Parental overnutrition by carbohydrates in developmental origins of metabolic syndrome
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
35199545
PubMed Central
PMC9054190
DOI
10.33549/physiolres.934806
PII: 934806
Knihovny.cz E-zdroje
- MeSH
- fruktosa MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metabolický syndrom * genetika MeSH
- nadměrná výživa * komplikace metabolismus MeSH
- rodiče MeSH
- zpožděný efekt prenatální expozice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fruktosa MeSH
Metabolic syndrome is a prevalent disease resulting from an interplay of genomic component and the exposome. Parental diet has been shown to affect offspring metabolic health via multiple epigenetic mechanisms. Excess carbohydrate intake is one of the driving forces of the obesity and metabolic syndrome pandemics. This review summarizes the evidence for the effects of maternal carbohydrate (fructose, sucrose, glucose) overnutrition on the modulation of metabolic syndrome components in the offspring. Despite substantial discrepancies in experimental design, common effects of maternal carbohydrate overnutrition include increased body weight and hepatic lipid content of the "programmed" offspring. However, the administration of sucrose to several rat models leads to apparently favorable metabolic outcomes. Moreover, there is evidence for the role of genomic background in modulating the metabolic programming effect in the form of nutri-epigenomic interaction. Comprehensive, robust studies are needed to resolve the temporal, sex-specific, genetic, epigenetic and nutritional aspects of parental overnutrition in the intergenerational and transgenerational pathogenesis of metabolic syndrome.
Zobrazit více v PubMed
AITMAN T, DHILLON P, GEURTS AM. A RATional choice for translational research? Dis Model Mech. 2016;9:1069–1072. doi: 10.1242/dmm.027706. PubMed DOI PMC
ALBERTI KG, ZIMMET P, SHAW J. Metabolic syndrome--a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23:469–480. doi: 10.1111/j.1464-5491.2006.01858.x. PubMed DOI
ALBERTI KG, ZIMMET PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S. PubMed DOI
BAKER PR, 2ND, FRIEDMAN JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest. 2018;128:3692–3703. doi: 10.1172/JCI120846. PubMed DOI PMC
BERDANIER CD. Effect of maternal sucrose intake on the metabolic patterns of mature rat progeny. Am J Clin Nutr. 1975;28:1416–1421. doi: 10.1093/ajcn/28.12.1416. PubMed DOI
BOCARSLY ME, BARSON JR, HAUCA JM, HOEBEL BG, LEIBOWITZ SF, AVENA NM. Effects of perinatal exposure to palatable diets on body weight and sensitivity to drugs of abuse in rats. Physiol Behav. 2012;107:568–575. doi: 10.1016/j.physbeh.2012.04.024. PubMed DOI PMC
BODDEN C, HANNAN AJ, REICHELT AC. Diet-induced modification of the sperm epigenome programs metabolism and behavior. Trends Endocrinol Metab. 2020;31:131–149. doi: 10.1016/j.tem.2019.10.005. PubMed DOI
BURESOVA M, ZIDEK V, MUSILOVA A, SIMAKOVA M, FUCIKOVA A, BILA V, KREN V, KAZDOVA L, DI NICOLANTONIO R, PRAVENEC M. Genetic relationship between placental and fetal weights and markers of the metabolic syndrome in rat recombinant inbred strains. Physiol Genomics. 2006;26:226–231. doi: 10.1152/physiolgenomics.00056.2006. PubMed DOI
CALATAYUD M, KOREN O, COLLADO MC. Maternal microbiome and metabolic health program microbiome development and health of the offspring. Trends Endocrinol Metab. 2019;30:735–744. doi: 10.1016/j.tem.2019.07.021. PubMed DOI
