Advancements in Chronic Myeloid Leukemia detection: Development and evaluation of a novel QCM aptasensor for use in clinical practice
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39263318
PubMed Central
PMC11387267
DOI
10.1016/j.bbrep.2024.101816
PII: S2405-5808(24)00180-8
Knihovny.cz E-zdroje
- Klíčová slova
- Biorecognition layer optimization, Chronic Myeloid Leukemia, Clinical application, Human plasma, K562 cells, QCM aptasensor,
- Publikační typ
- časopisecké články MeSH
Oncological diseases represent a significant global health challenge, with high mortality rates. Early detection is crucial for effective treatment, and aptamers, which demonstrate superior specificity and stability compared to antibodies, offer a promising avenue for diagnostic advancement. This study presents the design, development and evaluation of a quartz crystal microbalance (QCM) sensor functionalized with the T2-KK1B10 aptamer for the sensitive and specific detection of Chronic Myeloid Leukemia (CML) K562 cells. The research focuses on optimizing the biorecognition layer by adjusting the aptamer conditions, demonstrating the sensor's ability to detect these CML cells with high specificity and sensitivity. The aptamer-modified QCM sensor operates on the principle of mass change detection upon binding of target cells. By employing the Langmuir isotherm model, the performance of the sensor was optimized for the capture of CML cells from biological samples with LOD of 263 K562 cells. The sensor was also successfully regenerated multiple times without sensitivity loss. Validation of the sensor's performance was conducted under controlled laboratory settings, followed by extensive testing utilizing human lyophilized plasma and clinical samples from patients. The sensor exhibited high sensitivity and specificity in the detection of CML cells within clinical specimens, thereby illustrating its potential for practical clinical deployment. This research presents a novel approach to the early diagnosis of CML, facilitating timely intervention and enhanced patient outcomes. The developed aptasensor demonstrates potential for broader application in cancer diagnostics and personalized medicine.
Faculty of Medicine Comenius University in Bratislava Špitálska 24 813 72 Bratislava Slovakia
National Cancer Institute Department of Oncohematology Klenová 1 833 10 Bratislava Slovakia
Selecta Biotech SE Istrijská 6094 20 841 07 Bratislava Slovakia
Zobrazit více v PubMed
Deng Y., Sun Z., Wang L., et al. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front. Med. 2022;16:157–175. PubMed
Wagner P.D., Verma M., Srivastava S. Challenges for biomarkers in cancer detection. Ann. N. Y. Acad. Sci. 2004;1022:9–16. PubMed
Aljohani M.M., Cialla-May D., Popp J., et al. Aptamers: potential diagnostic and therapeutic agents for blood diseases. Molecules. 2022:27. PubMed PMC
Lakhin A.V., Tarantul V.Z., Gening L.V. Aptamers: problems, solutions and prospects. Acta naturae. 2013;5:34–43. PubMed PMC
Das S., Gupta A., Walia S., et al. 2022. Aptamers Functionalized Biomolecular Nano-Vehicles for Applications in Cancer Diagnostics & Therapeutics; p. 360.
Foser S., Maiese K., Digumarthy S.R., et al. Looking to the future of early detection in cancer: liquid biopsies, imaging, and artificial intelligence. Clin. Chem. 2024;70:27–32. PubMed
Hori S.-i., Herrera A., Rossi J.J., et al. Current advances in aptamers for cancer diagnosis and therapy. Cancers. 2018;10:9. PubMed PMC
Liu M., Yu X., Chen Z., et al. Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnol. 2017;15:81. PubMed PMC
Xiang D., Shigdar S., Qiao G., et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. 2015;5:23–42. PubMed PMC
Cumbo C., Anelli L., Specchia G., et al. Monitoring of minimal residual disease (MRD) in chronic myeloid leukemia: recent advances. Cancer Manag. Res. 2020;12:3175–3189. PubMed PMC
Sampaio M.M., Santos M.L.C., Marques H.S., et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: a literature review. World J. Clin. Oncol. 2021;12:69–94. PubMed PMC
Sefah K., Tang Z.W., Shangguan D.H., et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia. 2009;23:235–244. PubMed PMC
Chamorro-Garcia A., Parolo C., Ortega G., et al. The sequestration mechanism as a generalizable approach to improve the sensitivity of biosensors and bioassays. Chem. Sci. 2022;13:12219–12228. PubMed PMC
Ren X., Gelinas A.D., Linehan M., et al. Evolving A rig-I antagonist: a modified DNA aptamer mimics viral RNA. J. Mol. Biol. 2021;433 PubMed
Amero P., Lokesh G.L.R., Chaudhari R.R., et al. Conversion of RNA aptamer into modified DNA aptamers provides for prolonged stability and enhanced antitumor activity. J. Am. Chem. Soc. 2021;143:7655–7670. PubMed PMC
Nakatsuka N., Cao H.H., Deshayes S., et al. Aptamer recognition of multiplexed small-molecule-functionalized substrates. ACS Appl. Mater. Interfaces. 2018;10:23490–23500. PubMed PMC
Tatarko M., Spagnolo S., Csiba M., et al. Comparative analysis of the interaction of cytochrome C with supported lipid films and DNA aptamers using QCM-D method. Eng. Proceedings. 2023;35:35.
