Pharmacogenomic analysis of retinoic-acid induced dyslipidemia in congenic rat model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25403085
PubMed Central
PMC4247747
DOI
10.1186/1476-511x-13-172
PII: 1476-511X-13-172
Knihovny.cz E-zdroje
- MeSH
- dyslipidemie krev chemicky indukované genetika MeSH
- kosterní svaly metabolismus MeSH
- lipidy krev MeSH
- metabolismus lipidů MeSH
- potkani inbrední SHR MeSH
- transkriptom * MeSH
- tretinoin MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
- tretinoin MeSH
BACKGROUND: All-trans retinoic acid (ATRA, tretinoin) is a vitamin A derivative commonly used in the treatment of diverse conditions ranging from cancer to acne. In a fraction of predisposed individuals, the administration of ATRA is accompanied by variety of adverse metabolic effects, particularly by the induction of hyperlipidemia. We have previously derived a minimal congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strain sensitive to ATRA-induced increase of triacylglycerols and cholesterol under condition of high-sucrose diet. SHR-Lx differs only by 7 genes of polydactylous rat (PD/Cub) origin from its spontaneously hypertensive rat (SHR) progenitor strain. METHODS: Adult male rats of SHR and SHR-Lx strains were fed standard diet (STD) and experimental groups were subsequently treated with ATRA (15 mg/kg) via oral gavage for 16 days, while still on STD. We contrasted the metabolic profiles (including free fatty acids, triacylglycerols (TG) and cholesterol (C) in 20 lipoprotein fractions) between SHR and SHR-Lx under conditions of standard diet and standard diet + ATRA. We performed transcriptomic analysis of muscle tissue (m. soleus) in all groups using Affymetrix GeneChip Rat Gene 2.0 ST Arrays followed by Ingenuity Pathway Analysis and real-time PCR validation. RESULTS: In response to ATRA, SHR-Lx reacted with substantially greater rise in TG and C concentrations throughout the lipoprotein spectrum (two-way ANOVA strain * RA interaction significant for C content in chylomicrons (CM), VLDL and LDL as well as total, CM and HDL-TG). CONCLUSIONS: According to our modeling of metabolic and signalization pathways using differentially expressed genes we have identified a network with major nodes (including Sirt3, Il1b, Cpt1b and Pparg) likely to underlie the observed strain specific response to ATRA.
Zobrazit více v PubMed
Kedishvili NY. Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res. 2013;54:1744–1760. doi: 10.1194/jlr.R037028. PubMed DOI PMC
Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev. 2000;80:1021–1054. PubMed
Pomerantz H, Weinstock MA. Predictors of local adverse effects from topical tretinoin cream 0.1% in the VATTC trial. Br J Dermatol. 2014;171:642–645. doi: 10.1111/bjd.12987. PubMed DOI
Lilley JS, Linton MF, Fazio S. Oral retinoids and plasma lipids. Dermatol Ther. 2013;26:404–410. PubMed
Vu-Dac N, Gervois P, Torra IP, Fruchart JC, Kosykh V, Kooistra T, Princen HM, Dallongeville J, Staels B. Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids. J Clin Invest. 1998;102:625–632. doi: 10.1172/JCI1581. PubMed DOI PMC
Mamoon A, Subauste A, Subauste MC, Subauste J. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes. Gene. 2014;550:165–170. doi: 10.1016/j.gene.2014.07.017. PubMed DOI
Broulik PD, Raska I, Broulikova K. Prolonged overdose of all-trans retinoic acid enhances bone sensitivity in castrated mice. Nutrition. 2013;29:1166–1169. doi: 10.1016/j.nut.2013.03.011. PubMed DOI