CLAYTON ZE, VICKERS MH, BERNAL A, YAP C, SLOBODA DM. Early life exposure to fructose alters maternal, fetal and neonatal hepatic gene expression and leads to sex-dependent changes in lipid metabolism in rat offspring. PLoS One. 2015;10:e0141962. doi: 10.1371/journal.pone.0141962. PubMed DOI PMC
D’URSO S, WANG G, HWANG LD, MOEN GH, WARRINGTON NM, EVANS DM. A cautionary note on using Mendelian randomization to examine the Barker hypothesis and Developmental Origins of Health and Disease (DOHaD) J Dev Orig Health Dis. 2021;12:688–693. doi: 10.1017/S2040174420001105. PubMed DOI
DEARDEN L, BOURET SG, OZANNE SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018;15:8–19. doi: 10.1016/j.molmet.2018.04.007. PubMed DOI PMC
DEBOER MD, GURKA MJ. Clinical utility of metabolic syndrome severity scores: considerations for practitioners. Diabetes Metab Syndr Obes. 2017;10:65–72. doi: 10.2147/DMSO.S101624. PubMed DOI PMC
DUMESIC DA, HOYOS LR, CHAZENBALK GD, NAIK R, PADMANABHAN V, ABBOTT DH. Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction. 2020;159:R1–R13. doi: 10.1530/REP-19-0197. PubMed DOI PMC
ENG JM, ESTALL JL. Diet-induced models of non-alcoholic fatty liver disease: food for thought on sugar, fat, and cholesterol. Cells. 2021;10:1805. doi: 10.3390/cells10071805. PubMed DOI PMC
FLEMING TP, WATKINS AJ, VELAZQUEZ MA, MATHERS JC, PRENTICE AM, STEPHENSON J, BARKER M, SAFFERY R, YAJNIK CS, ECKERT JJ, HANSON MA, FORRESTER T, GLUCKMAN PD, GODFREY KM. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391:1842–1852. doi: 10.1016/S0140-6736(18)30312-X. PubMed DOI PMC
GALAN C, KRYKBAEVA M, RANDO OJ. Early life lessons: The lasting effects of germline epigenetic information on organismal development. Mol Metab. 2020;38:100924. doi: 10.1016/j.molmet.2019.12.004. PubMed DOI PMC
GLUCKMAN PD, HANSON MA, LOW FM. Evolutionary and developmental mismatches are consequences of adaptive developmental plasticity in humans and have implications for later disease risk. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180109. doi: 10.1098/rstb.2018.0109. PubMed DOI PMC
GODSLAND IF, CROOK D, PROUDLER AJ, STEVENSON JC. Hemostatic risk factors and insulin sensitivity, regional body fat distribution, and the metabolic syndrome. J Clin Endocrinol Metab. 2005;90:190–197. doi: 10.1210/jc.2004-1292. PubMed DOI
GRUNDY SM, CLEEMAN JI, MERZ CN, BREWER HB, JR, CLARK LT, HUNNINGHAKE DB, PASTERNAK RC, SMITH SC, JR, STONE NJ NATIONAL HEART L and BLOOD I, AMERICAN COLLEGE OF CARDIOLOGY F, AMERICAN HEART A. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–239. doi: 10.1161/01.CIR.0000133317.49796.0E. PubMed DOI
GU X, HE A, FAN X, SHI R, FENG X, BO L, JIANG L, LI N, WU J, YANG Y, GAO Q, XU Z. Regulation of cerebral arterial BKCa channels by angiotensin II signaling in adult offspring exposed to prenatal high sucrose diets. Biosci Rep. 2017;37:BSR20160624. doi: 10.1042/BSR20160624. PubMed DOI PMC
HALES CN, BARKER DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601. doi: 10.1007/BF00400248. PubMed DOI
HAMET P, MERLO E, SEDA O, BROECKEL U, TREMBLAY J, KALDUNSKI M, GAUDET D, BOUCHARD G, DESLAURIERS B, GAGNON F, ANTONIOL G, PAUSOVA Z, LABUDA M, JOMPHE M, GOSSARD F, TREMBLAY G, KIROVA R, TONELLATO P, ORLOV SN, PINTOS J, PLATKO J, HUDSON TJ, RIOUX JD, KOTCHEN TA, COWLEY AW., JR Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension. Am J Hum Genet. 2005;76:815–832. doi: 10.1086/430133. PubMed DOI PMC