Heidari H.R., Fathi E., Montazersaheb S., et al. Mesenchymal stem cells cause telomere Length reduction of molt-4 cells via caspase-3, BAD and P53 apoptotic pathway. Int. J. Molecul cellular med. 2021;10:113–122. PubMed PMC
Inoue T., Swain A., Nakanishi Y., et al. Multicolor analysis of cell surface marker of human leukemia cell lines using flow cytometry. Anticancer Res. 2014;34:4539. PubMed
Skorski T., Nieborowska-Skorska M., Nicolaides N.C., et al. Suppression of Philadelphia1 leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proc. Natl. Acad. Sci. U. S. A. 1994;91:4504–4508. PubMed PMC
Jaatinen T., Laine J. Isolation of mononuclear cells from human cord blood by ficoll-paque density gradient. Curr Protocols Stem Cell Biol. 2007;1:2A.1.1–2A.1.4. PubMed
Ramachandran H., Laux J., Moldovan I., et al. Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies. Cells. 2012;1:313–324. PubMed PMC
Poturnayová A., Buríková M., Bízik J., et al. DNA aptamers in the detection of leukemia cells by the thickness shear mode acoustics method. ChemPhysChem. 2019;20:545–554. PubMed
Kankare J. Sauerbrey equation of quartz crystal microbalance in liquid medium. Langmuir. 2002;18:7092–7094.
Sut T.N., Park H., Koo D.J., et al. Distinct binding properties of neutravidin and streptavidin proteins to biotinylated supported lipid bilayers: implications for sensor functionalization. Sensors. 2022;22 PubMed PMC
Lönne M., Bolten S., Lavrentieva A., et al. Development of an aptamer-based affinity purification method for vascular endothelial growth factor. Biotechnol. Rep. (Amsterdam, Netherlands) 2015;8:16–23. PubMed PMC
Zhang H.-L., Lv C., Li Z.-H., et al. Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation. Front. Chem. 2023;11 PubMed PMC
Shangguan D., Li Y., Tang Z., et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA. 2006;103:11838–11843. PubMed PMC
Zhao Y., Li A.Z., Liu J. Capture-SELEX for chloramphenicol binding aptamers for labeled and label-free fluorescence sensing. Environ. Health (Nagpur) 2023;1:102–109. PubMed PMC
Tan S.Y., Acquah C., Tan S.Y., et al. Characterisation of charge distribution and stability of aptamer-thrombin binding interaction. Process Biochem. 2017;60:42–51.
Huang X., Chen Q., Pan W., et al. Advances in the mass sensitivity distribution of quartz crystal microbalances: a review. Sensors. 2022:22. PubMed PMC
Chivers C.E., Koner A.L., Lowe E.D., et al. How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem. J. 2011;435:55–63. PubMed PMC
Xue F., Wu J., Chu H., et al. Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim. Acta. 2013;180:109–115.
Sun L., Shen K., Zhang J., et al. Aptamer based surface plasma resonance assay for direct detection of neuron specific enolase and progastrin-releasing peptide (31-98) RSC Adv. 2021;11:32135–32142. PubMed PMC
Beyazit F., Arica M.Y., Acikgoz-Erkaya I., et al. Quartz crystal microbalance-based aptasensor integrated with magnetic pre-concentration system for detection of Listeria monocytogenes in food samples. Mikrochim. Acta. 2024;191:235. PubMed PMC
Nishimura S., Takahashi S., Kamikatahira H., et al. Combinatorial targeting of the macropinocytotic pathway in leukemia and lymphoma cells. J. Biol. Chem. 2008;283:11752–11762. PubMed PMC
Rahmati M., Moosavi M.A., Nourashrafeddin S., et al. Comparative effects of Nucleostemin silencing in human Molt-4 and Jurkat leukemia T-ALL cells. Archives Adv. Biosci. 2015;6:65–71.
