOI PMC
Geng J, Nair U, Yasumura-Yorimitsu K, Klionsky DJ. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:2257-69; http://dx.doi.org/10.1091/mbc.E09-11-0969. PubMed DOI PMC
Shirakawa R, Fukai S, Kawato M, Higashi T, Kondo H, Ikeda T, Nakayama E, Okawa K, Nureki O, Kimura T, et al.. Tuberous sclerosis tumor suppressor complex-like complexes act as GTPase-activating proteins for Ral GTPases. J Biol Chem 2009; 284:21580-8; http://dx.doi.org/10.1074/jbc.M109.012112. PubMed DOI PMC
Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, Kuhn LI, Gruber CW, Lienhard GE, Ghosh S. kappaB-Ras proteins regulate both NF-kappaB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8:1793-807; http://dx.doi.org/10.1016/j.celrep.2014.08.015. PubMed DOI PMC
Punnonen EL, Reunanen H, Hirsimaki P, Lounatmaa K. Filipin labelling and intramembrane particles on the membranes of early and later autophagic vacuoles in Ehrlich ascites cells. Virchows Archiv B, Cell Pathol 1988; 54:317-26; http://dx.doi.org/10.1007/BF02899229. PubMed DOI
Opipari AJ, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 2004; 15:696-703; http://dx.doi.org/10.1158/0008-5472.CAN-03-2404. PubMed DOI
Ogier-Denis E, Petiot A, Bauvy C, Codogno P. Control of the expression and activity of the Galpha-interacting protein (GAIP) in human intestinal cells. J Biol Chem 1997; 272:24599-603; http://dx.doi.org/10.1074/jbc.272.39.24599. PubMed DOI
Yorimitsu T, Zaman S, Broach JR, Klionsky DJ. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:4180-9; http://dx.doi.org/10.1091/mbc.E07-05-0485. PubMed DOI PMC
Yonekawa T, Gamez G, Kim J, Tan AC, Thorburn J, Gump J, Thorburn A, Morgan MJ. RIP1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis. EMBO Rep 2015; 16:700-8; http://dx.doi.org/10.15252/embr.201439496. PubMed DOI PMC
Hillwig MS, Contento AL, Meyer A, Ebany D, Bassham DC, Macintosh GC. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proc Natl Acad Sci USA 2011; 108:1093-8; http://dx.doi.org/10.1073/pnas.1009809108. PubMed DOI PMC
Haud N, Kara F, Diekmann S, Henneke M, Willer JR, Hillwig MS, Gregg RG, Macintosh GC, Gartner J, Alia A, et al.. rnaset2 mutant zebrafish model familial cystic leukoencephalopathy and reveal a role for RNase T2 in degrading ribosomal RNA. Proc Natl Acad Sci USA 2011; 108:1099-103; http://dx.doi.org/10.1073/pnas.1009811107. PubMed DOI PMC
Xu C, Feng K, Zhao X, Huang S, Cheng Y, Qian L, Wang Y, Sun H, Jin M, Chuang TH, et al.. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination. Autophagy 2014; 10:2239-50.. PubMed PMC
Ganley IG, Lam H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297-305; http://dx.doi.org/10.1074/jbc.M900573200. PubMed DOI PMC
Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 2011; 7:737-47; http://dx.doi.org/10.4161/auto.7.7.15491. PubMed DOI PMC
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan K-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10:935-45; http://dx.doi.org/10.1038/ncb1753. PubMed DOI PMC
White E. Exploiting the bad eating habits of Ras-driven cancers. Genes Dev 2013; 27:2065-71; http://dx.doi.org/10.1101/gad.228122.113. PubMed DOI PMC
Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004; 101:18030-5; http://dx.doi.org/10.1073/pnas.0408345102. PubMed DOI PMC
Stankov MV, El Khatib M, Kumar Thakur B, Heitmann K, Panayotova-Dimitrova D, Schoening J, Bourquin JP, Schweitzer N, Leverkus M, Welte K, et al.. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia 2014; 28:577-88; http://dx.doi.org/10.1038/leu.2013.264. PubMed DOI PMC
Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos DP, Cristea IM, Williams R, Salamero J, Chait BT, Sali A, et al.. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol Cell Proteomics 2011; 10:M110 006478. PubMed PMC
Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen W-L, Griffith J, Nag S, Wang K, Moss T, et al.. SNARE proteins are required for macroautophagy. Cell 2011; 146:290-302; http://dx.doi.org/10.1016/j.cell.2011.06.022. PubMed DOI PMC
Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen WL, Griffith J, Nag S, Wang K, Moss T, et al.. SNARE proteins are required for macroautophagy. Cell 2011; 146:290-302; http://dx.doi.org/10.1016/j.cell.2011.06.022. PubMed DOI PMC
Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, Yoshimori T, Noda T, Ohsumi Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 2001; 12:3690-702; http://dx.doi.org/10.1091/mbc.12.11.3690. PubMed DOI PMC
Jiang S, Dupont N, Castillo EF, Deretic V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun 2013; 5:471-9; http://dx.doi.org/10.1159/000346707. PubMed DOI PMC
Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, Gouin E, Demangel C, Brosch R, Zimmer C, et al.. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 2010; 8:433-44; http://dx.doi.org/10.1016/j.chom.2010.10.009. PubMed DOI
Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, et al.. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010; 329:229-32; http://dx.doi.org/10.1126/science.1190354. PubMed DOI
Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 2013; 18:792-801; http://dx.doi.org/10.1016/j.cmet.2013.08.018. PubMed DOI PMC
Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 2013; 17:73-84; http://dx.doi.org/10.1016/j.cmet.2012.12.002. PubMed DOI
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134:451-60; http://dx.doi.org/10.1016/j.cell.2008.06.028. PubMed DOI PMC
Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, Kim M, Nam M, Zhang D, Yin L, et al.. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 2014; 5:4233. PubMed PMC
Ben-Sahra I, Dirat B, Laurent K, Puissant A, Auberger P, Budanov A, Tanti JF, Bost F. Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death Differ 2013; 20:611-9; http://dx.doi.org/10.1038/cdd.2012.157. PubMed DOI PMC
Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, et al.. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007; 9:1142-51; http://dx.doi.org/10.1038/ncb1634. PubMed DOI PMC
Wong AS, Lee RH, Cheung AY, Yeung PK, Chung SK, Cheung ZH, Ip NY. Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nat Cell Biol 2011; 13:568-79; http://dx.doi.org/10.1038/ncb2217. PubMed DOI
Zhang C, Li A, Zhang X, Xiao H. A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem 2011; 286:9373-81; http://dx.doi.org/10.1074/jbc.M110.207720. PubMed DOI PMC
Khan MM, Strack S, Wild F, Hanashima A, Gasch A, Brohm K, Reischl M, Carnio S, Labeit D, Sandri M, et al.. Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 2014; 10:123-36; http://dx.doi.org/10.4161/auto.26841. PubMed DOI PMC
Belaid A, Ndiaye PD, Klionsky DJ, Hofman P, Mograbi B. Signalphagy: Scheduled signal termination by macroautophagy. Autophagy 2013; 9:1629-30. PubMed PMC
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105:3374-9; http://dx.doi.org/10.1073/pnas.0712145105. PubMed DOI PMC
Webster BR, Scott I, Traba J, Han K, Sack MN. Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochim Biophys Acta 2014; 1841:525-34; http://dx.doi.org/10.1016/j.bbalip.2014.02.001. PubMed DOI PMC
Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, et al.. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 2015; 11:1037-51; http://dx.doi.org/10.1080/15548627.2015.1052208. PubMed DOI PMC
Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, et al.. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 2015; 11:253-70; http://dx.doi.org/10.1080/15548627.2015.1009778. PubMed DOI PMC
Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y, Wakui H, Yoshii Y, Yumino Y, Fujii S, et al.. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 2014; 192:958-68; http://dx.doi.org/10.4049/jimmunol.1302341. PubMed DOI
Araki S, Izumiya Y, Rokutanda T, Ianni A, Hanatani S, Kimura Y, Onoue Y, Senokuchi T, Yoshizawa T, Yasuda O, et al.. Sirt7 Contributes to Myocardial Tissue Repair by Maintaining TGF-beta Signaling Pathway. Circulation 2015. PubMed
Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 2008; 451:350-4; http://dx.doi.org/10.1038/nature06479. PubMed DOI
Bhardwaj V, Kanagawa O, Swanson PE, Unanue ER. Chronic Listeria infection in SCID mice: requirements for the carrier state and the dual role of T cells in transferring protection or suppression. J Immunol 1998; 160:376-84. PubMed
Liu H, Ma Y, He HW, Wang JP, Jiang JD, Shao RG. SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast cancer cells. Autophagy 2015:0. PubMed PMC
Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, Byers S, Giaccia AJ, Glasgow E, Albanese C, et al.. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 2012; 3:1220-35; http://dx.doi.org/10.18632/oncotarget.714. PubMed DOI PMC
Jung J, Genau HM, Behrends C. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Mol Cell Biol 2015; 35:2479-94; http://dx.doi.org/10.1128/MCB.00125-15. PubMed DOI PMC
Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, et al.. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519:477-81; http://dx.doi.org/10.1038/nature14107. PubMed DOI PMC
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al.. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347:188-94; http://dx.doi.org/10.1126/science.1257132. PubMed DOI PMC
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013; 13:722-37; http://dx.doi.org/10.1038/nri3532. PubMed DOI PMC
Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, Kimchi A. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 2006; 22:463-75; http://dx.doi.org/10.1016/j.molcel.2006.04.014. PubMed DOI
Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten TE, Bilder D, Stenmark H, Mironov AA, Vaccari T. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 2014; 10:2251-68; http://dx.doi.org/10.4161/15548627.2014.981913. PubMed DOI PMC
