Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
23-06368S
Czech Science Foundation
PubMed
38607038
PubMed Central
PMC11012152
DOI
10.3390/cells13070599
PII: cells13070599
Knihovny.cz E-zdroje
- Klíčová slova
- RNA modifications, epitranscriptome, lncRNA, tRNA, yeast,
- MeSH
- mikro RNA * genetika MeSH
- RNA dlouhá nekódující * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA * MeSH
- RNA dlouhá nekódující * MeSH
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
Zobrazit více v PubMed
Fatica A., Bozzoni I. Long Non-Coding RNAs: New Players in Cell Differentiation and Development. Nat. Rev. Genet. 2014;15:7–21. doi: 10.1038/nrg3606. PubMed DOI
Grewal S.S. Why Should Cancer Biologists Care about tRNAs? tRNA Synthesis, mRNA Translation and the Control of Growth. Biochim. Biophys. Acta Gene Regul. Mech. 2015;1849:898–907. doi: 10.1016/j.bbagrm.2014.12.005. PubMed DOI
Chery M., Drouard L. Plant tRNA Functions beyond Their Major Role in Translation. J. Exp. Bot. 2023;74:2352–2363. doi: 10.1093/jxb/erac483. PubMed DOI
Chekanova J.A. Long Non-Coding RNAs and Their Functions in Plants. Curr. Opin. Plant Biol. 2015;27:207–216. doi: 10.1016/j.pbi.2015.08.003. PubMed DOI
Chauvier A., Walter N.G. Regulation of Bacterial Gene Expression by Non-Coding RNA: It Is All about Time! Cell Chem. Biol. 2024;31:71–85. doi: 10.1016/j.chembiol.2023.12.011. PubMed DOI
Katz A., Elgamal S., Rajkovic A., Ibba M. Non-Canonical Roles of tRNAs and tRNA Mimics in Bacterial Cell Biology. Mol. Microbiol. 2016;101:545–558. doi: 10.1111/mmi.13419. PubMed DOI PMC
Motorin Y., Marchand V. Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes. 2021;12:278. doi: 10.3390/genes12020278. PubMed DOI PMC
Leger A., Amaral P.P., Pandolfini L., Capitanchik C., Capraro F., Miano V., Migliori V., Toolan-Kerr P., Sideri T., Enright A.J., et al. RNA Modifications Detection by Comparative Nanopore Direct RNA Sequencing. Nat. Commun. 2021;12:7198. doi: 10.1038/s41467-021-27393-3. PubMed DOI PMC
Lakhotia S.C. Long Non-Coding RNAs Coordinate Cellular Responses to Stress. WIREs RNA. 2012;3:779–796. doi: 10.1002/wrna.1135. PubMed DOI
Gu C., Begley T.J., Dedon P.C. tRNA Modifications Regulate Translation during Cellular Stress. FEBS Lett. 2014;588:4287–4296. doi: 10.1016/j.febslet.2014.09.038. PubMed DOI PMC
Yamashita A., Shichino Y., Yamamoto M. The Long Non-Coding RNA World in Yeasts. Biochim. Biophys. Acta Gene Regul. Mech. 2016;1859:147–154. doi: 10.1016/j.bbagrm.2015.08.003. PubMed DOI
Thompson D.M., Parker R. Stressing Out over tRNA Cleavage. Cell. 2009;138:215–219. doi: 10.1016/j.cell.2009.07.001. PubMed DOI
Eleutherio E., de Araujo Brasil A., França M.B., de Almeida D.S.G., Rona G.B., Magalhães R.S.S. Oxidative Stress and Aging: Learning from Yeast Lessons. Fungal Biol. 2018;122:514–525. doi: 10.1016/j.funbio.2017.12.003. PubMed DOI
Dawes I.W., Perrone G.G. Stress and Ageing in Yeast. FEMS Yeast Res. 2020;20:85. doi: 10.1093/femsyr/foz085. PubMed DOI
Kourtis N., Tavernarakis N. Cellular Stress Response Pathways and Ageing: Intricate Molecular Relationships. EMBO J. 2011;30:2520–2531. doi: 10.1038/emboj.2011.162. PubMed DOI PMC
de Magalhães J.P., Passos J.F. Stress, Cell Senescence and Organismal Ageing. Mech. Ageing Dev. 2018;170:2–9. doi: 10.1016/j.mad.2017.07.001. PubMed DOI
Váchová L., Čáp M., Palková Z. Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity. Oxid. Med. Cell. Longev. 2012;2012:601836. doi: 10.1155/2012/601836. PubMed DOI PMC
Váchová L., Palková Z. How Structured Yeast Multicellular Communities Live, Age and Die? FEMS Yeast Res. 2018;18:foy033. doi: 10.1093/femsyr/foy033. PubMed DOI
Mukherjee P.K., Zhou G., Munyon R., Ghannoum M.A. Candida Biofilm: A Well-Designed Protected Environment. Med. Mycol. 2005;43:191–208. doi: 10.1080/13693780500107554. PubMed DOI
Waldron C., Lacroute F. Effect of Growth Rate on the Amounts of Ribosomal and Transfer Ribonucleic Acids in Yeast. J. Bacteriol. 1975;122:855–865. doi: 10.1128/jb.122.3.855-865.1975. PubMed DOI PMC
Liu Y., Yang Q., Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu. Rev. Biochem. 2021;90:375–401. doi: 10.1146/annurev-biochem-071320-112701. PubMed DOI PMC
Liu Y. A Code within the Genetic Code: Codon Usage Regulates Co-Translational Protein Folding. Cell Commun. Signal. 2020;18:145. doi: 10.1186/s12964-020-00642-6. PubMed DOI PMC
Hanson G., Coller J. Codon Optimality, Bias and Usage in Translation and mRNA Decay. Nat. Rev. Mol. Cell Biol. 2018;19:20–30. doi: 10.1038/nrm.2017.91. PubMed DOI PMC
Arias L., Martínez F., González D., Flores-Ríos R., Katz A., Tello M., Moreira S., Orellana O. Modification of Transfer RNA Levels Affects Cyclin Aggregation and the Correct Duplication of Yeast Cells. Front. Microbiol. 2021;11:607693. doi: 10.3389/fmicb.2020.607693. PubMed DOI PMC
Hia F., Takeuchi O. The Effects of Codon Bias and Optimality on mRNA and Protein Regulation. Cell. Mol. Life Sci. 2021;78:1909–1928. doi: 10.1007/s00018-020-03685-7. PubMed DOI PMC
Iben J.R., Maraia R.J. tRNAomics: tRNA Gene Copy Number Variation and Codon Use Provide Bioinformatic Evidence of a New Anticodon:Codon Wobble Pair in a Eukaryote. RNA. 2012;18:1358–1372. doi: 10.1261/rna.032151.111. PubMed DOI PMC
Jackman J.E., Alfonzo J.D. Transfer RNA Modifications: Nature’s Combinatorial Chemistry Playground. WIREs RNA. 2013;4:35–48. doi: 10.1002/wrna.1144. PubMed DOI PMC
Nedialkova D.D., Leidel S.A. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell. 2015;161:1606–1618. doi: 10.1016/j.cell.2015.05.022. PubMed DOI PMC
Raabe C.A., Tang T.H., Brosius J., Rozhdestvensky T.S. Biases in Small RNA Deep Sequencing Data. Nucleic Acids Res. 2014;42:1414–1426. doi: 10.1093/nar/gkt1021. PubMed DOI PMC
Nagai A., Mori K., Shiomi Y., Yoshihisa T. OTTER, a New Method for Quantifying Absolute Amounts of tRNAs. RNA. 2021;27:628–640. doi: 10.1261/rna.076489.120. PubMed DOI PMC
Walsh I.M., Bowman M.A., Soto Santarriaga I.F., Rodriguez A., Clark P.L. Synonymous Codon Substitutions Perturb Cotranslational Protein Folding In Vivo and Impair Cell Fitness. Proc. Natl. Acad. Sci. USA. 2020;117:3528–3534. doi: 10.1073/pnas.1907126117. PubMed DOI PMC
Rapino F., Zhou Z., Roncero Sanchez A.M., Joiret M., Seca C., El Hachem N., Valenti G., Latini S., Shostak K., Geris L., et al. Wobble tRNA Modification and Hydrophilic Amino Acid Patterns Dictate Protein Fate. Nat. Commun. 2021;12:2170. doi: 10.1038/s41467-021-22254-5. PubMed DOI PMC
Presnyak V., Alhusaini N., Chen Y.-H., Martin S., Morris N., Kline N., Olson S., Weinberg D., Baker K.E., Graveley B.R., et al. Codon Optimality Is a Major Determinant of mRNA Stability. Cell. 2015;160:1111–1124. doi: 10.1016/j.cell.2015.02.029. PubMed DOI PMC
Hanson G., Alhusaini N., Morris N., Sweet T., Coller J. Translation Elongation and mRNA Stability Are Coupled through the Ribosomal A-Site. RNA. 2018;24:1377–1389. doi: 10.1261/rna.066787.118. PubMed DOI PMC
Harigaya Y., Parker R. Analysis of the Association between Codon Optimality and mRNA Stability in Schizosaccharomyces pombe. BMC Genom. 2016;17:1–16. doi: 10.1186/s12864-016-3237-6. PubMed DOI PMC
Cheng J., Maier K.C., Avsec Ž., Petra R.U.S., Gagneur J. Cis-Regulatory Elements Explain Most of the mRNA Stability Variation across Genes in Yeast. RNA. 2017;23:1648–1659. doi: 10.1261/rna.062224.117. PubMed DOI PMC
Wu Q., Medina S.G., Kushawah G., Devore M.L., Castellano L.A., Hand J.M., Wright M., Bazzini A.A. Translation Affects mRNA Stability in a Codon-Dependent Manner in Human Cells. eLife. 2019;8:e45396. doi: 10.7554/eLife.45396. PubMed DOI PMC
Bae H., Coller J. Codon Optimality-Mediated mRNA Degradation: Linking Translational Elongation to mRNA Stability. Mol. Cell. 2022;82:1467–1476. doi: 10.1016/j.molcel.2022.03.032. PubMed DOI PMC
Rahaman S., Faravelli S., Voegeli S., Becskei A. Polysome Propensity and Tunable Thresholds in Coding Sequence Length Enable Differential mRNA Stability. Sci. Adv. 2023;9:eadh9545. doi: 10.1126/sciadv.adh9545. PubMed DOI PMC
Heyer E.E., Moore M.J. Redefining the Translational Status of 80S Monosomes. Cell. 2016;164:757–769. doi: 10.1016/j.cell.2016.01.003. PubMed DOI
Maier T., Güell M., Serrano L. Correlation of mRNA and Protein in Complex Biological Samples. FEBS Lett. 2009;583:3966–3973. doi: 10.1016/j.febslet.2009.10.036. PubMed DOI
Vogel C., Marcotte E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Payne S.H. The Utility of Protein and mRNA Correlation. Trends Biochem. Sci. 2015;40:1–3. doi: 10.1016/j.tibs.2014.10.010. PubMed DOI PMC
Chan P.P., Lin B.Y., Mak A.J., Lowe T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021;49:9077–9096. doi: 10.1093/nar/gkab688. PubMed DOI PMC
Moir R.D., Willis I.M. Regulation of Pol III Transcription by Nutrient and Stress Signaling Pathways. Biochim. Biophys. Acta Gene Regul. Mech. 2013;1829:361–375. doi: 10.1016/j.bbagrm.2012.11.001. PubMed DOI PMC
Whitney M.L., Hurto R.L., Shaheen H.H., Hopper A.K. Rapid and Reversible Nuclear Accumulation of CytoplasmictRNA in Response to Nutrient Availability. Mol. Biol. Cell. 2007;18:2678–2686. doi: 10.1091/mbc.e07-01-0006. PubMed DOI PMC
Bloom-Ackermann Z., Navon S., Gingold H., Towers R., Pilpel Y., Dahan O. A Comprehensive tRNA Deletion Library Unravels the Genetic Architecture of the tRNA Pool. PLoS Genet. 2014;10:e1004084. doi: 10.1371/journal.pgen.1004084. PubMed DOI PMC
Cieśla M., Towpik J., Graczyk D., Oficjalska-Pham D., Harismendy O., Suleau A., Balicki K., Conesa C., Lefebvre O., Boguta M. Maf1 Is Involved in Coupling Carbon Metabolism to RNA Polymerase III Transcription. Mol. Cell. Biol. 2007;27:7693–7702. doi: 10.1128/MCB.01051-07. PubMed DOI PMC
Shukla A., Bhalla P., Potdar P.K., Jampala P., Bhargava P. Transcription-Dependent Enrichment of the Yeast FACT Complex Influences Nucleosome Dynamics on the RNA Polymerase III-Transcribed Genes. RNA. 2021;27:273–290. doi: 10.1261/rna.077974.120. PubMed DOI PMC
Gerber A., Ito K., Chu C.S., Roeder R.G. Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol. Cell. 2020;78:765–778. doi: 10.1016/j.molcel.2020.03.023. PubMed DOI PMC
Yague-Sanz C., Migeot V., Larochelle M., Bachand F., Wéry M., Morillon A., Hermand D. Chromatin Remodeling by Pol II Primes Efficient Pol III Transcription. Nat. Commun. 2023;14:3587. doi: 10.1038/s41467-023-39387-4. PubMed DOI PMC
Yang J., Smith D.K., Ni H., Wu K., Huang D., Pan S., Sathe A.A., Tang Y., Liu M.-L., Xing C., et al. SOX4-Mediated Repression of Specific tRNAs Inhibits Proliferation of Human Glioblastoma Cells. Proc. Natl. Acad. Sci. USA. 2020;117:5782–5790. doi: 10.1073/pnas.1920200117. PubMed DOI PMC
van Breugel M.E., van Kruijsbergen I., Mittal C., Lieftink C., Brouwer I., van den Brand T., Kluin R.J.C., Hoekman L., Menezes R.X., van Welsem T., et al. Locus-Specific Proteome Decoding Reveals Fpt1 as a Chromatin-Associated Negative Regulator of RNA Polymerase III Assembly. Mol. Cell. 2023;83:4205–4221.e9. doi: 10.1016/j.molcel.2023.10.037. PubMed DOI PMC
Pang Y.L.J., Abo R., Levine S.S., Dedon P.C. Diverse Cell Stresses Induce Unique Patterns of tRNA Up- and down-Regulation: tRNA-Seq for Quantifying Changes in tRNA Copy Number. Nucleic Acids Res. 2014;42:e170. doi: 10.1093/nar/gku945. PubMed DOI PMC
Torrent M., Chalancon G., de Groot N.S., Wuster A., Madan Babu M. Cells Alter Their tRNA Abundance to Selectively Regulate Protein Synthesis during Stress Conditions. Sci. Signal. 2018;11:eaat6409. doi: 10.1126/scisignal.aat6409. PubMed DOI PMC
Fisher D.L., Nurse P. A Single Fission Yeast Mitotic Cyclin B P34cdc2 Kinase Promotes Both S-Phase and Mitosis in the Absence of G1 Cyclins. EMBO J. 1996;15:850–860. doi: 10.1002/j.1460-2075.1996.tb00420.x. PubMed DOI PMC
Thompson D.M., Parker R. The RNase Rny1p Cleaves tRNAs and Promotes Cell Death during Oxidative Stress in Saccharomyces cerevisiae. J. Cell Biol. 2009;185:43–50. doi: 10.1083/jcb.200811119. PubMed DOI PMC
Luhtala N., Parker R. Structure-Function Analysis of Rny1 in tRNA Cleavage and Growth Inhibition. PLoS ONE. 2012;7:e41111. doi: 10.1371/journal.pone.0041111. PubMed DOI PMC
Pelechano V., Wei W., Steinmetz L.M. Widespread Co-Translational RNA Decay Reveals Ribosome Dynamics. Cell. 2015;161:1400–1412. doi: 10.1016/j.cell.2015.05.008. PubMed DOI PMC
Thompson D.M., Lu C., Green P.J., Parker R. tRNA Cleavage Is a Conserved Response to Oxidative Stress in Eukaryotes. RNA. 2008;14:2095–2103. doi: 10.1261/rna.1232808. PubMed DOI PMC
Tyczewska A., Grzywacz K. tRNA-Derived Fragments as New Players in Regulatory Processes in Yeast. Yeast. 2023;40:283–289. doi: 10.1002/yea.3829. PubMed DOI
Alves C.S., Nogueira F.T.S. Plant Small RNA World Growing Bigger: tRNA-Derived Fragments, Longstanding Players in Regulatory Processes. Front. Mol. Biosci. 2021;8:638911. doi: 10.3389/fmolb.2021.638911. PubMed DOI PMC
Xie Y., Yao L., Yu X., Ruan Y., Li Z., Guo J. Action Mechanisms and Research Methods of tRNA-Derived Small RNAs. Signal Transduct. Target. Ther. 2020;5:109. doi: 10.1038/s41392-020-00217-4. PubMed DOI PMC
Bąkowska-Żywicka K., Mleczko A.M., Kasprzyk M., Machtel P., Żywicki M., Twardowski T. The Widespread Occurrence of tRNA-Derived Fragments in Saccharomyces cerevisiae. FEBS Open Bio. 2016;6:1186–1200. doi: 10.1002/2211-5463.12127. PubMed DOI PMC
Zywicki M., Bakowska-Zywicka K., Polacek N. Revealing Stable Processing Products from Ribosome-Associated Small RNAs by Deep-Sequencing Data Analysis. Nucleic Acids Res. 2012;40:4013–4024. doi: 10.1093/nar/gks020. PubMed DOI PMC
Mleczko A.M., Celichowski P., Bąkowska-Żywicka K. Transfer RNA-Derived Fragments Target and Regulate Ribosome-Associated Aminoacyl-Transfer RNA Synthetases. Biochim. Biophys. Acta Gene Regul. Mech. 2018;1861:647–656. doi: 10.1016/j.bbagrm.2018.06.001. PubMed DOI
Bakowska-Zywicka K., Kasprzyk M., Twardowski T. tRNA-Derived Short RNAs Bind to Saccharomyces cerevisiae Ribosomes in a Stress-Dependent Manner and Inhibit Protein Synthesis In Vitro. FEMS Yeast Res. 2016;16:fow077. doi: 10.1093/femsyr/fow077. PubMed DOI PMC
Streit R.S.A., Ferrareze P.A.G., Vainstein M.H., Staats C.C. Analysis of tRNA-Derived RNA Fragments (TRFs) in Cryptococcus spp.: RNAi-Independent Generation and Possible Compensatory Effects in a RNAi-Deficient Genotype. Fungal Biol. 2021;125:389–399. doi: 10.1016/j.funbio.2020.12.003. PubMed DOI
Kumar P., Anaya J., Mudunuri S.B., Dutta A. Meta-Analysis of tRNA Derived RNA Fragments Reveals That They Are Evolutionarily Conserved and Associate with AGO Proteins to Recognize Specific RNA Targets. BMC Biol. 2014;12:78. doi: 10.1186/s12915-014-0078-0. PubMed DOI PMC
Hu Y., Wu L., Zhang P., Wang Z., Shang J., Huang Y. Global View of Dynamic Expression and Precise Mapping of Mitochondrial tRNAs-Derived Fragments during Stressed Conditions in S. pombe. Mitochondrion. 2021;60:219–227. doi: 10.1016/j.mito.2021.08.012. PubMed DOI
Natarajan K., Meyer M.R., Jackson B.M., Slade D., Roberts C., Hinnebusch A.G., Marton M.J. Transcriptional Profiling Shows That Gcn4p Is a Master Regulator of Gene Expression during Amino Acid Starvation in Yeast. Mol. Cell. Biol. 2001;21:4347. doi: 10.1128/MCB.21.13.4347-4368.2001. PubMed DOI PMC
Hinnebusch A.G. Translational Regulation of GCN4 and the General Amino Acid Control of Yeast. Annu. Rev. Microbiol. 2005;59:407–450. doi: 10.1146/annurev.micro.59.031805.133833. PubMed DOI
Kamada Y. Novel tRNA Function in Amino Acid Sensing of Yeast TOR Complex1. Genes Cells. 2017;22:135–147. doi: 10.1111/gtc.12462. PubMed DOI
Otsubo Y., Matsuo T., Nishimura A., Yamamoto M., Yamashita A. tRNA Production Links Nutrient Conditions to the Onset of Sexual Differentiation through the TORC 1 Pathway. EMBO Rep. 2018;19:e44867. doi: 10.15252/embr.201744867. PubMed DOI PMC
Hueso G., Aparicio-Sanchis R., Montesinos C., Lorenz S., Murguía J.R., Serrano R. A Novel Role for Protein Kinase Gcn2 in Yeast Tolerance to Intracellular Acid Stress. Biochem. J. 2012;441:255–264. doi: 10.1042/BJ20111264. PubMed DOI
Chen S.-J., Wu Y.-H., Huang H.-Y., Wang C.-C. Saccharomyces cerevisiae Possesses a Stress-Inducible Glycyl-tRNA Synthetase Gene. PLoS ONE. 2012;7:e33363. doi: 10.1371/journal.pone.0033363. PubMed DOI PMC
Simos G., Sauer A., Fasiolo F., Hurt E.C. A Conserved Domain within Arc1p Delivers tRNA to Aminoacyl-tRNA Synthetases. Mol. Cell. 1998;1:235–242. doi: 10.1016/S1097-2765(00)80024-6. PubMed DOI
Godinic V., Mocibob M., Rocak S., Ibba M., Weygand-Durasevic I. Peroxin Pex21p Interacts with the C-Terminal Noncatalytic Domain of Yeast Seryl-tRNA Synthetase and Forms a Specific Ternary Complex with tRNA Ser. FEBS J. 2007;274:2788–2799. doi: 10.1111/j.1742-4658.2007.05812.x. PubMed DOI
Chang C.-Y., Chang C.-P., Chakraborty S., Wang S.-W., Tseng Y.-K., Wang C.-C. Modulating the Structure and Function of an Aminoacyl-tRNA Synthetase Cofactor by Biotinylation. J. Biol. Chem. 2016;291:17102–17111. doi: 10.1074/jbc.M116.734343. PubMed DOI PMC
Frechin M., Enkler L., Tetaud E., Laporte D., Senger B., Blancard C., Hammann P., Bader G., Clauder-Münster S., Steinmetz L.M., et al. Expression of Nuclear and Mitochondrial Genes Encoding ATP Synthase Is Synchronized by Disassembly of a Multisynthetase Complex. Mol. Cell. 2014;56:763–776. doi: 10.1016/j.molcel.2014.10.015. PubMed DOI
Lorenz C., Lünse C.E., Mörl M. tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules. 2017;7:35. doi: 10.3390/biom7020035. PubMed DOI PMC
Gustilo E.M., Vendeix F.A., Agris P.F. tRNA’s Modifications Bring Order to Gene Expression. Curr. Opin. Microbiol. 2008;11:134–140. doi: 10.1016/j.mib.2008.02.003. PubMed DOI PMC
Tavares J.F., Davis N.K., Poim A., Reis A., Kellner S., Sousa I., Soares A.R., Moura G.M.R., Dedon P.C., Santos M. tRNA-Modifying Enzyme Mutations Induce Codon-Specific Mistranslation and Protein Aggregation in Yeast. RNA Biol. 2021;18:563–575. doi: 10.1080/15476286.2020.1819671. PubMed DOI PMC
Gieg R., Eriani G. The tRNA Identity Landscape for Aminoacylation and Beyond. Nucleic Acids Res. 2023;51:1528–1570. doi: 10.1093/nar/gkad007. PubMed DOI PMC
Kimura S., Waldor M.K. The RNA Degradosome Promotes tRNA Quality Control through Clearance of Hypomodified tRNA. Proc. Natl. Acad. Sci. USA. 2019;116:1394–1403. doi: 10.1073/pnas.1814130116. PubMed DOI PMC
Alexandrov A., Chernyakov I., Gu W., Hiley S.L., Hughes T.R., Grayhack E.J., Phizicky E.M. Rapid tRNA Decay Can Result from Lack of Nonessential Modifications. Mol. Cell. 2006;21:87–96. doi: 10.1016/j.molcel.2005.10.036. PubMed DOI
Chan C.T.Y., Dyavaiah M., DeMott M.S., Taghizadeh K., Dedon P.C., Begley T.J. A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress. PLoS Genet. 2010;6:e1001247. doi: 10.1371/journal.pgen.1001247. PubMed DOI PMC
Yoluç Y., van de Logt E., Kellner-Kaiser S. The Stress-Dependent Dynamics of Saccharomyces cerevisiae tRNA and rRNA Modification Profiles. Genes. 2021;12:1344. doi: 10.3390/genes12091344. PubMed DOI PMC
Chan C.T.Y., Deng W., Li F., Demott M.S., Babu I.R., Begley T.J., Dedon P.C. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chem. Res. Toxicol. 2015;28:978–988. doi: 10.1021/acs.chemrestox.5b00004. PubMed DOI PMC
Chan C.T.Y., Pang Y.L.J., Deng W., Babu I.R., Dyavaiah M., Begley T.J., Dedon P.C. Reprogramming of tRNA Modifications Controls the Oxidative Stress Response by Codon-Biased Translation of Proteins. Nat. Commun. 2012;3:937. doi: 10.1038/ncomms1938. PubMed DOI PMC
Nakai Y., Nakai M., Yano T. Sulfur Modifications of the Wobble U34 in tRNAs and Their Intracellular Localization in Eukaryotic Cells. Biomolecules. 2017;7:17. doi: 10.3390/biom7010017. PubMed DOI PMC
Damon J.R., Pincus D., Ploegh H.L. tRNA Thiolation Links Translation to Stress Responses in Saccharomyces cerevisiae. Mol. Biol. Cell. 2015;26:270–282. doi: 10.1091/mbc.E14-06-1145. PubMed DOI PMC
Laxman S., Sutter B.M., Wu X., Kumar S., Guo X., Trudgian D.C., Mirzaei H., Tu B.P. Sulfur Amino Acids Regulate Translational Capacity and Metabolic Homeostasis through Modulation of tRNA Thiolation. Cell. 2013;154:416–429. doi: 10.1016/j.cell.2013.06.043. PubMed DOI PMC
Kaduhr L., Brachmann C., Ravichandran K.E., West J.D., Glatt S., Schaffrath R. Urm1, Not Quite a Ubiquitin-like Modifier? Microb. Cell. 2021;8:256–261. doi: 10.15698/mic2021.11.763. PubMed DOI PMC
Goehring A.S., Rivers D.M., Sprague G.F. Attachment of the Ubiquitin-Related Protein Urm1p to the Antioxidant Protein Ahp1p. Eukaryot. Cell. 2003;2:930–936. doi: 10.1128/EC.2.5.930-936.2003. PubMed DOI PMC
Joshi K., Bhatt M.J., Farabaugh P.J. Codon-Specific Effects of tRNA Anticodon Loop Modifications on Translational Misreading Errors in the Yeast Saccharomyces cerevisiae. Nucleic Acids Res. 2018;46:10331–10339. doi: 10.1093/nar/gky664. PubMed DOI PMC
Eaglestone S.S., Cox B.S., Tuite M.F. Translation Termination Efficiency Can Be Regulated in Saccharomyces cerevisiae by Environmental Stress through a Prion-Mediated Mechanism. EMBO J. 1999;18:1974–1981. doi: 10.1093/emboj/18.7.1974. PubMed DOI PMC
True H.L., Lindquist S.L. A Yeast Prion Provides a Mechanism for Genetic Variation and Phenotypic Diversity. Nature. 2000;407:477–483. doi: 10.1038/35035005. PubMed DOI
Wang X., Jia H., Jankowsky E., Anderson J.T. Degradation of Hypomodified tRNAiMet In Vivo Involves RNA-Dependent ATPase Activity of the DExH Helicase Mtr4p. RNA. 2008;14:107–116. doi: 10.1261/rna.808608. PubMed DOI PMC
Vanácová S., Wolf J., Martin G., Blank D., Dettwiler S., Friedlein A., Langen H., Keith G., Keller W. A New Yeast Poly(A) Polymerase Complex Involved in RNA Quality Control. PLoS Biol. 2005;3:e189. doi: 10.1371/journal.pbio.0030189. PubMed DOI PMC
Chernyakov I., Whipple J.M., Kotelawala L., Grayhack E.J., Phizicky E.M. Degradation of Several Hypomodified Mature tRNA Species in Saccharomyces cerevisiae Is Mediated by Met22 and the 5′–3′ Exonucleases Rat1 and Xrn1. Genes Dev. 2008;22:1369–1380. doi: 10.1101/gad.1654308. PubMed DOI PMC
Tasak M., Phizicky E.M. Initiator tRNA Lacking 1-Methyladenosine Is Targeted by the Rapid tRNA Decay Pathway in Evolutionarily Distant Yeast Species. PLOS Genet. 2022;18:e1010215. doi: 10.1371/journal.pgen.1010215. PubMed DOI PMC
Kramer E.B., Hopper A.K. Retrograde Transfer RNA Nuclear Import Provides a New Level of tRNA Quality Control in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 2013;110:21042–21047. doi: 10.1073/pnas.1316579110. PubMed DOI PMC
Liu F., Clark W., Luo G., Wang X., Fu Y., Wei J., Wang X., Hao Z., Dai Q., Zheng G., et al. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell. 2016;167:816–828.e16. doi: 10.1016/j.cell.2016.09.038. PubMed DOI PMC
You X.-J., Zhang S., Chen J.-J., Tang F., He J., Wang J., Qi C.-B., Feng Y.-Q., Yuan B.-F. Formation and Removal of 1, N 6-Dimethyladenosine in Mammalian Transfer RNA. Nucleic Acids Res. 2022;50:9858–9872. doi: 10.1093/nar/gkac770. PubMed DOI PMC
Nawrot B., Sochacka E., Düchler M. tRNA Structural and Functional Changes Induced by Oxidative Stress. Cell. Mol. Life Sci. 2011;68:4023–4032. doi: 10.1007/s00018-011-0773-8. PubMed DOI PMC
Statello L., Guo C.-J., Chen L.-L., Huarte M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021;22:96–118. doi: 10.1038/s41580-020-00315-9. PubMed DOI PMC
Brockdorff N., Ashworth A., Kay G.F., McCabe V.M., Norris D.P., Cooper P.J., Swift S., Rastan S. The Product of the Mouse Xist Gene Is a 15 Kb Inactive X-Specific Transcript Containing No Conserved ORF and Located in the Nucleus. Cell. 1992;71:515–526. doi: 10.1016/0092-8674(92)90519-I. PubMed DOI
David L., Huber W., Granovskaia M., Toedling J., Palm C.J., Bofkin L., Jones T., Davis R.W., Steinmetz L.M. A High-Resolution Map of Transcription in the Yeast Genome. Proc. Natl. Acad. Sci. USA. 2006;103:5320–5325. doi: 10.1073/pnas.0601091103. PubMed DOI PMC
Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science. 2008;320:1344–1349. doi: 10.1126/science.1158441. PubMed DOI PMC
Hovhannisyan H., Gabaldón T. The Long Non-Coding RNA Landscape of Candida Yeast Pathogens. Nat. Commun. 2021;12:7317. doi: 10.1038/s41467-021-27635-4. PubMed DOI PMC
Atkinson S.R., Marguerat S., Bitton D.A., Rodríguez-López M., Rallis C., Lemay J.F., Cotobal C., Malecki M., Smialowski P., Mata J., et al. Long Noncoding RNA Repertoire and Targeting by Nuclear Exosome, Cytoplasmic Exonuclease, and RNAi in Fission Yeast. RNA. 2018;24:1195–1213. doi: 10.1261/rna.065524.118. PubMed DOI PMC
Kalem M.C., Panepinto J.C. Long Non-Coding RNAs in Cryptococcus neoformans: Insights Into Fungal Pathogenesis. Front. Cell. Infect. Microbiol. 2022;12:261. doi: 10.3389/fcimb.2022.858317. PubMed DOI PMC
Jenjaroenpun P., Wongsurawat T., Pereira R., Patumcharoenpol P., Ussery D.W., Nielsen J., Nookaew I. Complete Genomic and Transcriptional Landscape Analysis Using Third-Generation Sequencing: A Case Study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Res. 2018;46:e38. doi: 10.1093/nar/gky014. PubMed DOI PMC
Xu Z., Wei W., Gagneur J., Clauder-Münster S., Smolik M., Huber W., Steinmetz L.M. Antisense Expression Increases Gene Expression Variability and Locus Interdependency. Mol. Syst. Biol. 2011;7:468. doi: 10.1038/msb.2011.1. PubMed DOI PMC
Xu Z., Wei W., Gagneur J., Perocchi F., Clauder-Münster S., Camblong J., Guffanti E., Stutz F., Huber W., Steinmetz L.M. Bidirectional Promoters Generate Pervasive Transcription in Yeast. Nature. 2009;457:1033–1037. doi: 10.1038/nature07728. PubMed DOI PMC
Quintales L., Sánchez M., Antequera F. Analysis of DNA Strand-Specific Differential Expression with High Density Tiling Microarrays. BMC Bioinform. 2010;11:136. doi: 10.1186/1471-2105-11-136. PubMed DOI PMC
Leong H.S., Dawson K., Wirth C., Li Y., Connolly Y., Smith D.L., Wilkinson C.R.M., Miller C.J. A Global Non-Coding RNA System Modulates Fission Yeast Protein Levels in Response to Stress. Nat. Commun. 2014;5:3947. doi: 10.1038/ncomms4947. PubMed DOI PMC
Wilkinson D., Váchová L., Hlaváček O., Maršíková J., Gilfillan G.D., Palková Z. Long Noncoding RNAs in Yeast Cells and Differentiated Subpopulations of Yeast Colonies and Biofilms. Oxid. Med. Cell. Longev. 2018;2018:4950591. doi: 10.1155/2018/4950591. PubMed DOI PMC
Parker S., Fraczek M.G., Wu J., Shamsah S., Manousaki A., Dungrattanalert K., de Almeida R.A., Invernizzi E., Burgis T., Omara W., et al. Large-Scale Profiling of Noncoding RNA Function in Yeast. PLoS Genet. 2018;14:e1007253. doi: 10.1371/journal.pgen.1007253. PubMed DOI PMC
Camblong J., Beyrouthy N., Guffanti E., Schlaepfer G., Steinmetz L.M., Stutz F. Trans-Acting Antisense RNAs Mediate Transcriptional Gene Cosuppression in S. cerevisiae. Genes Dev. 2009;23:1534–1545. doi: 10.1101/gad.522509. PubMed DOI PMC
Li J., Liu X., Yin Z., Hu Z., Zhang K.-Q. An Overview on Identification and Regulatory Mechanisms of Long Non-Coding RNAs in Fungi. Front. Microbiol. 2021;12:995. doi: 10.3389/fmicb.2021.638617. PubMed DOI PMC
Niederer R.O., Hass E.P., Zappulla D.C. Advances in Experimental Medicine and Biology. Volume 1008. Springer; New York, NY, USA: 2017. Long Noncoding RNAs in the Yeast S. cerevisiae; pp. 119–132. PubMed DOI
Smith J.E., Alvarez-Dominguez J.R., Kline N., Huynh N.J., Geisler S., Hu W., Coller J., Baker K.E. Translation of Small Open Reading Frames within Unannotated RNA Transcripts in Saccharomyces cerevisiae. Cell Rep. 2014;7:1858–1866. doi: 10.1016/j.celrep.2014.05.023. PubMed DOI PMC
Andjus S., Szachnowski U., Vogt N., Gioftsidi S., Hatin I., Cornu D., Papadopoulos C., Lopes A., Namy O., Wery M., et al. Pervasive Translation of Xrn1-Sensitive Unstable Long Non-Coding RNAs in Yeast. RNA. 2024:rna.079903.123. doi: 10.1261/rna.079903.123. PubMed DOI PMC
Erpf P.E., Fraser J.A. The Long History of the Diverse Roles of Short ORFs: sPEPs in Fungi. Proteomics. 2018;18:1700219. doi: 10.1002/pmic.201700219. PubMed DOI
Bouyx C., Schiavone M., François J.M. Flo11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens. 2021;10:1509. doi: 10.3390/pathogens10111509. PubMed DOI PMC
Váchová L., Štovíček V., Hlaváček O., Chernyavskiy O., Štěpánek L., Kubínová L., Palková Z. Flo11p, Drug Efflux Pumps, and the Extracellular Matrix Cooperate to Form Biofilm Yeast Colonies. J. Cell Biol. 2011;194:679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC
Voordeckers K., De Maeyer D., van der Zande E., Vinces M.D., Meert W., Cloots L., Ryan O., Marchal K., Verstrepen K.J. Identification of a Complex Genetic Network Underlying Saccharomyces cerevisiae Colony Morphology. Mol. Microbiol. 2012;86:225–239. doi: 10.1111/j.1365-2958.2012.08192.x. PubMed DOI PMC
Van Nguyen P., Plocek V., Váchová L., Palková Z. Glucose, Cyc8p and Tup1p Regulate Biofilm Formation and Dispersal in Wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6:7. doi: 10.1038/s41522-020-0118-1. PubMed DOI PMC
Correia-Melo C., Kamrad S., Tengölics R., Messner C.B., Trebulle P., Townsend S.J., Jayasree Varma S., Freiwald A., Heineike B.M., Campbell K., et al. Cell-Cell Metabolite Exchange Creates a pro-Survival Metabolic Environment That Extends Lifespan. Cell. 2023;186:63–79.e21. doi: 10.1016/j.cell.2022.12.007. PubMed DOI
Palková Z., Váchová L. Life within a Community: Benefit to Yeast Long-Term Survival. FEMS Microbiol. Rev. 2006;30:806–824. doi: 10.1111/j.1574-6976.2006.00034.x. PubMed DOI
Brückner S., Mösch H.U. Choosing the Right Lifestyle: Adhesion and Development in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2012;36:25–58. doi: 10.1111/j.1574-6976.2011.00275.x. PubMed DOI
Bumgarner S.L., Dowell R.D., Grisafi P., Gifford D.K., Fink G.R. Toggle Involving Cis-Interfering Noncoding RNAs Controls Variegated Gene Expression in Yeast. Proc. Natl. Acad. Sci. USA. 2009;106:18321–18326. doi: 10.1073/pnas.0909641106. PubMed DOI PMC
Chacko N., Zhao Y., Yang E., Wang L., Cai J.J., Lin X. The lncRNA RZE1 Controls Cryptococcal Morphological Transition. PLoS Genet. 2015;11:e1005692. doi: 10.1371/journal.pgen.1005692. PubMed DOI PMC
Tian X., Lin X. Matricellular Protein Cfl1 Regulates Cell Differentiation. Commun. Integr. Biol. 2013;6:e26444. doi: 10.4161/cib.26444. PubMed DOI PMC
Solé C., Nadal-Ribelles M., de Nadal E., Posas F. A Novel Role for lncRNAs in Cell Cycle Control during Stress Adaptation. Curr. Genet. 2015;61:299–308. doi: 10.1007/s00294-014-0453-y. PubMed DOI PMC
Nadal-Ribelles M., Solé C., Xu Z., Steinmetz L.M., de Nadal E., Posas F. Control of Cdc28 CDK1 by a Stress-Induced lncRNA. Mol. Cell. 2014;53:549–561. doi: 10.1016/j.molcel.2014.01.006. PubMed DOI PMC
Neil H., Malabat C., D’Aubenton-Carafa Y., Xu Z., Steinmetz L.M., Jacquier A. Widespread Bidirectional Promoters Are the Major Source of Cryptic Transcripts in Yeast. Nature. 2009;457:1038–1042. doi: 10.1038/nature07747. PubMed DOI
Balarezo-Cisneros L.N., Parker S., Fraczek M.G., Timouma S., Wang P., O’Keefe R.T., Millar C.B., Delneri D. Functional and Transcriptional Profiling of Non-Coding RNAs in Yeast Reveal Context-Dependent Phenotypes and in Trans Effects on the Protein Regulatory Network. PLoS Genet. 2021;17:e1008761. doi: 10.1371/journal.pgen.1008761. PubMed DOI PMC
Hirota K., Miyoshi T., Kugou K., Hoffman C.S., Shibata T., Ohta K. Stepwise Chromatin Remodelling by a Cascade of Transcription Initiation of Non-Coding RNAs. Nature. 2008;456:130–134. doi: 10.1038/nature07348. PubMed DOI
Oda A., Takemata N., Hirata Y., Miyoshi T., Suzuki Y., Sugano S., Ohta K. Dynamic Transition of Transcription and Chromatin Landscape during Fission Yeast Adaptation to Glucose Starvation. Genes Cells. 2015;20:392–407. doi: 10.1111/gtc.12229. PubMed DOI
Rodriguez-Lopez M., Anver S., Cotobal C., Kamrad S., Malecki M., Correia-Melo C., Hoti M., Townsend S., Marguerat S., Pong S.K., et al. Functional Profiling of Long Intergenic Non-Coding RNAs in Fission Yeast. eLife. 2022;11:e76000. doi: 10.7554/eLife.76000. PubMed DOI PMC
He C., Zhou C., Kennedy B.K. The Yeast Replicative Aging Model. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:2690–2696. doi: 10.1016/j.bbadis.2018.02.023. PubMed DOI
Kobayashi T., Ganley A.R.D. Recombination Regulation by Transcription-Induced Cohesin Dissociation in rDNA Repeats. Science. 2005;309:1581–1584. doi: 10.1126/science.1116102. PubMed DOI
Yokoyama M., Sasaki M., Kobayashi T. Spt4 Promotes Cellular Senescence by Activating Non-Coding RNA Transcription in Ribosomal RNA Gene Clusters. Cell Rep. 2023;42:111944. doi: 10.1016/j.celrep.2022.111944. PubMed DOI
Traven A., Jänicke A., Harrison P., Swaminathan A., Seemann T., Beilharz T.H. Transcriptional Profiling of a Yeast Colony Provides New Insight into the Heterogeneity of Multicellular Fungal Communities. PLoS ONE. 2012;7:e46243. doi: 10.1371/journal.pone.0046243. PubMed DOI PMC
Čáp M., Štěpánek L., Harant K., Váchová L., Palková Z. Cell Differentiation within a Yeast Colony: Metabolic and Regulatory Parallels with a Tumor-Affected Organism. Mol. Cell. 2012;46:436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI
Čáp M., Váchová L., Palková Z. Reactive Oxygen Species in the Signaling and Adaptation of Multicellular Microbial Communities. Oxid. Med. Cell. Longev. 2012;2012:976753. doi: 10.1155/2012/976753. PubMed DOI PMC
Wilkinson D., Maršíková J., Hlaváček O., Gilfillan G.D., Ježková E., Aaløkken R., Váchová L., Palková Z. Transcriptome Remodeling of Differentiated Cells during Chronological Ageing of Yeast Colonies: New Insights into Metabolic Differentiation. Oxid. Med. Cell. Longev. 2018;2018:4932905. doi: 10.1155/2018/4932905. PubMed DOI PMC
Gao J., Chow E.W.L., Wang H., Xu X., Cai C., Song Y., Wang J., Wang Y. lncRNA DINOR Is a Virulence Factor and Global Regulator of Stress Responses in Candida auris. Nat. Microbiol. 2021;6:842–851. doi: 10.1038/s41564-021-00915-x. PubMed DOI
Willi J., Küpfer P., Eviquoz D., Fernandez G., Katz A., Leumann C., Polacek N. Oxidative Stress Damages rRNA inside the Ribosome and Differentially Affects the Catalytic Center. Nucleic Acids Res. 2018;46:1945–1957. doi: 10.1093/nar/gkx1308. PubMed DOI PMC
Mirzaei H., Regnier F. Protein−RNA Cross-Linking in the Ribosomes of Yeast under Oxidative Stress. J. Proteome Res. 2006;5:3249–3259. doi: 10.1021/pr060337l. PubMed DOI
Shedlovskiy D., Zinskie J.A., Gardner E., Pestov D.G., Shcherbik N. Endonucleolytic Cleavage in the Expansion Segment 7 of 25S rRNA Is an Early Marker of Low-Level Oxidative Stress in Yeast. J. Biol. Chem. 2017;292:18469–18485. doi: 10.1074/jbc.M117.800003. PubMed DOI PMC
Shankar V., Rauscher R., Reuther J., Gharib W.H., Koch M., Polacek N. rRNA Expansion Segment 27Lb Modulates the Factor Recruitment Capacity of the Yeast Ribosome and Shapes the Proteome. Nucleic Acids Res. 2020;48:3244–3256. doi: 10.1093/nar/gkaa003. PubMed DOI PMC
Knorr A.G., Schmidt C., Tesina P., Berninghausen O., Becker T., Beatrix B., Beckmann R. Ribosome–NatA Architecture Reveals That rRNA Expansion Segments Coordinate N-Terminal Acetylation. Nat. Struct. Mol. Biol. 2019;26:35–39. doi: 10.1038/s41594-018-0165-y. PubMed DOI
Fujii K., Susanto T.T., Saurabh S., Barna M. Decoding the Function of Expansion Segments in Ribosomes. Mol. Cell. 2018;72:1013–1020.e6. doi: 10.1016/j.molcel.2018.11.023. PubMed DOI PMC
Zinskie J.A., Ghosh A., Trainor B.M., Shedlovskiy D., Pestov D.G., Shcherbik N. Iron-Dependent Cleavage of Ribosomal RNA during Oxidative Stress in the Yeast Saccharomyces cerevisiae. J. Biol. Chem. 2018;293:14237–14248. doi: 10.1074/jbc.RA118.004174. PubMed DOI PMC