HANNOU SA, HASLAM DE, MCKEOWN NM, HERMAN MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128:545–555. doi: 10.1172/JCI96702. PubMed DOI PMC
HE A, ZHANG Y, YANG Y, LI L, FENG X, WEI B, ZHU D, LIU Y, WU L, ZHANG L, XU Z, SUN M. Prenatal high sucrose intake affected learning and memory of aged rat offspring with abnormal oxidative stress and NMDARs/Wnt signaling in the hippocampus. Brain Res. 2017;1669:114–121. doi: 10.1016/j.brainres.2017.05.022. PubMed DOI PMC
HESLEHURST N, VIEIRA R, AKHTER Z, BAILEY H, SLACK E, NGONGALAH L, PEMU A, RANKIN J. The association between maternal body mass index and child obesity: A systematic review and meta-analysis. PLoS Med. 2019;16:e1002817. doi: 10.1371/journal.pmed.1002817. PubMed DOI PMC
HOFFMAN DJ, POWELL TL, BARRETT ES, HARDY DB. Developmental origins of metabolic diseases. Physiol Rev. 2021;101:739–795. doi: 10.1152/physrev.00002.2020. PubMed DOI PMC
JASPERS FAIJER-WESTERINK H, KENGNE AP, MEEKS KAC, AGYEMANG C. Prevalence of metabolic syndrome in sub-Saharan Africa: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2020;30:547–565. doi: 10.1016/j.numecd.2019.12.012. PubMed DOI
JEN KL, ROCHON C, ZHONG SB, WHITCOMB L. Fructose and sucrose feeding during pregnancy and lactation in rats changes maternal and pup fuel metabolism. J Nutr. 1991;121:1999–2005. doi: 10.1093/jn/121.12.1999. PubMed DOI
KAHN R, BUSE J, FERRANNINI E, STERN M. The Metabolic Syndrome: Time for a Critical Appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. 2005;28:2289–2304. doi: 10.2337/diacare.28.9.2289. PubMed DOI
KAUR H, TOOP CR, MUHLHAUSLER BS, GENTILI S. The effect of maternal intake of sucrose or high-fructose corn syrup (HFCS)-55 during gestation and lactation on lipogenic gene expression in rat offspring at 3 and 12 weeks of age. J Dev Orig Health Dis. 2018;9:481–486. doi: 10.1017/S2040174418000260. PubMed DOI
KENDIG MD, EKAYANTI W, STEWART H, BOAKES RA, ROONEY K. Metabolic effects of access to sucrose drink in female rats and transmission of some effects to their offspring. PLoS One. 2015;10:e0131107. doi: 10.1371/journal.pone.0131107. PubMed DOI PMC
KESANIEMI YA, LILJA M, KERVINEN K, RANTALA A. Multiple metabolic syndrome: aspects of genetic epidemiology and molecular genetics. Ann Med. 1992;24:461–464. doi: 10.3109/07853899209166996. PubMed DOI
KISIOGLU B, NERGIZ-UNAL R. Potential effect of maternal dietary sucrose or fructose syrup on CD36, leptin, and ghrelin-mediated fetal programming of obesity. Nutr Neurosci. 2020;23:210–220. doi: 10.1080/1028415X.2018.1491151. PubMed DOI
KOO S, KIM M, CHO HM, KIM I. Maternal high-fructose intake during pregnancy and lactation induces metabolic syndrome in adult offspring. Nutr Res Pract. 2021;15:160–172. doi: 10.4162/nrp.2021.15.2.160. PubMed DOI PMC
KUANG H, SUN M, LV J, LI J, WU C, CHEN N, BO L, WEI X, GU X, LIU Z, MAO C, XU Z. Hippocampal apoptosis involved in learning deficits in the offspring exposed to maternal high sucrose diets. J Nutr Biochem. 2014;25:985–990. doi: 10.1016/j.jnutbio.2014.04.012. PubMed DOI
KUNES J, VANECKOVA I, MIKULASKOVA B, BEHULIAK M, MALETINSKA L, ZICHA J. Epigenetics and a new look on metabolic syndrome. Physiol Res. 2015;64:611–620. doi: 10.33549/physiolres.933174. PubMed DOI
LI J, LI X, ZHANG S, SNYDER M. Gene-environment interaction in the era of precision medicine. Cell. 2019;177:38–44. doi: 10.1016/j.cell.2019.03.004. PubMed DOI PMC
LOWE WL, JR, LOWE LP, KUANG A, CATALANO PM, NODZENSKI M, TALBOT O, TAM WH, SACKS DA, MCCANCE D, LINDER B, LEBENTHAL Y, LAWRENCE JM, LASHLEY M, JOSEFSON JL, HAMILTON J, DEEROCHANAWONG C, CLAYTON P, BRICKMAN WJ, DYER AR, SCHOLTENS DM, METZGER BE GROUP HF-USCR. Maternal glucose levels during pregnancy and childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study. Diabetologia. 2019;62:598–610. doi: 10.1007/s00125-018-4809-6. PubMed DOI PMC
MEIGS JB. Invited commentary: insulin resistance syndrome? Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am J Epidemiol. 2000;152:908–911. doi: 10.1093/aje/152.10.908. discussion 912. PubMed DOI
MOEN GH, BRUMPTON B, WILLER C, ASVOLD BO, BIRKELAND KI, WANG G, NEALE MC, FREATHY RM, SMITH GD, LAWLOR DA, KIRKPATRICK RM, WARRINGTON NM, EVANS DM. Mendelian randomization study of maternal influences on birthweight and future cardiometabolic risk in the HUNT cohort. Nat Commun. 2020;11:5404. doi: 10.1038/s41467-020-19257-z. PubMed DOI PMC
NICHOLAS LM, NAGAO M, KUSINSKI LC, FERNANDEZ-TWINN DS, ELIASSON L, OZANNE SE. Exposure to maternal obesity programs sex differences in pancreatic islets of the offspring in mice. Diabetologia. 2020;63:324–337. doi: 10.1007/s00125-019-05037-y. PubMed DOI PMC
OHKUMA T, PETERS SAE, JUN M, HARRAP S, COOPER M, HAMET P, POULTER N, CHALMERS J, WOODWARD M, GROUP AC. Sex-specific associations between cardiovascular risk factors and myocardial infarction in patients with type 2 diabetes: The ADVANCE-ON study. Diabetes Obes Metab. 2020;22:1818–1826. doi: 10.1111/dom.14103. PubMed DOI
OZKAN H, TOPSAKAL S, OZMEN O. Investigation of the diabetic effects of maternal high-glucose diet on rats. Biomed Pharmacother. 2019;110:609–617. doi: 10.1016/j.biopha.2018.12.011. PubMed DOI
PALANIAPPAN L, CARNETHON M, FORTMANN SP. Association between microalbuminuria and the metabolic syndrome: NHANES III. Am J Hypertens. 2003;16:952–958. doi: 10.1016/S0895-7061(03)01009-4. PubMed DOI
PAUSOVA Z, PAUS T, SEDOVA L, BERUBE J. Prenatal exposure to nicotine modifies kidney weight and blood pressure in genetically susceptible rats: a case of gene-environment interaction. Kidney Int. 2003;64:829–835. doi: 10.1046/j.1523-1755.2003.00172.x. PubMed DOI
PERNG W, KELSEY MM, SAUDER KA, DABELEA D. How does exposure to overnutrition in utero lead to childhood adiposity? Testing the insulin hypersecretion hypothesis in the EPOCH cohort. Diabetologia. 2021;64:2237–2246. doi: 10.1007/s00125-021-05515-2. PubMed DOI
REAVEN GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–1607. doi: 10.2337/diabetes.37.12.1595. PubMed DOI
RODRIGO S, FAUSTE E, DE LA CUESTA M, RODRIGUEZ L, ALVAREZ-MILLAN JJ, PANADERO MI, OTERO P, BOCOS C. Maternal fructose induces gender-dependent changes in both LXRalpha promoter methylation and cholesterol metabolism in progeny. J Nutr Biochem. 2018;61:163–172. doi: 10.1016/j.jnutbio.2018.08.011. PubMed DOI
RODRIGUEZ L, OTERO P, PANADERO MI, RODRIGO S, ALVAREZ-MILLAN JJ, BOCOS C. Maternal fructose intake induces insulin resistance and oxidative stress in male, but not female, offspring. J Nutr Metab. 2015;2015:158091. doi: 10.1155/2015/158091. PubMed DOI PMC
RODRIGUEZ L, PANADERO MI, ROGLANS N, OTERO P, ALVAREZ-MILLAN JJ, LAGUNA JC, BOCOS C. Fructose during pregnancy affects maternal and fetal leptin signaling. J Nutr Biochem. 2013;24:1709–1716. doi: 10.1016/j.jnutbio.2013.02.011. PubMed DOI
SAKLAYEN MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20:12. doi: 10.1007/s11906-018-0812-z. PubMed DOI PMC
SARKAR A, YOO JY, VALERIA OZORIO DUTRA S, MORGAN KH, GROER M. The association between early-life gut microbiota and long-term health and diseases. J Clin Med. 2021;10:459. doi: 10.3390/jcm10030459. PubMed DOI PMC
SEDA O, LISKA F, KRENOVA D, KAZDOVA L, SEDOVA L, ZIMA T, PENG J, PELINKOVA K, TREMBLAY J, HAMET P, KREN V. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol Genomics. 2005;21:243–252. doi: 10.1152/physiolgenomics.00230.2004. PubMed DOI
SEDA O, SEDOVA L, KAZDOVA L, KRENOVA D, KREN V. Metabolic characterization of insulin resistance syndrome feature loci in three brown Norway-derived congenic strains. Folia Biol (Praha) 2002;48:81–88. PubMed
SEDA O, SEDOVA L, VCELAK J, VANKOVA M, LISKA F, BENDLOVA B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res. 2017;66:S357–S365. doi: 10.33549/physiolres.933730. PubMed DOI
SEDA O, TREMBLAY J, GAUDET D, BRUNELLE PL, GURAU A, MERLO E, PILOTE L, ORLOV SN, BOULVA F, PETROVICH M, KOTCHEN TA, COWLEY AW, JR, HAMET P. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension. 2008;51:1156–1162. doi: 10.1161/HYPERTENSIONAHA.107.105247. PubMed DOI
SEDOVA L, KAZDOVA L, SEDA O, KRENOVA D, KREN V. Rat inbred PD/cub strain as a model of dyslipidemia and insulin resistance. Folia Biol (Praha) 2000;46:99–106. PubMed
SEDOVA L, PROCHAZKA J, ZUDOVA D, BENDLOVA B, VCELAK J, SEDLACEK R, SEDA O. Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats. Genes (Basel) 2021;12:1087. doi: 10.3390/genes12071087. PubMed DOI PMC
SEDOVA L, SEDA O, KAZDOVA L, CHYLIKOVA B, HAMET P, TREMBLAY J, KREN V, KRENOVA D. Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am J Physiol Endocrinol Metab. 2007;292:E1318–1324. doi: 10.1152/ajpendo.00526.2006. PubMed DOI
SEONG HY, CHO HM, KIM M, KIM I. Maternal High-Fructose Intake Induces Multigenerational Activation of the Renin-Angiotensin-Aldosterone System. Hypertension. 2019;74:518–525. doi: 10.1161/HYPERTENSIONAHA.119.12941. PubMed DOI
SHAMANSUROVA Z, TAN P, AHMED B, PEPIN E, SEDA O, LAVOIE JL. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight. Mol Metab. 2016;5:959–969. doi: 10.1016/j.molmet.2016.08.009. PubMed DOI PMC
SHARP GC, LAWLOR DA. Paternal impact on the life course development of obesity and type 2 diabetes in the offspring. Diabetologia. 2019;62:1802–1810. doi: 10.1007/s00125-019-4919-9. PubMed DOI PMC
SKOLNIKOVA E, SEDOVA L, CHYLIKOVA B, KABELOVA A, LISKA F, SEDA O. Maternal High-Sucrose Diet Affects Phenotype Outcome in Adult Male Offspring: Role of Zbtb16. Front Genet. 2020a;11:529421. doi: 10.3389/fgene.2020.529421. PubMed DOI PMC
SKOLNIKOVA E, SEDOVA L, LISKA F, SEDA O. SHR-Zbtb16 minimal congenic strain reveals nutrigenetic interaction between Zbtb16 and high-sucrose diet. Physiol Res. 2020b;69:521–527. doi: 10.33549/physiolres.934423. PubMed DOI PMC
SKOLNIKOVA E, SEDOVA L, SEDA O. Grandmother’s Diet Matters: Early Life Programming with Sucrose Influences Metabolic and Lipid Parameters in Second Generation of Rats. Nutrients. 2020c;12:846. doi: 10.3390/nu12030846. PubMed DOI PMC
SLOBODA DM, LI M, PATEL R, CLAYTON ZE, YAP C, VICKERS MH. Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J Obes. 2014;2014:203474. doi: 10.1155/2014/203474. PubMed DOI PMC
SOFTIC S, GUPTA MK, WANG G-X, FUJISAKA S, O’NEILL BT, RAO TN, WILLOUGHBY J, HARBISON C, FITZGERALD K, ILKAYEVA O, NEWGARD CB, COHEN DE, KAHN CR. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. The Journal of Clinical Investigation. 2017;127:4059–4074. doi: 10.1172/JCI94585. PubMed DOI PMC