Batelli S, Peverelli E, Rodilossi S, Forloni G, Albani D. Macroautophagy and the proteasome are differently involved in the degradation of alpha-synuclein wild type and mutated A30P in an in vitro inducible model (PC12/TetOn). Neuroscience 2011; 195:128-37; http://dx.doi.org/10.1016/j.neuroscience.2011.08.030. PubMed DOI PMC
Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, Yue Z, Zhang HQ, Li M. HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 2014; 10:144-54; http://dx.doi.org/10.4161/auto.26751. PubMed DOI PMC
Knaevelsrud H, Soreng K, Raiborg C, Haberg K, Rasmuson F, Brech A, Liestol K, Rusten TE, Stenmark H, Neufeld TP, et al.. Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J Cell Biol 2013; 202:331-49; http://dx.doi.org/10.1083/jcb.201205129. PubMed DOI PMC
Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, Davies MR, Schulz BL, Nizet V, Teasdale RD, et al.. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 2013; 14:675-82; http://dx.doi.org/10.1016/j.chom.2013.11.003. PubMed DOI PMC
Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T, et al.. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 2011; 147:223-34; http://dx.doi.org/10.1016/j.cell.2011.08.037. PubMed DOI PMC
Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San Pedro JM, Sica V, Izzo V, Maiuri MC, Madeo F, Marino G, et al.. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ 2015; 22:509-16. PubMed PMC
Ghidoni R, Houri JJ, Giuliani A, Ogier-Denis E, Parolari E, Botti S, Bauvy C, Codogno P. The metabolism of sphingo(glyco)lipids is correlated with the differentiation-dependent autophagic pathway in HT-29 cells. Eur J Biochem 1996; 237:454-9; http://dx.doi.org/10.1111/j.1432-1033.1996.0454k.x. PubMed DOI
Lavieu G, Scarlatti F, Sala G, Levade T, Ghidoni R, Botti J, Codogno P. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy 2007; 3:45-7; http://dx.doi.org/10.4161/auto.3416. PubMed DOI
Rong Y, McPhee C, Deng S, Huang L, Chen L, Liu M, Tracy K, Baehreck EH, Yu L, Lenardo MJ. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci USA 2011; 108:7826-31; http://dx.doi.org/10.1073/pnas.1013800108. PubMed DOI PMC
Chen Q, Yue F, Li W, Zou J, Xu T, Huang C, Zhang Y, Song K, Huang G, Xu G, et al.. Potassium Bisperoxo (1,10-phenanthroline) Oxovanadate (bpV(phen)) Induces Apoptosis and Pyroptosis and Disrupts the P62-HDAC6 Interaction to Suppress the Acetylated Microtubule-dependent Degradation of Autophagosomes. J Biol Chem 2015; 290:26051-8. PubMed PMC
Tambe Y, Yamamoto A, Isono T, Chano T, Fukuda M, Inoue H. The drs tumor suppressor is involved in the maturation process of autophagy induced by low serum. Cancer Lett 2009; 283:74-83; http://dx.doi.org/10.1016/j.canlet.2009.03.028. PubMed DOI
Mesquita FS, Thomas M, Sachse M, Santos AJ, Figueira R, Holden DW. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog 2012; 8:e1002743; http://dx.doi.org/10.1371/journal.ppat.1002743. PubMed DOI PMC
Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux H, Souquere S, Marino G, Lachkar S, Senovilla L, et al.. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 2012; 48:667-80; http://dx.doi.org/10.1016/j.molcel.2012.09.013. PubMed DOI
Wang CW. Stationary phase lipophagy as a cellular mechanism to recycle sterols during quiescence. Autophagy 2014; 10:2075-6; http://dx.doi.org/10.4161/auto.36137. PubMed DOI PMC
Wang CW, Miao YH, Chang YS. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Biol 2014; 206:357-66; http://dx.doi.org/10.1083/jcb.201404115. PubMed DOI PMC
Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A, et al.. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 2015; 57:55-68; http://dx.doi.org/10.1016/j.molcel.2014.11.019. PubMed DOI PMC
Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, et al.. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med 2013; 19:1478-88; http://dx.doi.org/10.1038/nm.3322. PubMed DOI PMC
Renna M, Schaffner C, Winslow AR, Menzies FM, Peden AA, Floto RA, Rubinsztein DC. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J Cell Sci 2011; 124:469-82; http://dx.doi.org/10.1242/jcs.076489. PubMed DOI PMC
Lu Y, Zhang Z, Sun D, Sweeney ST, Gao FB. Syntaxin 13, a genetic modifier of mutant CHMP2B in frontotemporal dementia, is required for autophagosome maturation. Mol Cell 2013; 52:264-71; http://dx.doi.org/10.1016/j.molcel.2013.08.041. PubMed DOI PMC
Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, et al.. Autophagosomes form at ER-mitochondria contact sites. Nature 2013; 495:389-93; http://dx.doi.org/10.1038/nature11910. PubMed DOI
Webber JL, Tooze SA. Coordinated regulation of autophagy by p38{alpha} MAPK through mAtg9 and p38IP. EMBO J 2010; 29:27-40; http://dx.doi.org/10.1038/emboj.2009.321. PubMed DOI PMC
