The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 3301
Austrian Science Fund FWF - Austria
P 29262
Austrian Science Fund FWF - Austria
PubMed
30783116
PubMed Central
PMC6381180
DOI
10.1038/s41467-019-08555-w
PII: 10.1038/s41467-019-08555-w
Knihovny.cz E-zdroje
- MeSH
- Angelica chemie MeSH
- autofagie účinky léků MeSH
- buněčná smrt účinky léků MeSH
- buněčné linie účinky léků MeSH
- Caenorhabditis elegans účinky léků MeSH
- dlouhověkost účinky léků fyziologie MeSH
- Drosophila melanogaster účinky léků MeSH
- flavonoidy aplikace a dávkování farmakologie MeSH
- ischemická choroba srdeční farmakoterapie MeSH
- lidé MeSH
- mechanistické cílové místo rapamycinového komplexu 1 metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteiny přenášející kationty genetika MeSH
- regulace genové exprese účinky léků MeSH
- rostlinné extrakty farmakologie MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae účinky léků metabolismus MeSH
- signální transdukce MeSH
- sirolimus farmakologie MeSH
- stárnutí účinky léků fyziologie MeSH
- tradiční orientální medicína MeSH
- transkripční faktory GATA účinky léků MeSH
- transkripční faktory účinky léků genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavonoidy MeSH
- GLN3 protein, S cerevisiae MeSH Prohlížeč
- mechanistické cílové místo rapamycinového komplexu 1 MeSH
- MEP2 protein, S cerevisiae MeSH Prohlížeč
- proteiny přenášející kationty MeSH
- rostlinné extrakty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- sirolimus MeSH
- transkripční faktory GATA MeSH
- transkripční faktory MeSH
Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4'-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.
BioTechMed Graz Graz 8010 Austria
Department of Biology Université de Fribourg Chemin du Musée 10 1700 Fribourg Switzerland
Department of Cardiology Medical University of Graz Graz 8036 Austria
Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ USA
Institute for Biology Genetics Freie Universität Berlin Berlin 14195 Germany
Institute of Molecular Biosciences NAWI Graz University of Graz Graz 8010 Austria
IUF Leibniz Research Institute for Environmental Medicine Düsseldorf 40225 Germany
Metabolomics and Cell Biology Platforms Gustave Roussy Comprehensive Cancer Center Villejuif France
NeuroCure Charité Berlin 10117 Germany
Pôle de Biologie Hôpital Européen Georges Pompidou Paris France
Sotio a c 17000 Prague Czech Republic
Zobrazit více v PubMed
Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr. Biol. 2012;22:R741–R752. doi: 10.1016/j.cub.2012.07.024. PubMed DOI
de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157:1515–1526. doi: 10.1016/j.cell.2014.05.031. PubMed DOI PMC
Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 2016;17:679–690. doi: 10.1038/nrm.2016.93. PubMed DOI PMC
Uysal U, et al. Consumption of polyphenol plants may slow aging and associated diseases. Curr. Pharm. Des. 2013;19:6094–6111. doi: 10.2174/1381612811319340004. PubMed DOI
Baur JA, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–342. doi: 10.1038/nature05354. PubMed DOI PMC
Bisht K, Wagner KH, Bulmer AC. Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology. 2010;278:88–100. doi: 10.1016/j.tox.2009.11.008. PubMed DOI
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur. J. Med. Chem. 2014;85:758–777. doi: 10.1016/j.ejmech.2014.08.033. PubMed DOI
Yin Z, Pascual Clarence, Klionsky DanielJ. Autophagy: machinery and regulation. Microb. Cell. 2016;3:457–465. doi: 10.15698/mic2016.12.546. PubMed DOI PMC
Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24:69–79. doi: 10.1038/cr.2013.161. PubMed DOI PMC
Nixon RA. The role of autophagy in neurodegenerative disease. Nat. Med. 2013;19:983–997. doi: 10.1038/nm.3232. PubMed DOI
Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001;292:288–290. doi: 10.1126/science.1059497. PubMed DOI
Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010;328:321–326. doi: 10.1126/science.1172539. PubMed DOI PMC
Carmona-Gutierrez D, et al. Guidelines and recommendations on yeast cell death nomenclature. Microb. Cell. 2018;5:4–31. doi: 10.15698/mic2018.01.607. PubMed DOI PMC
Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Res. Rev. 2013;12:237–252. doi: 10.1016/j.arr.2012.03.008. PubMed DOI
Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) Autophagy. 2016;12:1–222. doi: 10.1080/15548627.2015.1100356. PubMed DOI PMC
Noda T, Klionsky DJ. The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol. 2008;451:33–42. doi: 10.1016/S0076-6879(08)03203-5. PubMed DOI
Eisenberg T, et al. Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme A stimulates autophagy and prolongs lifespan. Cell. Metab. 2014;19:431–444. doi: 10.1016/j.cmet.2014.02.010. PubMed DOI PMC
Matsui Y, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 2007;100:914–922. doi: 10.1161/01.RES.0000261924.76669.36. PubMed DOI
Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and Autophagy in the Heart. Circ. Res. 2016;118:1563–1576. doi: 10.1161/CIRCRESAHA.116.307474. PubMed DOI PMC
Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a ‘set up’ for vascular disease. Circulation. 2003;107:139–146. doi: 10.1161/01.CIR.0000048892.83521.58. PubMed DOI
Lőw P, et al. Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell. Biol. 2013;14:29. doi: 10.1186/1471-2121-14-29. PubMed DOI PMC
Deegan S, Saveljeva S, Gorman AM, Samali A. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell. Mol. Life Sci. 2013;70:2425–2441. doi: 10.1007/s00018-012-1173-4. PubMed DOI PMC
Cebollero E, Reggiori F. Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 2009;1793:1413–1421. doi: 10.1016/j.bbamcr.2009.01.008. PubMed DOI
Reggiori F, Klionsky DJ. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics. 2013;194:341–361. doi: 10.1534/genetics.112.149013. PubMed DOI PMC
Tate JJ, Georis I, Dubois E, Cooper TG. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and Rapamycin treatment in Saccharomyces cerevisiae. J. Biol. Chem. 2010;285:17880–17895. doi: 10.1074/jbc.M109.085712. PubMed DOI PMC
Ljungdahl PO, Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 2012;190:885–929. doi: 10.1534/genetics.111.133306. PubMed DOI PMC
Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol. Metab. TEM. 2014;25:558–566. doi: 10.1016/j.tem.2014.07.002. PubMed DOI PMC
Grandison RC, Piper MDW, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature. 2009;462:1061–1064. doi: 10.1038/nature08619. PubMed DOI PMC
Vlahakis A, Graef M, Nunnari J, Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc. Natl Acad. Sci. USA. 2014;111:10586–10591. doi: 10.1073/pnas.1406305111. PubMed DOI PMC
Mülleder M, et al. Functional metabolomics describes the yeast biosynthetic regulome. Cell. 2016;167:553–565. doi: 10.1016/j.cell.2016.09.007. PubMed DOI PMC
Devasahayam G, Ritz D, Helliwell SB, Burke DJ, Sturgill TW. Pmr1, a Golgi Ca2+/Mn2+-ATPase, is a regulator of the target of rapamycin (TOR) signaling pathway in yeast. Proc. Natl Acad. Sci. USA. 2006;103:17840–17845. doi: 10.1073/pnas.0604303103. PubMed DOI PMC
Cooper TG. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev. 2002;26:223–238. doi: 10.1111/j.1574-6976.2002.tb00612.x. PubMed DOI PMC
Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–345. doi: 10.1038/nature11861. PubMed DOI PMC
Jiang Y, Broach JR. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 1999;18:2782–2792. doi: 10.1093/emboj/18.10.2782. PubMed DOI PMC
Tate JJ, Georis I, Feller A, Dubois E, Cooper TG. Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization. J. Biol. Chem. 2009;284:2522–2534. doi: 10.1074/jbc.M806162200. PubMed DOI PMC
Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalones: structure−activity relationship analysis. J. Med. Chem. 2001;44:4443–4452. doi: 10.1021/jm0101747. PubMed DOI
Ducki S, et al. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem. 2009;17:7698–7710. doi: 10.1016/j.bmc.2009.09.039. PubMed DOI
Vaidya SS, Vinaya H, Mahajan SS. Microwave-assisted synthesis, pharmacological evaluation, and QSAR studies of 1,3-diaryl-2-propen-1-ones. Med. Chem. Res. 2012;21:4311–4323. doi: 10.1007/s00044-012-9969-1. DOI
Rice-Evans CA, Miller NJ. Antioxidant activities of flavonoids as bioactive components of food. Biochem. Soc. Trans. 1996;24:790–795. doi: 10.1042/bst0240790. PubMed DOI
Lu MF, Xiao ZT, Zhang HY. Where do health benefits of flavonoids come from? Insights from flavonoid targets and their evolutionary history. Biochem. Biophys. Res. Commun. 2013;434:701–704. doi: 10.1016/j.bbrc.2013.04.035. PubMed DOI
Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006;20:174–184. doi: 10.1101/gad.1381406. PubMed DOI PMC
Chan TF, Bertram PG, Ai W, Zheng XF. Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J. Biol. Chem. 2001;276:6463–6467. doi: 10.1074/jbc.M008162200. PubMed DOI
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–326. doi: 10.1016/j.cell.2010.01.028. PubMed DOI PMC
Bernard A, Jin M, Xu Z, Klionsky DJ. A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy. 2015;11:2114–2122. doi: 10.1080/15548627.2015.1099796. PubMed DOI PMC
Rai R, Tate JJ, Cooper TG. Multiple targets on the Gln3 transcription activator are cumulatively required for control of its cytoplasmic sequestration. G3 Bethesda Md. 2016;6:1391–1408. doi: 10.1534/g3.116.027615. PubMed DOI PMC
Tate JJ, Buford D, Rai R, Cooper TG. General amino acid control and 14-3-3 proteins Bmh1/2 are required for nitrogen catabolite repression-sensitive regulation of Gln3 and Gat1 localization. Genetics. 2017;205:633–655. doi: 10.1534/genetics.116.195800. PubMed DOI PMC
Tate JJ, Rai R, Cooper TG. More than one way in: three Gln3 sequences required to relieve negative Ure2 regulation and support nuclear Gln3 import in Saccharomyces cerevisiae. Genetics. 2018;208:207–227. doi: 10.1534/genetics.117.300457. PubMed DOI PMC
Zhang P, Judy M, Lee SJ, Kenyon C. Direct and indirect gene regulation by a life-extending FOXO protein in C. elegans: roles for GATA factors and lipid gene regulators. Cell. Metab. 2013;17:85–100. doi: 10.1016/j.cmet.2012.12.013. PubMed DOI PMC
Bresnick EH, Lee HY, Fujiwara T, Johnson KD, Keles S. GATA switches as developmental drivers. J. Biol. Chem. 2010;285:31087–31093. doi: 10.1074/jbc.R110.159079. PubMed DOI PMC
Kang YA, et al. Autophagy driven by a master regulator of hematopoiesis. Mol. Cell. Biol. 2012;32:226–239. doi: 10.1128/MCB.06166-11. PubMed DOI PMC
Kobayashi S, et al. Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J. Biol. Chem. 2010;285:793–804. doi: 10.1074/jbc.M109.070037. PubMed DOI PMC
Eisenberg T, et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009;11:1305–1314. doi: 10.1038/ncb1975. PubMed DOI
Janke C, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast Chichester Engl. 2004;21:947–962. doi: 10.1002/yea.1142. PubMed DOI
Rai R, et al. Nuclear Gln3 import is regulated by nitrogen catabolite repression whereas export is specifically regulated by glutamine. Genetics. 2015;201:989–1016. doi: 10.1534/genetics.115.177725. PubMed DOI PMC
Herker E, et al. Chronological aging leads to apoptosis in yeast. J. Cell. Biol. 2004;164:501–507. doi: 10.1083/jcb.200310014. PubMed DOI PMC
Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M. A molecular mechanism of chronological aging in yeast. Cell Cycle Georget. Tex. 2009;8:1256–1270. doi: 10.4161/cc.8.8.8287. PubMed DOI PMC
Jung PP, Christian N, Kay DP, Skupin A, Linster CL. Protocols and programs for high-throughput growth and aging phenotyping in yeast. PLoS ONE. 2015;10:e0119807. doi: 10.1371/journal.pone.0119807. PubMed DOI PMC
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30:e23. doi: 10.1093/nar/30.6.e23. PubMed DOI PMC
Carmona-Gutiérrez D, et al. The propeptide of yeast cathepsin D inhibits programmed necrosis. Cell Death Dis. 2011;2:e161. doi: 10.1038/cddis.2011.43. PubMed DOI PMC
González A, et al. TORC1 promotes phosphorylation of ribosomal protein S6 via the AGC kinase Ypk3 in Saccharomyces cerevisiae. PLoS ONE. 2015;10:e0120250. doi: 10.1371/journal.pone.0120250. PubMed DOI PMC
Buescher JM, Moco S, Sauer U, Zamboni N. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 2010;82:4403–4412. doi: 10.1021/ac100101d. PubMed DOI
Fröhlich EE, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav. Immun. 2016;56:140–155. doi: 10.1016/j.bbi.2016.02.020. PubMed DOI PMC
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Vizcaíno JA, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–D456. doi: 10.1093/nar/gkv1145. PubMed DOI PMC
Stiernagle, T. Maintenance of C. elegans. WormBook Online Rev. C Elegans Biol. 1–11 (2006). 10.1895/wormbook.1.101.1 PubMed PMC
Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods San. Diego Calif. 2003;30:313–321. doi: 10.1016/S1046-2023(03)00050-1. PubMed DOI
Rea SL, Ventura N, Johnson TE. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol. 2007;5:e259. doi: 10.1371/journal.pbio.0050259. PubMed DOI PMC
Juhász G, Érdi B, Sass M, Neufeld TP. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 2007;21:3061–3066. doi: 10.1101/gad.1600707. PubMed DOI PMC
Leontieva OV, Blagosklonny MV. Yeast-like chronological senescence in mammalian cells: phenomenon, mechanism and pharmacological suppression. Aging. 2011;3:1078–1091. doi: 10.18632/aging.100402. PubMed DOI PMC
Xia J, Wishart DS. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinforma. 2016;55:14.10.1–14.10.91. doi: 10.1002/cpbi.11. PubMed DOI
Ding WX, et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology. 2010;139:1740–1752. doi: 10.1053/j.gastro.2010.07.041. PubMed DOI PMC