Vogelgesang J., Hädrich J. Limits of detection, identification and determination: a statistical approach for practitioners. Accred Qual. Assur. 1998;3:242–255.
Mummareddy S., Pradhan S., Narasimhan A.K., et al. On demand biosensors for early diagnosis of cancer and immune checkpoints blockade therapy monitoring from liquid biopsy. Biosensors. 2021;11 PubMed PMC
Liu L., Luo X.-B., Ding L., et al. In: Nanomaterials for the Removal of Pollutants and Resource Reutilization. Luo X., Deng F., editors. Elsevier; 2019. 4 - application of nanotechnology in the removal of heavy metal from water; pp. 83–147.
Ozalp V.C., Bayramoglu G., Erdem Z., et al. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Anal. Chim. Acta. 2015;853:533–540. PubMed
Bakhshpour M., Piskin A.K., Yavuz H., et al. Quartz crystal microbalance biosensor for label-free MDA MB 231 cancer cell detection via notch-4 receptor. Talanta. 2019;204:840–845. PubMed
Sharma P.K., Kim N.-Y., Ganbold E., et al. SARS-CoV-2 detection in COVID-19 patients' sample using wooden quoit conformation structural aptamer (WQCSA)-Based electronic bio-sensing system. Biosens. Bioelectron. 2024
Zhou Y., Xiong H., Chen R., et al. Aptamer detection of mycobaterium tuberculosis mannose-capped lipoarabinomannan in lesion tissues for tuberculosis diagnosis. Front. Cell. Infect. Microbiol. 2021;11 PubMed PMC
Zamay G.S., Zamay T.N., Kolovskii V.A., et al. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci. Rep. 2016;6 PubMed PMC
Leeman M., Choi J., Hansson S., et al. Proteins and antibodies in serum, plasma, and whole blood-size characterization using asymmetrical flow field-flow fractionation (AF4) Anal. Bioanal. Chem. 2018;410:4867–4873. PubMed PMC
Karagiannis T.C., Wall M., Ververis K., et al. Characterization of K562 cells: uncovering novel chromosomes, assessing transferrin receptor expression, and probing pharmacological therapies. Cell. Mol. Life Sci. : CMLS. 2023;80:248. PubMed PMC
Zhou S., Wang Y., Zhu J.-J. Simultaneous detection of tumor cell apoptosis regulators Bcl-2 and bax through a dual-signal-marked electrochemical immunosensor. ACS Appl. Mater. Interfaces. 2016;8:7674–7682. PubMed
Ding C., Qian S., Wang Z., et al. Electrochemical cytosensor based on gold nanoparticles for the determination of carbohydrate on cell surface. Anal. Biochem. 2011;414:84–87. PubMed
Liu J., Cui M., Niu L., et al. Enhanced peroxidase-like properties of graphene–hemin-composite decorated with Au nanoflowers as electrochemical aptamer biosensor for the detection of K562 leukemia cancer cells. Chem. Eur J. 2016;22:18001–18008. PubMed
Yu T., Zhang H., Huang Z., et al. A simple electrochemical aptamer cytosensor for direct detection of chronic myelogenous leukemia K562 cells. Electroanalysis. 2017;29:828–834.
Wang J., Wang X., Tang H., et al. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide – polyaniline composite. Biosens. Bioelectron. 2018;100:1–7. PubMed
Sugawara K., Ishizaki S., Kodaira K., et al. Fabrication of a cell-recognition/electron-transfer/cross-linker, peptide-immobilized electrode for the sensing of K562 cells. Anal. Chim. Acta. 2020;1116:53–61. PubMed
Zheng Y., Wang X., He S., et al. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry. Biosens. Bioelectron. 2019;126:261–268. PubMed
Zhang M., Liu H., Chen L., et al. A disposable electrochemiluminescence device for ultrasensitive monitoring of K562 leukemia cells based on aptamers and ZnO@carbon quantum dots. Biosens. Bioelectron. 2013;49:79–85. PubMed