Lopergolo A, Nicolini V, Favini E, Dal Bo L, Tortoreto M, Cominetti D, Folini M, Perego P, Castiglioni V, Scanziani E, et al.. Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in human medullary thyroid cancer. J Clin Endocrinol Metab 2014; 99:498-509; http://dx.doi.org/10.1210/jc.2013-2574. PubMed DOI
Jackson DJ, Worheide G. Symbiophagy and biomineralization in the “living fossil” Astrosclera willeyana. Autophagy 2014; 10:408-15; http://dx.doi.org/10.4161/auto.27319. PubMed DOI PMC
Criollo A, Niso-Santano M, Malik SA, Michaud M, Morselli E, Marino G, Lachkar S, Arkhipenko AV, Harper F, Pierron G, et al.. Inhibition of autophagy by TAB2 and TAB3. EMBO J 2011; 30:4908-20; http://dx.doi.org/10.1038/emboj.2011.413. PubMed DOI PMC
Takaesu G, Kobayashi T, Yoshimura A. TGFbeta-activated kinase 1 (TAK1)-binding proteins (TAB) 2 and 3 negatively regulate autophagy. J Biochem 2012; 151:157-66; http://dx.doi.org/10.1093/jb/mvr123. PubMed DOI
Nagahara Y, Takeyoshi M, Sakemoto S, Shiina I, Nakata K, Fujimori K, Wang Y, Umeda E, Watanabe C, Uetake S, et al.. Novel tamoxifen derivative Ridaifen-B induces Bcl-2 independent autophagy without estrogen receptor involvement. Biochem Biophys Res Comm 2013; 435:657-63; http://dx.doi.org/10.1016/j.bbrc.2013.05.040. PubMed DOI
Bose JK, Huang CC, Shen CK. Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 2011; 286:44441-8; http://dx.doi.org/10.1074/jbc.M111.237115. PubMed DOI PMC
Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, et al.. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011; 332:966-70; http://dx.doi.org/10.1126/science.1205407. PubMed DOI PMC
Newman AC, Scholefield CL, Kemp AJ, Newman M, McIver EG, Kamal A, Wilkinson S. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kappaB signalling. PloS One 2012; 7:e50672; http://dx.doi.org/10.1371/journal.pone.0050672. PubMed DOI PMC
Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47:535-46; http://dx.doi.org/10.1016/j.molcel.2012.06.009. PubMed DOI PMC
Alfaiz AA, Micale L, Mandriani B, Augello B, Pellico MT, Chrast J, Xenarios I, Zelante L, Merla G, Reymond A. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease. Hum Mutat 2014; 35:447-51; http://dx.doi.org/10.1002/humu.22529. PubMed DOI
Capo-Chichi JM, Tcherkezian J, Hamdan FF, Decarie JC, Dobrzeniecka S, Patry L, Nadon MA, Mucha BE, Major P, Shevell M, et al.. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly. J Med Genet 2013; 50:740-4; http://dx.doi.org/10.1136/jmedgenet-2013-101680. PubMed DOI
Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 1999; 18:6694-704; http://dx.doi.org/10.1093/emboj/18.23.6694. PubMed DOI PMC
Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, Iozzo RV. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) and mitostatin. J Biol Chem 2014; 289:4952-68; http://dx.doi.org/10.1074/jbc.M113.512566. PubMed DOI PMC
Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, et al.. A tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 2011; 9:376-89; http://dx.doi.org/10.1016/j.chom.2011.04.010. PubMed DOI
Li L, Khatibi NH, Hu Q, Yan J, Chen C, Han J, Ma D, Chen Y, Zhou C. Transmembrane protein 166 regulates autophagic and apoptotic activities following focal cerebral ischemic injury in rats. Exp Neurol 2012; 234:181-90; http://dx.doi.org/10.1016/j.expneurol.2011.12.038. PubMed DOI
Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K, Anikster Y, Reznik-Wolf H, Bar-Joseph I, Olender T, et al.. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 2012; 91:1065-72; http://dx.doi.org/10.1016/j.ajhg.2012.09.015. PubMed DOI PMC
Oz-Levi D, Gelman A, Elazar Z, Lancet D. TECPR2: a new autophagy link for neurodegeneration. Autophagy 2013; 9:801-2; http://dx.doi.org/10.4161/auto.23961. PubMed DOI PMC
D'Eletto M, Farrace MG, Falasca L, Reali V, Oliverio S, Melino G, Griffin M, Fimia GM, Piacentini M. Transglutaminase 2 is involved in autophagosome maturation. Autophagy 2009; 5:1145-54; http://dx.doi.org/10.4161/auto.5.8.10040. PubMed DOI
Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, et al.. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009; 119:1359-72; http://dx.doi.org/10.1172/JCI37948. PubMed DOI PMC
Salazar M, Lorente M, Garcia-Taboada E, Hernandez-Tiedra S, Davila D, Francis SE, Guzman M, Kiss-Toth E, Velasco G. The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action. Biochim Biophys Acta 2013; 1831:1573-8; http://dx.doi.org/10.1016/j.bbalip.2013.03.014. PubMed DOI
Velasco G, Sanchez C, Guzman M. Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer 2012; 12:436-44; http://dx.doi.org/10.1038/nrc3247. PubMed DOI
Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 2009; 28:3015-26; http://dx.doi.org/10.1038/emboj.2009.242. PubMed DOI PMC
Lok CN, Sy LK, Liu F, Che CM. Activation of autophagy of aggregation-prone ubiquitinated proteins by timosaponin A-III. J Biol Chem 2011; 286:31684-96; http://dx.doi.org/10.1074/jbc.M110.202531. PubMed DOI PMC