Atigadda VR, Xia G, Deshpande A, Boerma LJ, Lobo Ruppert SM, Grubbs CJ, Smith CD, Brouillette WJ, Muccio DD. Methyl-substitution of a rexinoid agonist improves potency and reveals site of lipid toxicity. J Med Chem. 2014;57:5370–5380. doi: 10.1021/jm5004792. PubMed DOI PMC
Guleria RS, Singh AB, Nizamutdinova IT, Souslova T, Mohammad AA, Kendall JA, Jr, Baker KM, Pan J. Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats. J Mol Cell Cardiol. 2013;57:106–118. doi: 10.1016/j.yjmcc.2013.01.017. PubMed DOI PMC
Bila V, Kren V, Liska F. The influence of the genetic background on the interaction of retinoic acid with Lx mutation of the rat. Folia Biol (Praha) 2000;46:264–272. PubMed
Krupkova M, Janku M, Liska F, Sedova L, Kazdova L, Krenova D, Kren V, Seda O. Pharmacogenetic model of retinoic acid-induced dyslipidemia and insulin resistance. Pharmacogenomics. 2009;10:1915–1927. doi: 10.2217/pgs.09.113. PubMed DOI
Seda O, Liska F, Sedova L, Kazdova L, Krenova D, Kren V. A 14-gene region of rat chromosome 8 in SHR-derived polydactylous congenic substrain affects muscle-specific insulin resistance, dyslipidaemia and visceral adiposity. Folia Biol (Praha) 2005;51:53–61. PubMed
Liska F, Mancini M, Krupkova M, Chylikova B, Krenova D, Seda O, Silhavy J, Mlejnek P, Landa V, Zidek V, d' Amati G, Pravenec M, Křen V. Plzf as a candidate gene predisposing the spontaneously hypertensive rat to hypertension, left ventricular hypertrophy, and interstitial fibrosis. Am J Hypertens. 2014;27:99–106. doi: 10.1093/ajh/hpt156. PubMed DOI
Desphande A, Xia G, Boerma LJ, Vines KK, Atigadda VR, Lobo-Ruppert S, Grubbs CJ, Moeinpour FL, Smith CD, Christov K, Brouillette WJ, Muccio DD. Methyl-substituted conformationally constrained rexinoid agonists for the retinoid X receptors demonstrate improved efficacy for cancer therapy and prevention. Bioorg Med Chem. 2014;22:178–185. doi: 10.1016/j.bmc.2013.11.039. PubMed DOI PMC
Quere R, Baudet A, Cassinat B, Bertrand G, Marti J, Manchon L, Piquemal D, Chomienne C, Commes T. Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007;109:4450–4460. doi: 10.1182/blood-2006-10-051086. PubMed DOI
Veal GJ, Errington J, Rowbotham SE, Illingworth NA, Malik G, Cole M, Daly AK, Pearson AD, Boddy AV. Adaptive dosing approaches to the individualization of 13-cis-retinoic acid (isotretinoin) treatment for children with high-risk neuroblastoma. Clin Cancer Res. 2013;19:469–479. doi: 10.1158/1078-0432.CCR-12-2225. PubMed DOI PMC
Lee JJ, Wu X, Hildebrandt MA, Yang H, Khuri FR, Kim E, Gu J, Ye Y, Lotan R, Spitz MR, Hong WK. Global assessment of genetic variation influencing response to retinoid chemoprevention in head and neck cancer patients. Cancer Prev Res (Phila) 2011;4:185–193. doi: 10.1158/1940-6207.CAPR-10-0125. PubMed DOI PMC
Kren V. Genetics of the polydactyly-luxate syndrome in the Norway rat, Rattus norvegicus. Acta Univ Carol Med Monogr. 1975;68:1–103. PubMed
Bila V, Kren V. The teratogenic action of retinoic acid in rat congenic and recombinant inbred strains. Folia Biol (Praha) 1996;42:167–173. PubMed
Liska F, Snajdr P, Sedova L, Seda O, Chylikova B, Slamova P, Krejci E, Sedmera D, Grim M, Krenova D, Kren V. Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev Dyn. 2009;238:673–684. doi: 10.1002/dvdy.21859. PubMed DOI
Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N. Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes. 2012;61:1112–1121. doi: 10.2337/db11-1620. PubMed DOI PMC
