Reactive oxygen species in the signaling and adaptation of multicellular microbial communities
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
22829965
PubMed Central
PMC3395218
DOI
10.1155/2012/976753
Knihovny.cz E-zdroje
- MeSH
- Bacteria cytologie metabolismus MeSH
- fyziologická adaptace * MeSH
- houby cytologie metabolismus MeSH
- mikrobiální společenstva fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
One of the universal traits of microorganisms is their ability to form multicellular structures, the cells of which differentiate and communicate via various signaling molecules. Reactive oxygen species (ROS), and hydrogen peroxide in particular, have recently become well-established signaling molecules in higher eukaryotes, but still little is known about the regulatory functions of ROS in microbial structures. Here we summarize current knowledge on the possible roles of ROS during the development of colonies and biofilms, representatives of microbial multicellularity. In Saccharomyces cerevisiae colonies, ROS are predicted to participate in regulatory events involved in the induction of ammonia signaling and later on in programmed cell death in the colony center. While the latter process seems to be induced by the total ROS, the former event is likely to be regulated by ROS-homeostasis, possibly H(2)O(2)-homeostasis between the cytosol and mitochondria. In Candida albicans biofilms, the predicted signaling role of ROS is linked with quorum sensing molecule farnesol that significantly affects biofilm formation. In bacterial biofilms, ROS induce genetic variability, promote cell death in specific biofilm regions, and possibly regulate biofilm development. Thus, the number of examples suggesting ROS as signaling molecules and effectors in the development of microbial multicellularity is rapidly increasing.
Zobrazit více v PubMed
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology. 2004;2(2):95–108. PubMed
Annesley SJ, Fisher PR. Dictyostelium discoideum—a model for many reasons. Molecular and Cellular Biochemistry. 2009;329(1-2):73–91. PubMed
Velicer GJ, Vos M. Sociobiology of the myxobacteria. Annual Review of Microbiology. 2009;63:599–623. PubMed
Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiology Reviews. In press. PubMed
Palková Z, Váchová L. Life within a community: benefit to yeast long-term survival. FEMS Microbiology Reviews. 2006;30(5):806–824. PubMed
López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology. 2010;2(7)a000398 PubMed PMC
Anderson GG, O’Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Current Topics in Microbiology and Immunology. 2008;322:85–105. PubMed
Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cellular Microbiology. 2009;11(7):1034–1043. PubMed
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents. 2010;35(4):322–332. PubMed
Lewis K. Multidrug tolerance of biofilms and persister cells. Current Topics in Microbiology and Immunology. 2008;322:107–131. PubMed
Pan Y. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Experimental Gerontology. 2011;46(11):847–852. PubMed
Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Radical Biology and Medicine. 2011;51(2):327–336. PubMed
Finkel T. Signal transduction by reactive oxygen species. Journal of Cell Biology. 2011;194(1):7–15. PubMed PMC
Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? Trends in Plant Science. 2011;16(6):300–309. PubMed
Scott B, Eaton CJ. Role of reactive oxygen species in fungal cellular differentiations. Current Opinion in Microbiology. 2008;11(6):488–493. PubMed
Torres MA. ROS in biotic interactions. Physiologia Plantarum. 2010;138(4):414–429. PubMed
Lalucque H, Silar P. NADPH oxidase: an enzyme for multicellularity? Trends in Microbiology. 2003;11(1):9–12. PubMed
Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Molecular Cell. 2012;46(4):436–448. PubMed
Čáp M, Váchová L, Palková Z. Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. Journal of Biological Chemistry. 2009;284(47):32572–32581. PubMed PMC
Piccirillo S, White MG, Murphy JC, Law DJ, Honigberg SM. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies. Genetics. 2010;184(3):707–716. PubMed PMC
Váchová L, Chernyavskiy O, Strachotová D, et al. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environmental Microbiology. 2009;11(7):1866–1877. PubMed
Váchová L, Kučerová H, Devaux F, Úlehlová M, Palková Z. Metabolic diversification of cells during the development of yeast colonies. Environmental Microbiology. 2009;11(2):494–504. PubMed
Št’ovíček V, Váchová L, Kuthan M, Palková Z. General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genetics and Biology. 2010;47(12):1012–1022. PubMed
Váchová L, Štoví V, Hlaváček O, et al. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. Journal of Cell Biology. 2011;194(5):679–687. PubMed PMC
Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J. Ammonia mediates communication between yeast colonies. Nature. 1997;390(6659):532–536. PubMed
Palková Z, Forstová J. Yeast colonies synchronise their growth and development. Journal of Cell Science. 2000;113(11):1923–1928. PubMed
Palková Z, Devaux F, Řičicová M, Mináriková L, Le Crom S, Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Molecular Biology of the Cell. 2002;13(11):3901–3914. PubMed PMC
Gasch AP, Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Functional and Integrative Genomics. 2002;2(4-5):181–192. PubMed
Váchová L, Palková Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. Journal of Cell Biology. 2005;169(5):711–717. PubMed PMC
Váchová L, Devaux F, Kučerová H, Řičicová M, Jacq C, Palková Z. Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. Journal of Biological Chemistry. 2004;279(36):37973–37981. PubMed
Gresham D, Boer VM, Caudy A, et al. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae . Genetics. 2011;187(1):299–317. PubMed PMC
Petti AA, Crutchfield CA, Rabinowitz JD, Botstein D. Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(45):E1089–E1098. PubMed PMC
Wu J, Zhang N, Hayes A, Panoutsopoulo K, Oliver SG. Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(9):3148–3153. PubMed PMC
Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC. Yeast lacking superoxide dismutase. Isolation of genetic suppressors. Journal of Biological Chemistry. 1992;267(26):18298–18302. PubMed
Longo VD, Gralla EB, Valentine JS. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae: mitochondrial production of toxic oxygen species in vivo. Journal of Biological Chemistry. 1996;271(21):12275–12280. PubMed
Jensen LT, Sanchez RJ, Srinivasan C, Valentine JS, Culotta VC. Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly genes and oxidative stress relevant to Cu,Zn superoxide dismutase. Journal of Biological Chemistry. 2004;279(29):29938–29943. PubMed
Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta VC. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Molecular and Cellular Biology. 1995;15(3):1382–1388. PubMed PMC
Izawa S, Inoue Y, Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae . Biochemical Journal. 1996;320:61–67. PubMed PMC
Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiaeCTT1 gene. The EMBO Journal. 1994;13(18):4382–4389. PubMed PMC
Mesquita A, Weinberger M, Silva A, et al. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(34):15123–15128. PubMed PMC
Cap M, Vachova L, Palkova Z. How to survive within a yeast colony? Change metabolism or cope with stress? Communicative and Integrative Biology. 2010;3:198–200. PubMed PMC
Hill and BG, Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. Journal of Molecular and Cellular Cardiology. 2012;52:559–567. PubMed PMC
Nulton-Persson AC, Szweda LI. Modulation of mitochondrial function by hydrogen peroxide. Journal of Biological Chemistry. 2001;276(26):23357–23361. PubMed
Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends in Cell Biology. 2005;15(6):319–326. PubMed
Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metabolism. 2011;13(6):668–678. PubMed PMC
Karachitos A, Galganska H, Wojtkowska M, et al. Cu,Zn-superoxide dismutase is necessary for proper function of VDAC in Saccharomyces cerevisiae cells. FEBS Letters. 2009;583(2):449–455. PubMed
Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial governator—thinking outside the box. Biochimica et Biophysica Acta. 2006;1762(2):181–190. PubMed
Galganska H, Budzinska M, Wojtkowska M, Kmita H. Redox regulation of protein expression in Saccharomyces cerevisiae mitochondria: possible role of VDAC. Archives of Biochemistry and Biophysics. 2008;479(1):39–45. PubMed
Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. Journal of Biological Chemistry. 2003;278(8):5557–5563. PubMed
Sehati S, Clement MHS, Martins J, et al. Metabolic alterations in yeast lacking copper-zinc superoxide dismutase. Free Radical Biology and Medicine. 2011;50(11):1591–1598. PubMed PMC
Bonatto D. A systems biology analysis of protein-protein interactions between yeast superoxide dismutases and DNA repair pathways. Free Radical Biology and Medicine. 2007;43(4):557–567. PubMed
Büttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F. Why yeast cells can undergo apoptosis: death in times of peace, love, and war. Journal of Cell Biology. 2006;175(4):521–525. PubMed PMC
Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death and Differentiation. 2010;17(5):763–773. PubMed
Gourlay CW, Du W, Ayscough KR. Apoptosis in yeast—mechanisms and benefits to a unicellular organism. Molecular Microbiology. 2006;62(6):1515–1521. PubMed
Madeo F, Carmona-Gutierrez D, Ring J, Büttner S, Eisenberg T, Kroemer G. Caspase-dependent and caspase-independent cell death pathways in yeast. Biochemical and Biophysical Research Communications. 2009;382(2):227–231. PubMed
Fabrizio P, Battistella L, Vardavas R, et al. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae . Journal of Cell Biology. 2004;166(7):1055–1067. PubMed PMC
Yeater KM, Chandra J, Cheng G, et al. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 2007;153(8):2373–2385. PubMed
Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP. Candida albicans biofilm formation is associated with increased anti-oxidative capacities. Proteomics. 2008;8(14):2936–2947. PubMed
Younes S, Bahnan W, Dimassi HI, Khalaf RA. The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance. Microbiological Research. 2011;166(5):430–436. PubMed
Brown AJ, Haynes K, Quinn J. Nitrosative and oxidative stress responses in fungal pathogenicity. Current Opinion in Microbiology. 2009;12(4):384–391. PubMed PMC
Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T. Fungicidal activity of miconazole against Candida spp. biofilms. Journal of Antimicrobial Chemotherapy. 2010;65(4):694–700. PubMed
Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and Environmental Microbiology. 2001;67(7):2982–2992. PubMed PMC
Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Molecular Microbiology. 2008;67(1):47–62. PubMed PMC
Ramage G, Saville SP, Wickes BL, López-Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Applied and Environmental Microbiology. 2002;68(11):5459–5463. PubMed PMC
Shirtliff ME, Krom BP, Meijering RAM, et al. Farnesol-induced apoptosis in Candida albicans . Antimicrobial Agents and Chemotherapy. 2009;53(6):2392–2401. PubMed PMC
Deveau A, Piispanen AE, Jackson AA, Hogan DA. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryotic Cell. 2010;9(4):569–577. PubMed PMC
Westwater C, Balish E, Schofield DA. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryotic Cell. 2005;4(10):1654–1661. PubMed PMC
Jamieson DJ, Stephen DWS, Terrière EC. Analysis of the adaptive oxidative stress response of Candida albicans . FEMS Microbiology Letters. 1996;138(1):83–88. PubMed
Nasution O, Srinivasa K, Kim M, et al. Hydrogen peroxide induces hyphal differentiation in Candida albicans . Eukaryotic Cell. 2008;7(11):2008–2011. PubMed PMC
Lu H, Zhu Z, Dong L, et al. Lack of trehalose accelerates H2O2-induced Candida albicans apoptosis through regulating Ca2+ signaling pathway and caspase activity. PLoS ONE. 2011;6(1)e15808 PubMed PMC
Phillips AJ, Sudbery I, Ramsdale M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans . Proceedings of the National Academy of Sciences of the United States of America. 2003;100(2):14327–14332. PubMed PMC
Dantas ADS, Patterson MJ, Smith DA, et al. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans . Molecular and Cellular Biology. 2010;30(19):4550–4563. PubMed PMC
Smith DA, Nicholls S, Morgan BA, Brown AJP, Quinn J. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans . Molecular Biology of the Cell. 2004;15(9):4179–4190. PubMed PMC
Zhang X, De Micheli M, Coleman ST, Sanglard D, Moye-Rowley WS. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Molecular Microbiology. 2000;36(3):618–629. PubMed
Cugini C, Morales DK, Hogan DA. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology. 2010;156(10):3096–3107. PubMed PMC
Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Molecular Microbiology. 2006;59(3):753–764. PubMed
Machida K, Tanaka T, Fujita KI, Taniguchi M. Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae . Journal of Bacteriology. 1998;180(17):4460–4465. PubMed PMC
Schmitt MJ, Breinig F. Yeast viral killer toxins: lethality and self-protection. Nature Reviews. 2006;4(3):212–221. PubMed
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews. 2009;73(2):310–347. PubMed PMC
Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews. 2010;34(4):426–444. PubMed
Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annual Review of Genetics. 2009;43:197–222. PubMed PMC
Wortham BW, Patel CN, Oliveira MA. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Advances in Experimental Medicine and Biology. 2007;603:106–115. PubMed
Allegrucci M, Sauer K. Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. Journal of Bacteriology. 2007;189(5):2030–2038. PubMed PMC
Boles BR, Thoendel M, Singh PK. Self-generated diversity produces “insurance effects” in biofilm communities. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(47):16630–16635. PubMed PMC
Déziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. Journal of Bacteriology. 2001;183(4):1195–1204. PubMed PMC
Yarwood JM, Paquette KM, Tikh UB, Volper EM, Greenberg EP. Generation of virulence factor variants in Staphylococcus aureus biofilms. Journal of Bacteriology. 2007;189(22):7961–7967. PubMed PMC
van der Veen S, Abee T. Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS ONE. 2011;6e28590 PubMed PMC
Regev-Yochay G, Trzcinski K, Thompson CM, Lipsitch M, Malley R. SpxB is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model. Journal of Bacteriology. 2007;189(18):6532–6539. PubMed PMC
Kreth J, Vu H, Zhang Y, Herzberg MC. Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii . Journal of Bacteriology. 2009;191(20):6281–6291. PubMed PMC
Itzek A, Zheng L, Chen Z, Merritt J, Kreth J. Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii . Journal of Bacteriology. 2011;193:6912–6922. PubMed PMC
Harmsen M, Lappann M, Knøchel S, Molin S. Role of extracellular DNA during biofilm formation by listeria monocytogenes. Applied and Environmental Microbiology. 2010;76(7):2271–2279. PubMed PMC
Lappann M, Claus H, van Alen T, et al. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis . Molecular Microbiology. 2010;75(6):1355–1371. PubMed
Rice KC, Mann EE, Endres JL, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proceedings of the National Academy of Sciences of the United States of America. 2007;104(19):8113–8118. PubMed PMC
Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis . Molecular Microbiology. 2009;72(4):1022–1036. PubMed PMC
Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559)1487 PubMed
Li YH, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG. Natural genetic transformation of streptococcus mutans growing in biofilms. Journal of Bacteriology. 2001;183(3):897–908. PubMed PMC
Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. Journal of Biological Chemistry. 1997;272(31):19095–19098. PubMed
Zheng L, Chen Z, Itzek A, Ashby M, Kreth J. Catabolite control protein a controls hydrogen peroxide production and cell death in streptococcus sanguinis. Journal of Bacteriology. 2011;193(2):516–526. PubMed PMC
Mai-Prochnow A, Lucas-Elio P, Egan S, et al. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. Journal of Bacteriology. 2008;190(15):5493–5501. PubMed PMC
Mai-Prochnow A, Webb JS, Ferrari BC, Kjelleberg S. Ecological advantages of autolysis during the development and dispersal of Pseudoalteromonas tunicata biofilms. Applied and Environmental Microbiology. 2006;72(8):5414–5420. PubMed PMC
Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa . Journal of Bacteriology. 2006;188(21):7344–7353. PubMed PMC
Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrobial Agents and Chemotherapy. 2004;48(7):2659–2664. PubMed PMC
Werner E, Roe F, Bugnicourt A, et al. Stratified growth in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology. 2004;70(10):6188–6196. PubMed PMC
Kovacic P. Unifying mechanism for bacterial cell signalers (4,5-dihydroxy-2,3-pentanedione, lactones and oligopeptides): electron transfer and reactive oxygen species. Practical medical features. Medical Hypotheses. 2007;69(5):1105–1110. PubMed
Abee T, Kovacs AT, Kuipers OP, van der Veen S. Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology. 2011;22(2):172–179. PubMed
Rothfork JM, Timmins GS, Harris MN, et al. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(38):13867–13872. PubMed PMC
Ohsawa T, Tsukahara K, Sato T, Ogura M. Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis . Journal of Biochemistry. 2006;139(2):203–211. PubMed
Frey RL, He L, Cui Y, et al. Reaction of N -acylhomoserine lactones with hydroxyl radicals: rates, products, and effects on signaling activity. Environmental Science and Technology. 2010;44(19):7465–7469. PubMed
Hassett DJ, Ma JF, Elkins JG, et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Molecular Microbiology. 1999;34(5):1082–1093. PubMed
Joelsson A, Kan B, Zhu J. Quorum sensing enhances the stress response in Vibrio cholerae . Applied and Environmental Microbiology. 2007;73(11):3742–3746. PubMed PMC
Pontes MH, Babst M, Lochhead R, Oakeson K, Smith K, Dale C. Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius . PLoS ONE. 2008;3(10)e3541 PubMed PMC
Uzureau S, Lemaire J, Delaive E, et al. Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. Journal of Proteome Research. 2010;9(6):3200–3217. PubMed PMC
Srivastava M, Mallard C, Barke T, Hancock LE, Self WT. A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in Enterococcus faecalis through oxidant production. Journal of Bacteriology. 2011;193(7):1643–1652. PubMed PMC
Ramsey MM, Whiteley M. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(5):1578–1583. PubMed PMC
Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Applied and Environmental Microbiology. 2006;72(4):2449–2459. PubMed PMC
Lee J, Jayaraman A, Wood TK. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiology. 2007;7, article no. 42 PubMed PMC
Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK. Gene expression in Escherichia coli biofilms. Applied Microbiology and Biotechnology. 2004;64(4):515–524. PubMed
Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. Journal of Bacteriology. 2001;183(15):4562–4570. PubMed PMC
Garbe TR, Kobayashi M, Yukawa H. Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity. Archives of Microbiology. 2000;173(1):78–82. PubMed
Kuczyńska-Wiśnik D, Matuszewska E, Furmanek-Blaszk B, et al. Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signalling. Research in Microbiology. 2010;161(10):847–853. PubMed
Di Martino P, Fursy R, Bret L, Sundararaju B, Phillips RS. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Canadian Journal of Microbiology. 2003;49(7):443–449. PubMed
Bitoun JP, Nguyen AH, Fan Y, Burne RA, Wen ZT. Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans . FEMS Microbiology Letters. 2011;320(2):110–117. PubMed PMC
Wen ZT, Suntharaligham P, Cvitkovitch DG, Burne RA. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infection and Immunity. 2005;73(1):219–225. PubMed PMC
Hodges AP, Dai D, Xiang Z, Woolf P, Xi C, He Y. Bayesian network expansion identifies new ROS and biofilm regulators. PLoS ONE. 2010;5(3)e9513 PubMed PMC
Fields JA, Thompson SA. Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion. Journal of Bacteriology. 2008;190(9):3411–3416. PubMed PMC
Yan Q, Wang N. The ColR/ColS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri . Journal of Bacteriology. 2011;193(7):1590–1599. PubMed PMC
Choi KS, Veeraragouda Y, Cho K, et al. Effect of gacS and gacA mutations on colony architecture, surface motility, biofilm formation and chemical toxicity in Pseudomonas sp. KL28. Journal of Microbiology. 2007;45(6):492–498. PubMed
Paget MSB, Buttner MJ. Thiol-based regulatory switches. Annual Review of Genetics. 2003;37:91–121. PubMed
Danese PN, Pratt LA, Dove SL, Kolter R. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Molecular Microbiology. 2000;37(2):424–432. PubMed
Hennequin C, Forestier C. OxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infection and Immunity. 2009;77(12):5449–5457. PubMed PMC
Shanks RMQ, Stella NA, Kalivoda EJ, et al. A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation. Journal of Bacteriology. 2007;189(20):7262–7272. PubMed PMC
Honma K, Mishima E, Inagaki S, Sharma A. The OxyR homologue in Tannerella forsythia regulates expression of oxidative stress responses and biofilm formation. Microbiology. 2009;155(6):1912–1922. PubMed PMC
Seib KL, Wu HJ, Srikhanta YN, et al. Characterization of the OxyR regulon of Neisseria gonorrhoeae . Molecular Microbiology. 2007;63(1):54–68. PubMed
Albesa I, Becerra MC, Battán PC, Páez PL. Oxidative stress involved in the antibacterial action of different antibiotics. Biochemical and Biophysical Research Communications. 2004;317(2):605–609. PubMed
Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic action and resistance. Current Opinion in Microbiology. 2009;12(5):482–489. PubMed PMC
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810. PubMed