He P, Peng Z, Luo Y, Wang L, Yu P, Deng W, An Y, Shi T, Ma D. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy 2009; 5:52-60; http://dx.doi.org/10.4161/auto.5.1.7247. PubMed DOI
Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramon-Barros C, Pimentel-Muinos FX. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 2013; 32:566-82; http://dx.doi.org/10.1038/emboj.2013.8. PubMed DOI PMC
Shi CS, Kehrl JH. Traf6 and A20 differentially regulate TLR4-induced autophagy by affecting the ubiquitination of Beclin 1. Autophagy 2010; 6:986-7; http://dx.doi.org/10.4161/auto.6.7.13288. PubMed DOI PMC
Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y, Kobayashi M, Nibe Y, Nozaki K, Nagaishi T, Okamoto R, et al.. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 2015; 11:1052-62; http://dx.doi.org/10.1080/15548627.2015.1055439. PubMed DOI PMC
Jacinto E. What controls TOR? IUBMB Life 2008; 60:483-96; http://dx.doi.org/10.1002/iub.56. PubMed DOI
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137:873-86; http://dx.doi.org/10.1016/j.cell.2009.03.046. PubMed DOI PMC
Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007; 405:513-22; http://dx.doi.org/10.1042/BJ20070540. PubMed DOI PMC
Vlahakis A, Graef M, Nunnari J, Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA 2014; 111:10586-91; http://dx.doi.org/10.1073/pnas.1406305111. PubMed DOI PMC
Renna M, Bento CF, Fleming A, Menzies FM, Siddiqi FH, Ravikumar B, Puri C, Garcia-Arencibia M, Sadiq O, Corrochano S, et al.. IGF-1 receptor antagonism inhibits autophagy. Hum Mol Genet 2013; 22:4528-44; http://dx.doi.org/10.1093/hmg/ddt300. PubMed DOI PMC
Arias E, Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM. Lysosomal mTORC2/PHLPP1/Akt Regulate Chaperone-Mediated Autophagy. Mol Cell 2015; 59:270-84; http://dx.doi.org/10.1016/j.molcel.2015.05.030. PubMed DOI PMC
N'Guessan P, Pouyet L, Gosset G, Hamlaoui S, Seillier M, Cano CE, Seux M, Stocker P, Culcasi M, Iovanna JL, et al.. Absence of Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibroblasts to Redox-Driven Apoptosis. Antioxid Redox Sign 2011; 15:1639-53; http://dx.doi.org/10.1089/ars.2010.3553. PubMed DOI
Sancho A, Duran J, Garcia-Espana A, Mauvezin C, Alemu EA, Lamark T, Macias MJ, DeSalle R, Royo M, Sala D, et al.. Absence of Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibroblasts to Redox-Driven Apoptosis. PloS One 2012; 7:e34034; http://dx.doi.org/10.1371/journal.pone.0034034. PubMed DOI PMC
Seillier M, Peuget S, Gayet O, Gauthier C, N'Guessan P, Monte M, Carrier A, Iovanna JL, Dusetti NJ. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ 2012; 19:1525-35; http://dx.doi.org/10.1038/cdd.2012.30. PubMed DOI PMC
Seillier M, Pouyet L, N'Guessan P, Nollet M, Capo F, Guillaumond F, Peyta L, Dumas JF, Varrault A, Bertrand G, et al.. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1. EMBO Mol Med 2015. PubMed PMC
Mauvezin C, Orpinell M, Francis VA, Mansilla F, Duran J, Ribas V, Palac{i}n M, Boya P, Teleman AA, Zorzano A. The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep 2010; 11:37-44; http://dx.doi.org/10.1038/embor.2009.242. PubMed DOI PMC
Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque MJ, Vaccaro MI, Velasco G, Dagorn JC, Iovanna JL. The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell 2009; 20:870-81; http://dx.doi.org/10.1091/mbc.E08-07-0671. PubMed DOI PMC
Sala D, Ivanova S, Plana N, Ribas V, Duran J, Bach D, Turkseven S, Laville M, Vidal H, Karczewska-Kupczewska M, et al.. Autophagy-regulating TP53INP2 mediates muscle wasting and is repressed in diabetes. J Clin Invest 2014; 124:1914-27; http://dx.doi.org/10.1172/JCI72327. PubMed DOI PMC
Cang C, Zhou Y, Navarro B, Seo YJ, Aranda K, Shi L, Battaglia-Hsu S, Nissim I, Clapham DE, Ren D. mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 2013; 152:778-90; http://dx.doi.org/10.1016/j.cell.2013.01.023. PubMed DOI PMC
Lin PH, Duann P, Komazaki S, Park KH, Li H, Sun M, Sermersheim M, Gumpper K, Parrington J, Galione A, et al.. Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling. J Biol Chem 2015; 290:3377-89; http://dx.doi.org/10.1074/jbc.M114.608471. PubMed DOI PMC
Funasaka T, Tsuka E, Wong RW. Regulation of autophagy by nucleoporin Tpr. Sci Rep 2012; 2:878; http://dx.doi.org/10.1038/srep00878. PubMed DOI PMC
Zou S, Chen Y, Liu Y, Segev N, Yu S, Liu Y, Min G, Ye M, Zeng Y, Zhu X, et al.. Trs130 participates in autophagy through GTPases Ypt31/32 in Saccharomyces cerevisiae. Traffic 2013; 14: 233-46; http://dx.doi.org/10.1111/tra.12024. PubMed DOI PMC
Hua F, Li K, Yu JJ, Lv XX, Yan J, Zhang XW, Sun W, Lin H, Shang S, Wang F, et al.. TRB3 links insulin/IGF to tumour promotion by interacting with p62 and impeding autophagic/proteasomal degradations. Nat Commun 2015; 6:7951; http://dx.doi.org/10.1038/ncomms8951. PubMed DOI PMC
Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Egia A, Lorente M, Vazquez P, Torres S, Iovanna JL, Guzman M, et al.. TRB3 links ER stress to autophagy in cannabinoid anti-tumoral action. Autophagy 2009; 5:1048-9; http://dx.doi.org/10.4161/auto.5.7.9508. PubMed DOI
Francisco R, Perez-Perarnau A, Cortes C, Gil J, Tauler A, Ambrosio S. Histone deacetylase inhibition induces apoptosis and autophagy in human neuroblastoma cells. Cancer Lett 2012; 318:42-52; http://dx.doi.org/10.1016/j.canlet.2011.11.036. PubMed DOI
Micale L, Fusco C, Augello B, Napolitano LM, Dermitzakis ET, Meroni G, Merla G, Reymond A. Williams-Beuren syndrome TRIM50 encodes an E3 ubiquitin ligase. Eur J Hum Genet 2008; 16:1038-49; http://dx.doi.org/10.1038/ejhg.2008.68. PubMed DOI PMC
Fusco C, Micale L, Augello B, Mandriani B, Pellico MT, De Nittis P, Calcagni A, Monti M, Cozzolino F, Pucci P, et al.. HDAC6 mediates the acetylation of TRIM50. Cell Signal 2014; 26:363-9; http://dx.doi.org/10.1016/j.cellsig.2013.11.036. PubMed DOI
Fusco C, Micale L, Egorov M, Monti M, D'Addetta EV, Augello B, Cozzolino F, Calcagni A, Fontana A, Polishchuk RS, et al.. The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome. PloS One 2012; 7:e40440; http://dx.doi.org/10.1371/journal.pone.0040440. PubMed DOI PMC
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al.. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294:1704-8; http://dx.doi.org/10.1126/science.1065874. PubMed DOI
Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, et al.. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001; 306:717-26; http://dx.doi.org/10.1006/jmbi.2001.4448. PubMed DOI
Gatliff J, East D, Crosby J, Abeti R, Harvey R, Craigen W, Parker P, Campanella M. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy 2014; 10:2279-96; http://dx.doi.org/10.4161/15548627.2014.991665. PubMed DOI PMC
Geisler S, Vollmer S, Golombek S, Kahle PJ. UBE2N, UBE2L3 and UBE2D2/3 ubiquitin-conjugating enzymes are essential for parkin-dependent mitophagy. J Cell Sci 2014; 127:3280-93; http://dx.doi.org/10.1242/jcs.146035. PubMed DOI
Fiesel FC, Moussaud-Lamodiere EL, Ando M, Springer W. A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently. J Cell Sci 2014; 127:3488-504; http://dx.doi.org/10.1242/jcs.147520. PubMed DOI PMC
Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, et al.. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 2008; 134:668-78; http://dx.doi.org/10.1016/j.cell.2008.07.039. PubMed DOI
Muller M, Kotter P, Behrendt C, Walter E, Scheckhuber CQ, Entian KD, Reichert AS. Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy. Cell Rep 2015; 10:1215-25; http://dx.doi.org/10.1016/j.celrep.2015.01.044. PubMed DOI
N'Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 2009; 10:173-9; http://dx.doi.org/10.1038/embor.2008.238. PubMed DOI PMC
Chan EYW, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 2007; 282:25464-74; http://dx.doi.org/10.1074/jbc.M703663200. PubMed DOI
Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22:132-9; http://dx.doi.org/10.1016/j.ceb.2009.12.004. PubMed DOI
Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, Caldwell-Busby J. Mapping the phosphorylation sites of Ulk1. J Proteome Res 2009; 8:5253-63; http://dx.doi.org/10.1021/pr900583m. PubMed DOI
Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, Sue C, Gevaert K, De Strooper B, Verstreken P, et al.. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 2014; 23:5227-42. PubMed PMC
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS, Sheng M. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014; 510:370-5. PubMed
Taillebourg E, Gregoire I, Viargues P, Jacomin AC, Thevenon D, Faure M, Fauvarque MO. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy 2012; 8:767-79; http://dx.doi.org/10.4161/auto.19381. PubMed DOI
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006; 8:688-99; http://dx.doi.org/10.1038/ncb1426. PubMed DOI
Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS, Kim DH. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell 2015; 57:207-18; http://dx.doi.org/10.1016/j.molcel.2014.11.013. PubMed DOI PMC
Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM, Ganley IG. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J 2015. PubMed PMC
Pirooz SD, He S, Zhang T, Zhang X, Zhao Z, Oh S, O'Connell D, Khalilzadeh P, Amini-Bavil-Olyaee S, Farzan M, et al.. UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs. Proc Natl Acad Sci USA 2014; 111:2716-21; http://dx.doi.org/10.1073/pnas.1320629111. PubMed DOI PMC
Kosta A, Roisin-Bouffay C, Luciani MF, Otto GP, Kessin RH, Golstein P. Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J Biol Chem 2004; 279:48404-9; http://dx.doi.org/10.1074/jbc.M408924200. PubMed DOI