Li Y, Wong K, Walsh K, Gao B, Zang M. Retinoic acid receptor beta stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J Biol Chem. 2013;288:10490–10504. doi: 10.1074/jbc.M112.429852. PubMed DOI PMC
Berry DC, Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol. 2009;29:3286–3296. doi: 10.1128/MCB.01742-08. PubMed DOI PMC
Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A. 2011;108:14608–14613. doi: 10.1073/pnas.1111308108. PubMed DOI PMC
Jing E, O'Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, Gibson BW, Kahn CR. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes. 2013;62:3404–3417. doi: 10.2337/db12-1650. PubMed DOI PMC
Stamatikos AD, Paton CM. Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am J Physiol Endocrinol Metab. 2013;305:E767–E775. doi: 10.1152/ajpendo.00268.2013. PubMed DOI
Martin PJ, Delmotte MH, Formstecher P, Lefebvre P. PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nucl Recept. 2003;1:6. doi: 10.1186/1478-1336-1-6. PubMed DOI PMC
Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014;508:397–401. doi: 10.1038/nature13047. PubMed DOI PMC
Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36:647–652. doi: 10.1038/ng1366. PubMed DOI
Barna M, Hawe N, Niswander L, Pandolfi PP. Plzf regulates limb and axial skeletal patterning. Nat Genet. 2000;25:166–172. doi: 10.1038/76014. PubMed DOI
Forsthoefel PF. The skeletal effects of the luxoid gene in the mouse, including its interactions withthe luxate gene. J Morphol. 1958;102:247–287. doi: 10.1002/jmor.1051020203. PubMed DOI
Ching YH, Wilson LA, Schimenti JC. An allele separating skeletal patterning and spermatogonial renewal functions of PLZF. BMC Dev Biol. 2010;10:33. doi: 10.1186/1471-213X-10-33. PubMed DOI PMC
Chen S, Qian J, Shi X, Gao T, Liang T, Liu C. Mol Endocrinol. 2014. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. PubMed PMC
Hamet P, Pausova Z, Dumas P, Sun YL, Tremblay J, Pravenec M, Kunes J, Krenova D, Kren V. Newborn and adult recombinant inbred strains: a tool to search for genetic determinants of target organ damage in hypertension. Kidney Int. 1998;53:1488–1492. doi: 10.1046/j.1523-1755.1998.00938.x. PubMed DOI
Haloui M, Tremblay J, Seda O, Koltsova SV, Maksimov GV, Orlov SN, Hamet P. Increased renal epithelial na channel expression and activity correlate with elevation of blood pressure in spontaneously hypertensive rats. Hypertension. 2013;62:731–737. doi: 10.1161/HYPERTENSIONAHA.113.01295. PubMed DOI
Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T, Peng J, Pelinkova K, Tremblay J, Hamet P, Kren V. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol Genomics. 2005;21:243–252. doi: 10.1152/physiolgenomics.00230.2004. PubMed DOI
Zhong JC, Huang DY, Yang YM, Li YF, Liu GF, Song XH, Du K. Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension. 2004;44:907–912. doi: 10.1161/01.HYP.0000146400.57221.74. PubMed DOI
Laulederkind SJ, Hayman GT, Wang SJ, Smith JR, Lowry TF, Nigam R, Petri V, de Pons J, Dwinell MR, Shimoyama M, Munzenmaier DH, Worthey EA, Jacob HJ. The Rat Genome Database 2013–data, tools and users. Brief Bioinform. 2013;14:520–526. doi: 10.1093/bib/bbt007. PubMed DOI PMC
Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–293. doi: 10.1253/jcj.27.282. PubMed DOI
Usui S, Hara Y, Hosaki S, Okazaki M. A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res. 2002;43:805–814. PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI