Maternal High-Sucrose Diet Affects Phenotype Outcome in Adult Male Offspring: Role of Zbtb16

. 2020 ; 11 () : 529421. [epub] 20200911

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33061941

Overnutrition in pregnancy and lactation affects fetal and early postnatal development, which can result in metabolic disorders in adulthood. We tested a hypothesis that variation of the Zbtb16 gene, a significant energy metabolism regulator, modulates the effect of maternal high-sucrose diet (HSD) on metabolic and transcriptomic profiles of the offspring. We used the spontaneously hypertensive rat (SHR) strain and a minimal congenic rat strain SHR-Zbtb16, carrying the Zbtb16 gene allele originating from the PD/Cub rat, a metabolic syndrome model. Sixteen-week-old SHR and SHR-Zbtb16 rat dams were fed either standard diet (control groups) or a high-sucrose diet (HSD, 70% calories as sucrose) during pregnancy and 4 weeks of lactation. In dams of both strains, we observed an HSD-induced increase of cholesterol and triacylglycerol concentrations in VLDL particles and a decrease of cholesterol and triacylglycerols content in medium to very small LDL particles. In male offspring, exposure to maternal HSD substantially increased brown fat weight in both strains, decreased triglycerides in LDL particles, and impaired glucose tolerance exclusively in SHR. The transcriptome assessment revealed networks of transcripts reflecting the shifts induced by maternal HSD with major nodes including mir-126, Hsd11b1 in the brown adipose tissue, Pcsk9, Nr0b2 in the liver and Hsd11b1, Slc2a4 in white adipose tissue. In summary, maternal HSD feeding during pregnancy and lactation affected brown fat deposition and lipid metabolism in adult male offspring and induced major transcriptome shifts in liver, white, and brown adipose tissues. The Zbtb16 variation present in the SHR-Zbtb16 led to several strain-specific effects of the maternal HSD, particularly the transcriptomic profile shifts of the adult male offspring.

Zobrazit více v PubMed

Aiken C. E., Tarry-Adkins J. L., Ashmore T. J., Ozanne S. E. (2019). Early life environment influences the trajectory of post-partum weight loss in adult female rats. Reprod. Biomed. Online 38 779–786. PubMed PMC

Alberti K. G., Eckel R. H., Grundy S. M., Zimmet P. Z., Cleeman J. I., Donato K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 120 1640–1645. PubMed

Arentson-Lantz E. J., Zou M., Teegarden D., Buhman K. K., Donkin S. S. (2016). Maternal high fructose and low protein consumption during pregnancy and lactation share some but not all effects on early-life growth and metabolic programming of rat offspring. Nutr. Res. 36 937–946. 10.1016/j.nutres.2016.06.014 PubMed DOI

Barroso I., McCarthy M. I. (2019). The genetic basis of metabolic disease. Cell 177 146–161. 10.1016/j.cell.2019.02.024 PubMed DOI PMC

Bendlova B., Vankova M., Hill M., Vacinova G., Lukasova P., Vejrazkova D., et al. (2017). ZBTB16 gene variability influences obesity-related parameters and serum lipid levels in Czech adults. Physiol. Res. 66 S425–S431. PubMed

Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57 289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI

Chen S., Qian J., Shi X., Gao T., Liang T., Liu C. (2014). Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol. Endocrinol. 28 1987–1998. 10.1210/me.2014-1164 PubMed DOI PMC

D’Alessandro M. E., Oliva M. E., Fortino M. A., Chicco A. (2014). Maternal sucrose-rich diet and fetal programming: changes in hepatic lipogenic and oxidative enzymes and glucose homeostasis in adult offspring. Food Funct. 5 446–453. 10.1039/c3fo60436e PubMed DOI

Dumortier O., Roger E., Pisani D. F., Casamento V., Gautier N., Lebrun P., et al. (2017). Age-dependent control of energy homeostasis by brown adipose tissue in progeny subjected to maternal diet-induced fetal programming. Diabetes 66 627–639. 10.2337/db16-0956 PubMed DOI

Entwisle S. W., Martinez Calejman C., Valente A. S., Lawrence R. T., Hung C. M., Guertin D. A., et al. (2020). Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling. Mol. Cell Proteomics 19 1104–1119. 10.1074/mcp.ra120.001946 PubMed DOI PMC

Fleming T. P., Watkins A. J., Velazquez M. A., Mathers J. C., Prentice A. M., Stephenson J., et al. (2018). Origins of lifetime health around the time of conception: causes and consequences. Lancet 391 1842–1852. 10.1016/s0140-6736(18)30312-x PubMed DOI PMC

Gereben B., Mcaninch E. A., Ribeiro M. O., Bianco A. C. (2015). Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat. Rev. Endocrinol. 11 642–652. 10.1038/nrendo.2015.155 PubMed DOI PMC

Kendig M. D., Ekayanti W., Stewart H., Boakes R. A., Rooney K. (2015). Metabolic effects of access to sucrose drink in female rats and transmission of some effects to their offspring. PLoS One 10:e0131107. 10.1371/journal.pone.0131107 PubMed DOI PMC

Kereliuk S. M., Brawerman G. M., Dolinsky V. W. (2017). Maternal macronutrient consumption and the developmental origins of metabolic disease in the offspring. Int. J. Mol. Sci. 18:1451. 10.3390/ijms18071451 PubMed DOI PMC

Krupkova M., Liska F., Kazdova L., Sedova L., Kabelova A., Krenova D., et al. (2018). Single-gene congenic strain reveals the effect of Zbtb16 on dexamethasone-induced insulin resistance. Front. Endocrinol. 9:185. 10.3389/fendo.2018.00185 PubMed DOI PMC

Krupkova M., Liska F., Sedova L., Krenova D., Kren V., Seda O. (2014). Pharmacogenomic analysis of retinoic-acid induced dyslipidemia in congenic rat model. Lipids Health Dis. 13:172. 10.1186/1476-511x-13-172 PubMed DOI PMC

Langley S. R., Bottolo L., Kunes J., Zicha J., Zidek V., Hubner N., et al. (2013). Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovasc. Res. 97 653–665. 10.1093/cvr/cvs329 PubMed DOI PMC

Langley-Evans S. C. (2009). Nutritional programming of disease: unravelling the mechanism. J. Anat. 215 36–51. 10.1111/j.1469-7580.2008.00977.x PubMed DOI PMC

Liska F., Landa V., Zidek V., Mlejnek P., Silhavy J., Simakova M., et al. (2017). Downregulation of Plzf gene ameliorates metabolic and cardiac traits in the spontaneously hypertensive rat. Hypertension 69 1084–1091. 10.1161/hypertensionaha.116.08798 PubMed DOI

Liska F., Snajdr P., Sedova L., Seda O., Chylikova B., Slamova P., et al. (2009). Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev. Dyn. 238 673–684. 10.1002/dvdy.21859 PubMed DOI

Litzenburger T., Huber E. K., Dinger K., Wilke R., Vohlen C., Selle J., et al. (2020). Maternal high-fat diet induces long-term obesity with sex-dependent metabolic programming of adipocyte differentiation, hypertrophy and dysfunction in the offspring. Clin. Sci. 134 921–939. 10.1042/cs20191229 PubMed DOI

Liu J., Kong X., Wang L., Qi H., Di W., Zhang X., et al. (2013). Essential roles of 11beta-HSD1 in regulating brown adipocyte function. J. Mol. Endocrinol. 50 103–113. 10.1530/jme-12-0099 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Nicholas L. M., Ozanne S. E. (2019). Early life programming in mice by maternal overnutrition: mechanistic insights and interventional approaches. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374:20180116. 10.1098/rstb.2018.0116 PubMed DOI PMC

Pine A. P., Jessop N. S., Allan G. F., Oldham J. D. (1994). Maternal protein reserves and their influence on lactational performance in rats. 4. Tissue protein synthesis and turnover associated with mobilization of maternal protein. Br. J. Nutr. 72 831–844. 10.1079/bjn19940088 PubMed DOI

Pravenec M., Kren V., Landa V., Mlejnek P., Musilova A., Silhavy J., et al. (2014). Recent progress in the genetics of spontaneously hypertensive rats. Physiol. Res. 63(Suppl. 1), S1–S8. PubMed

Schulte E. M., Avena N. M., Gearhardt A. N. (2015). Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS One 10:e0117959. 10.1371/journal.pone.0117959 PubMed DOI PMC

Seda O., Liska F., Sedova L., Kazdova L., Krenova D., Kren V. (2005). A 14-gene region of rat chromosome 8 in SHR-derived polydactylous congenic substrain affects muscle-specific insulin resistance, dyslipidaemia and visceral adiposity. Folia Biol. 51 53–61. PubMed

Seda O., Sedova L., Vcelak J., Vankova M., Liska F., Bendlova B. (2017). ZBTB16 and metabolic syndrome: a network perspective. Physiol. Res. 66 S357–S365. PubMed

Seda O., Tremblay J., Gaudet D., Brunelle P. L., Gurau A., Merlo E., et al. (2008). Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension 51 1156–1162. 10.1161/hypertensionaha.107.105247 PubMed DOI

Sedova L., Seda O., Kazdova L., Chylikova B., Hamet P., Tremblay J., et al. (2007). Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 292 E1318–E1324. PubMed

Shimoyama M., Smith J. R., Bryda E., Kuramoto T., Saba L., Dwinell M. (2017). Rat genome and model resources. ILAR J. 58, 42–58. 10.1093/ilar/ilw041 PubMed DOI PMC

Silbernagel G., Scharnagl H., Kleber M. E., Delgado G., Stojakovic T., Laaksonen R., et al. (2019). LDL triglycerides, hepatic lipase activity, and coronary artery disease: An epidemiologic and Mendelian randomization study. Atherosclerosis 282 37–44. 10.1016/j.atherosclerosis.2018.12.024 PubMed DOI PMC

Skolnikova E., Sedova L., Seda O. (2020). Grandmother’s diet matters: early life programming with sucrose influences metabolic and lipid parameters in second generation of rats. Nutrients 12:846. 10.3390/nu12030846 PubMed DOI PMC

Softic S., Gupta M. K., Wang G. X., Fujisaka S., O’neill B. T., Rao T. N., et al. (2017). Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J. Clin. Invest. 127 4059–4074. 10.1172/jci94585 PubMed DOI PMC

Stuebe A. M., Rich-Edwards J. W. (2009). The reset hypothesis: lactation and maternal metabolism. Am. J. Perinatol. 26 81–88. PubMed PMC

Usui S., Hara Y., Hosaki S., Okazaki M. (2002). A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J. Lipid Res. 43 805–814. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...