Oku M, Nishimura T, Hattori T, Ano Y, Yamashita S, Sakai Y. Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy. Autophagy 2006; 2:272-9; http://dx.doi.org/10.4161/auto.3135. PubMed DOI
Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 1990; 54:266-92. PubMed PMC
Hoffman M, Chiang H-L. Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 1996; 143:1555-66. PubMed PMC
Zhang C, Lee S, Peng Y, Bunker E, Giaime E, Shen J, Zhou Z, Liu X. PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr Biol 2014; 24:1854-65; http://dx.doi.org/10.1016/j.cub.2014.07.014. PubMed DOI PMC
Darsow T, Rieder SE, Emr SD. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 1997; 138:517-29; http://dx.doi.org/10.1083/jcb.138.3.517. PubMed DOI PMC
Fader CM, Sanchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta 2009; 1793:1901-16; http://dx.doi.org/10.1016/j.bbamcr.2009.09.011. PubMed DOI
Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Autophagosome precursor maturation requires homotypic fusion. Cell 2011; 146:303-17; http://dx.doi.org/10.1016/j.cell.2011.06.023. PubMed DOI PMC
Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell 2010; 21:1001-10; http://dx.doi.org/10.1091/mbc.E09-08-0693. PubMed DOI PMC
Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 2009; 187:875-88; http://dx.doi.org/10.1083/jcb.200908115. PubMed DOI PMC
Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 2010; 6:217-27; http://dx.doi.org/10.4161/auto.6.2.11014. PubMed DOI PMC
Donohue E, Tovey A, Vogl AW, Arns S, Sternberg E, Young RN, Roberge M. Inhibition of autophagosome formation by the benzoporphyrin derivative verteporfin. J Biol Chem 2011; 286:7290-300; http://dx.doi.org/10.1074/jbc.M110.139915. PubMed DOI PMC
Kaelin WG., Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008; 8:865-73; http://dx.doi.org/10.1038/nrc2502. PubMed DOI
Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. Escape of intracellular Shigella from autophagy. Science 2005; 307:727-31; http://dx.doi.org/10.1126/science.1106036. PubMed DOI
Vaccaro MI, Ropolo A, Grasso D, Iovanna JL. A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy 2008; 4:388-90; http://dx.doi.org/10.4161/auto.5656. PubMed DOI
Calvo-Garrido J, King JS, Munoz-Braceras S, Escalante R. Vmp1 regulates PtdIns3P signaling during autophagosome formation in Dictyostelium discoideum. Traffic 2014; 15:1235-46; http://dx.doi.org/10.1111/tra.12210. PubMed DOI
Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep 2013; 3:1055; http://dx.doi.org/10.1038/srep01055. PubMed DOI PMC
Balderhaar HJ, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 2013; 126:1307-16; http://dx.doi.org/10.1242/jcs.107805. PubMed DOI
Nickerson DP, Brett CL, Merz AJ. Vps-C complexes: gatekeepers of endolysosomal traffic. Curr Opin Cell Biol 2009; 21:543-51; http://dx.doi.org/10.1016/j.ceb.2009.05.007. PubMed DOI PMC
Clancey LF, Beirl AJ, Linbo TH, Cooper CD. Maintenance of melanophore morphology and survival is cathepsin and vps11 dependent in zebrafish. PloS One 2013; 8:e65096. PubMed PMC
Uttenweiler A, Schwarz H, Neumann H, Mayer A. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 2007; 18:166-75; http://dx.doi.org/10.1091/mbc.E06-08-0664. PubMed DOI PMC
Simonsen A, Birkeland HC, Gillooly DJ, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 2004; 117:4239-51; http://dx.doi.org/10.1242/jcs.01287. PubMed DOI
Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, et al.. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010; 38:265-79; http://dx.doi.org/10.1016/j.molcel.2010.04.007. PubMed DOI PMC
Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, Overvatn A, Stenmark H, Bjorkoy G, Simonsen A, et al.. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 2010; 6:330-44; http://dx.doi.org/10.4161/auto.6.3.11226. PubMed DOI
Kast DJ, Zajac AL, Holzbaur EL, Ostap EM, Dominguez R. WHAMM Directs the Arp2/3 Complex to the ER for Autophagosome Biogenesis through an Actin Comet Tail Mechanism. Curr Biol 2015; 25:1791-7; http://dx.doi.org/10.1016/j.cub.2015.05.042. PubMed DOI PMC
Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, Graf E, Sanford L, Meyer E, Kara E, et al.. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 2012; 91:1144-9; http://dx.doi.org/10.1016/j.ajhg.2012.10.019. PubMed DOI PMC
Abidi A, Mignon-Ravix C, Cacciagli P, Girard N, Milh M, Villard L. Early-onset epileptic encephalopathy as the initial clinical presentation of WDR45 deletion in a male patient. Eur J Hum Genet 2015. PubMed PMC
Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, et al.. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013; 45:445-9, 9e1; http://dx.doi.org/10.1038/ng.2562. PubMed DOI
Biagosch CA, Hensler S, Kühn R, Meitinger T, Prokisch HT. ALEN-mediated mutagenesis as a tool to generate disease models for diseases caused by dominant de novo mutations. Eur J Hum Genet 2014; 22:153.