Zhang Y., Smith A.D., Renfrow M.B., Schneider D.A. The RNA Polymerase-Associated Factor 1 Complex (Paf1C) Directly Increases the Elongation Rate of RNA Polymerase I and Is Required for Efficient Regulation of rRNA Synthesis. J. Biol. Chem. 2010;285:14152–14159. doi: 10.1074/jbc.M110.115220. PubMed DOI PMC
Koper M., Mroczek S. Analysis of rRNA Synthesis Using Quantitative Transcription Run-on (qTRO) in Yeast. Biotechniques. 2018;65:163–168. doi: 10.2144/btn-2018-0073. PubMed DOI
Mroczek S., Kufel J. Apoptotic Signals Induce Specific Degradation of Ribosomal RNA in Yeast. Nucleic Acids Res. 2008;36:2874–2888. doi: 10.1093/nar/gkm1100. PubMed DOI PMC
Najmi S.M., Schneider D.A. Quorum Sensing Regulates rRNA Synthesis in Saccharomyces cerevisiae. Gene. 2021;776:145442. doi: 10.1016/j.gene.2021.145442. PubMed DOI PMC
Fleischmann J., Rocha M.A. Nutrient Depletion and TOR Inhibition Induce 18S and 25S Ribosomal RNAs Resistant to a 5′-Phosphate-Dependent Exonuclease in Candida albicans and Other Yeasts. BMC Mol. Biol. 2018;19:1. doi: 10.1186/s12867-018-0102-y. PubMed DOI PMC
Rocha M.A., Gowda B.S., Fleischmann J. RNAP II Produces Capped 18S and 25S Ribosomal RNAs Resistant to 5′-Monophosphate Dependent Processive 5′ to 3′ Exonuclease in Polymerase Switched Saccharomyces cerevisiae. BMC Mol. Cell Biol. 2022;23:17. doi: 10.1186/s12860-022-00417-6. PubMed DOI PMC
Bailey A.D., Talkish J., Ding H., Igel H., Duran A., Mantripragada S., Paten B., Ares M. Concerted Modification of Nucleotides at Functional Centers of the Ribosome Revealed by Single-Molecule RNA Modification Profiling. eLife. 2022;11:e76562. doi: 10.7554/eLife.76562. PubMed DOI PMC
Liu K., Santos D.A., Hussmann J.A., Wang Y., Sutter B.M., Weissman J.S., Tu B.P. Regulation of Translation by Methylation Multiplicity of 18S rRNA. Cell Rep. 2021;34:108825. doi: 10.1016/j.celrep.2021.108825. PubMed DOI PMC
Morgan J.T., Fink G.R., Bartel D.P. Excised Linear Introns Regulate Growth in Yeast. Nature. 2019;565:606–611. doi: 10.1038/s41586-018-0828-1. PubMed DOI PMC
Parenteau J., Maignon L., Berthoumieux M., Catala M., Gagnon V., Abou Elela S. Introns Are Mediators of Cell Response to Starvation. Nature. 2019;565:612–617. doi: 10.1038/s41586-018-0859-7. PubMed DOI
Juneau K., Miranda M., Hillenmeyer M.E., Nislow C., Davis R.W. Introns Regulate RNA and Protein Abundance in Yeast. Genetics. 2006;174:511–518. doi: 10.1534/genetics.106.058560. PubMed DOI PMC
Wu G., Xiao M., Yang C., Yu Y.-T. U2 snRNA Is Inducibly Pseudouridylated at Novel Sites by Pus7p and snR81 RNP. EMBO J. 2011;30:79–89. doi: 10.1038/emboj.2010.316. PubMed DOI PMC
Wu G., Radwan M.K., Xiao M., Adachi H., Fan J., Yu Y.T. The TOR Signaling Pathway Regulates Starvation-Induced Pseudouridylation of Yeast U2 snRNA. RNA. 2016;22:1146–1152. doi: 10.1261/rna.056796.116. PubMed DOI PMC
Basak A., Query C.C. A Pseudouridine Residue in the Spliceosome Core Is Part of the Filamentous Growth Program in Yeast. Cell Rep. 2014;8:966–973. doi: 10.1016/j.celrep.2014.07.004. PubMed DOI PMC
Cha S., Hong C.P., Kang H.A., Hahn J.S. Differential Activation Mechanisms of Two Isoforms of Gcr1 Transcription Factor Generated from Spliced and Un-Spliced Transcripts in Saccharomyces cerevisiae. Nucleic Acids Res. 2021;49:745–759. doi: 10.1093/nar/gkaa1221. PubMed DOI PMC
Fang Y., Wang Z., Liu X., Tyler B.M. Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Front. Microbiol. 2022;13:817844. doi: 10.3389/fmicb.2022.817844. PubMed DOI PMC
Liebana-Jordan M., Brotons B., Falcon-Perez J.M., Gonzalez E. Extracellular Vesicles in the Fungi Kingdom. Int. J. Mol. Sci. 2021;22:7221. doi: 10.3390/ijms22137221. PubMed DOI PMC
Da Silva R.P., Puccia R., Rodrigues M.L., Oliveira D.L., Joffe L.S., César G.V., Nimrichter L., Goldenberg S., Alves L.R. Extracellular Vesicle-Mediated Export of Fungal RNA. Sci. Rep. 2015;5:7763. doi: 10.1038/srep07763. PubMed DOI PMC
Smolarz M., Zawrotniak M., Satala D., Rapala-Kozik M. Extracellular Nucleic Acids Present in the Candida albicans Biofilm Trigger the Release of Neutrophil Extracellular Traps. Front. Cell. Infect. Microbiol. 2021;11:466. doi: 10.3389/fcimb.2021.681030. PubMed DOI PMC
Bielska E., Sisquella M.A., Aldeieg M., Birch C., O’Donoghue E.J., May R.C. Pathogen-Derived Extracellular Vesicles Mediate Virulence in the Fatal Human Pathogen Cryptococcus gattii. Nat. Commun. 2018;9:1556. doi: 10.1038/s41467-018-03991-6. PubMed DOI PMC
Halder L.D., Babych S., Palme D.I., Mansouri-Ghahnavieh E., Ivanov L., Ashonibare V., Langenhorst D., Prusty B., Rambach G., Wich M., et al. Candida albicans Induces Cross-Kingdom miRNA Trafficking in Human Monocytes To Promote Fungal Growth. mBio. 2022;13:e03563-21. doi: 10.1128/mbio.03563-21. PubMed DOI PMC
Lynch S.M., McKenna M.M., Walsh C.P., McKenna D.J. miR-24 Regulates CDKN1B/P27 Expression in Prostate Cancer. Prostate. 2016;76:637–648. doi: 10.1002/pros.23156. PubMed DOI