SOUBRY A. POHaD: why we should study future fathers. Environ Epigenet. 2018;4:dvy007. doi: 10.1093/eep/dvy007. PubMed DOI PMC
TAIN YL, HSU CN, CHAN JY, HUANG LT. Renal Transcriptome Analysis of Programmed Hypertension Induced by Maternal Nutritional Insults. Int J Mol Sci. 2015;16:17826–17837. doi: 10.3390/ijms160817826. PubMed DOI PMC
TAIN YL, LEE WC, WU KLH, LEU S, CHAN JYH. maternal high fructose intake increases the vulnerability to post-weaning high-fat diet-induced programmed hypertension in male offspring. utrients. 2018;10:56. doi: 10.3390/nu10010056. PubMed DOI PMC
TAM WH, MA RCW, OZAKI R, LI AM, CHAN MHM, YUEN LY, LAO TTH, YANG X, HO CS, TUTINO GE, CHAN JCN. In utero exposure to maternal hyperglycemia increases childhood cardiometabolic risk in offspring. Diabetes Care. 2017;40:679–686. doi: 10.2337/dc16-2397. PubMed DOI PMC
TAYLOR SR, RAMSAMOOJ S, LIANG RJ, KATTI A, POZOVSKIY R, VASAN N, HWANG SK, NAHIYAAN N, FRANCOEUR NJ, SCHATOFF EM, JOHNSON JL, SHAH MA, DANNENBERG AJ, SEBRA RP, DOW LE, CANTLEY LC, RHEE KY, GONCALVES MD. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature. 2021;597:263–267. doi: 10.1038/s41586-021-03827-2. PubMed DOI PMC
TOBAR-BERNAL FA, ZAMUDIO SR, QUEVEDO-CORONA L. The high-fructose intake of dams during pregnancy and lactation exerts sex-specific effects on adult rat offspring metabolism. J Dev Orig Health Dis. 2021;12:411–419. doi: 10.1017/S2040174420000501. PubMed DOI
TOOP CR, MUHLHAUSLER BS, O’DEA K, GENTILI S. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring. Physiol. 2017;595:4379–4398. doi: 10.1113/JP274066. PubMed DOI PMC
VERMEULEN R, SCHYMANSKI EL, BARABASI AL, MILLER GW. The exposome and health: Where chemistry meets biology. Science. 2020;367:392–396. doi: 10.1126/science.aay3164. PubMed DOI PMC
VICKERS MH, CLAYTON ZE, YAP C, SLOBODA DM. Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology. 2011;152:1378–1387. doi: 10.1210/en.2010-1093. PubMed DOI
WU C, LI J, BO L, GAO Q, ZHU Z, LI D, LI S, SUN M, MAO C, XU Z. High-sucrose diets in pregnancy alter angiotensin II-mediated pressor response and microvessel tone via the PKC/Cav1.2 pathway in rat offspring. Hypertens Res. 2014;37:818–823. doi: 10.1038/hr.2014.94. PubMed DOI
WU L, SHI A, ZHU D, BO L, ZHONG Y, WANG J, XU Z, MAO C. High sucrose intake during gestation increases angiotensin II type 1 receptor-mediated vascular contractility associated with epigenetic alterations in aged offspring rats. Peptides. 2016;86:133–144. doi: 10.1016/j.peptides.2016.11.002. PubMed DOI
YANAI H, ADACHI H, HAKOSHIMA M, KATSUYAMA H. Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. Int J Mol Sci. 2021;22:9221. doi: 10.3390/ijms22179221. PubMed DOI PMC
YURUK AA, NERGIZ-UNAL R. Maternal dietary free or bound fructose diversely influence developmental programming of lipogenesis. Lipids Health Dis. 2017;16:226. doi: 10.1186/s12944-017-0618-z. PubMed DOI PMC
ZAK A, BURDA M, VECKA M, ZEMAN M, TVRZICKA E, STANKOVA B. Fatty acid composition indicates two types of metabolic syndrome independent of clinical and laboratory parameters. Physiol Res. 2014;63:S375–385. doi: 10.33549/physiolres.932868. PubMed DOI
ZHANG P, ZHU D, ZHANG Y, LI L, CHEN X, ZHANG W, SHI R, TAO J, HAN B, XU Z. Synergetic Effects of Prenatal and Postnatal High Sucrose Intake on Glucose Tolerance and Hepatic Insulin Resistance in Rat Offspring. ol Nutr Food Res. 2018;62:1700771. doi: 10.1002/mnfr.201700771. PubMed DOI