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Tar 2012; 16:1203-14; http://dx.doi.org/10.1517/14728222.2012.719499. PubMed DOI PMC
Petherick KJ, Williams AC, Lane JD, Ordonez-Moran P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C, et al.. Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 2013; 32:1903-16; http://dx.doi.org/10.1038/emboj.2013.123. PubMed DOI PMC
Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin Immunol 2009; 21:156-63; http://dx.doi.org/10.1016/j.smim.2009.01.001. PubMed DOI PMC
Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005; 120:159-62. PubMed
Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Diaz J, Lavandero S, Harper F, et al.. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 2007; 14:1029-39. PubMed
Kweon Y, Rothe A, Conibear E, Stevens TH. Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 2003; 14:1868-81; http://dx.doi.org/10.1091/mbc.E02-10-0687. PubMed DOI PMC
Cebollero E, van der Vaart A, Zhao M, Rieter E, Klionsky DJ, Helms JB, Reggiori F. Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion. Curr Biol 2012; 22:1545-53; http://dx.doi.org/10.1016/j.cub.2012.06.029. PubMed DOI PMC
Cheng J, Fujita A, Yamamoto H, Tatematsu T, Kakuta S, Obara K, Ohsumi Y, Fujimoto T. Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries. Nat Commun 2014; 5:3207. PubMed
Huang J, Birmingham CL, Shahnazari S, Shiu J, Zheng YT, Smith AC, Campellone KG, Heo WD, Gruenheid S, Meyer T, et al.. Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase. Autophagy 2011; 7:17-26; http://dx.doi.org/10.4161/auto.7.1.13840. PubMed DOI PMC
Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11:1246-61; http://dx.doi.org/10.1111/j.1600-0854.2010.01086.x. PubMed DOI
Pozuelo-Rubio M. Regulation of autophagic activity by 14-3-3zeta proteins associated with class III phosphatidylinositol-3-kinase. Cell Death Differ 2011; 18:479-92; http://dx.doi.org/10.1038/cdd.2010.118. PubMed DOI PMC
Vantaggiato C, Crimella C, Airoldi G, Polishchuk R, Bonato S, Brighina E, Scarlato M, Musumeci O, Toscano A, Martinuzzi A, et al.. Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. Brain 2013; 136:3119-39; http://dx.doi.org/10.1093/brain/awt227. PubMed DOI PMC
Lin JF, Lin YC, Lin YH, Tsai TF, Chou KY, Chen HE, Hwang TI. Zoledronic acid induces autophagic cell death in human prostate cancer cells. J Urol 2011; 185:1490-6; http://dx.doi.org/10.1016/j.juro.2010.11.045. PubMed DOI
Schneider EM, Lorezn M, Walther P. Autophagy as a hallmark of hemophagocytic diseases In: Gorbunov N, ed. Autophagy: Principles, Regulation and Roles in Disease: Nova Science Publishers, 2012.
Ryhanen T, Hyttinen JM, Kopitz J, Rilla K, Kuusisto E, Mannermaa E, Viiri J, Holmberg CI, Immonen I, Meri S, et al.. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 2009; 13:3616-31; http://dx.doi.org/10.1111/j.1582-4934.2008.00577.x. PubMed DOI PMC
Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin V, Nori SL, Calissano P. Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci 2014; 6:18; http://dx.doi.org/10.3389/fnagi.2014.00018. PubMed DOI PMC
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1
Consensus guidelines for the definition, detection and interpretation of immunogenic cell death
Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species
Aspirin Recapitulates Features of Caloric Restriction
Guidelines for the use of flow cytometry and cell sorting in immunological studies
Metabolic effects of fasting on human and mouse blood in vivo