Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast?

. 2024 Mar 29 ; 13 (7) : . [epub] 20240329

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38607038

Grantová podpora
23-06368S Czech Science Foundation

Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.

Zobrazit více v PubMed

Fatica A., Bozzoni I. Long Non-Coding RNAs: New Players in Cell Differentiation and Development. Nat. Rev. Genet. 2014;15:7–21. doi: 10.1038/nrg3606. PubMed DOI

Grewal S.S. Why Should Cancer Biologists Care about tRNAs? tRNA Synthesis, mRNA Translation and the Control of Growth. Biochim. Biophys. Acta Gene Regul. Mech. 2015;1849:898–907. doi: 10.1016/j.bbagrm.2014.12.005. PubMed DOI

Chery M., Drouard L. Plant tRNA Functions beyond Their Major Role in Translation. J. Exp. Bot. 2023;74:2352–2363. doi: 10.1093/jxb/erac483. PubMed DOI

Chekanova J.A. Long Non-Coding RNAs and Their Functions in Plants. Curr. Opin. Plant Biol. 2015;27:207–216. doi: 10.1016/j.pbi.2015.08.003. PubMed DOI

Chauvier A., Walter N.G. Regulation of Bacterial Gene Expression by Non-Coding RNA: It Is All about Time! Cell Chem. Biol. 2024;31:71–85. doi: 10.1016/j.chembiol.2023.12.011. PubMed DOI

Katz A., Elgamal S., Rajkovic A., Ibba M. Non-Canonical Roles of tRNAs and tRNA Mimics in Bacterial Cell Biology. Mol. Microbiol. 2016;101:545–558. doi: 10.1111/mmi.13419. PubMed DOI PMC

Motorin Y., Marchand V. Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes. 2021;12:278. doi: 10.3390/genes12020278. PubMed DOI PMC

Leger A., Amaral P.P., Pandolfini L., Capitanchik C., Capraro F., Miano V., Migliori V., Toolan-Kerr P., Sideri T., Enright A.J., et al. RNA Modifications Detection by Comparative Nanopore Direct RNA Sequencing. Nat. Commun. 2021;12:7198. doi: 10.1038/s41467-021-27393-3. PubMed DOI PMC

Lakhotia S.C. Long Non-Coding RNAs Coordinate Cellular Responses to Stress. WIREs RNA. 2012;3:779–796. doi: 10.1002/wrna.1135. PubMed DOI

Gu C., Begley T.J., Dedon P.C. tRNA Modifications Regulate Translation during Cellular Stress. FEBS Lett. 2014;588:4287–4296. doi: 10.1016/j.febslet.2014.09.038. PubMed DOI PMC

Yamashita A., Shichino Y., Yamamoto M. The Long Non-Coding RNA World in Yeasts. Biochim. Biophys. Acta Gene Regul. Mech. 2016;1859:147–154. doi: 10.1016/j.bbagrm.2015.08.003. PubMed DOI

Thompson D.M., Parker R. Stressing Out over tRNA Cleavage. Cell. 2009;138:215–219. doi: 10.1016/j.cell.2009.07.001. PubMed DOI

Eleutherio E., de Araujo Brasil A., França M.B., de Almeida D.S.G., Rona G.B., Magalhães R.S.S. Oxidative Stress and Aging: Learning from Yeast Lessons. Fungal Biol. 2018;122:514–525. doi: 10.1016/j.funbio.2017.12.003. PubMed DOI

Dawes I.W., Perrone G.G. Stress and Ageing in Yeast. FEMS Yeast Res. 2020;20:85. doi: 10.1093/femsyr/foz085. PubMed DOI

Kourtis N., Tavernarakis N. Cellular Stress Response Pathways and Ageing: Intricate Molecular Relationships. EMBO J. 2011;30:2520–2531. doi: 10.1038/emboj.2011.162. PubMed DOI PMC

de Magalhães J.P., Passos J.F. Stress, Cell Senescence and Organismal Ageing. Mech. Ageing Dev. 2018;170:2–9. doi: 10.1016/j.mad.2017.07.001. PubMed DOI

Váchová L., Čáp M., Palková Z. Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity. Oxid. Med. Cell. Longev. 2012;2012:601836. doi: 10.1155/2012/601836. PubMed DOI PMC

Váchová L., Palková Z. How Structured Yeast Multicellular Communities Live, Age and Die? FEMS Yeast Res. 2018;18:foy033. doi: 10.1093/femsyr/foy033. PubMed DOI

Mukherjee P.K., Zhou G., Munyon R., Ghannoum M.A. Candida Biofilm: A Well-Designed Protected Environment. Med. Mycol. 2005;43:191–208. doi: 10.1080/13693780500107554. PubMed DOI

Waldron C., Lacroute F. Effect of Growth Rate on the Amounts of Ribosomal and Transfer Ribonucleic Acids in Yeast. J. Bacteriol. 1975;122:855–865. doi: 10.1128/jb.122.3.855-865.1975. PubMed DOI PMC

Liu Y., Yang Q., Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu. Rev. Biochem. 2021;90:375–401. doi: 10.1146/annurev-biochem-071320-112701. PubMed DOI PMC

Liu Y. A Code within the Genetic Code: Codon Usage Regulates Co-Translational Protein Folding. Cell Commun. Signal. 2020;18:145. doi: 10.1186/s12964-020-00642-6. PubMed DOI PMC

Hanson G., Coller J. Codon Optimality, Bias and Usage in Translation and mRNA Decay. Nat. Rev. Mol. Cell Biol. 2018;19:20–30. doi: 10.1038/nrm.2017.91. PubMed DOI PMC

Arias L., Martínez F., González D., Flores-Ríos R., Katz A., Tello M., Moreira S., Orellana O. Modification of Transfer RNA Levels Affects Cyclin Aggregation and the Correct Duplication of Yeast Cells. Front. Microbiol. 2021;11:607693. doi: 10.3389/fmicb.2020.607693. PubMed DOI PMC

Hia F., Takeuchi O. The Effects of Codon Bias and Optimality on mRNA and Protein Regulation. Cell. Mol. Life Sci. 2021;78:1909–1928. doi: 10.1007/s00018-020-03685-7. PubMed DOI PMC

Iben J.R., Maraia R.J. tRNAomics: tRNA Gene Copy Number Variation and Codon Use Provide Bioinformatic Evidence of a New Anticodon:Codon Wobble Pair in a Eukaryote. RNA. 2012;18:1358–1372. doi: 10.1261/rna.032151.111. PubMed DOI PMC

Jackman J.E., Alfonzo J.D. Transfer RNA Modifications: Nature’s Combinatorial Chemistry Playground. WIREs RNA. 2013;4:35–48. doi: 10.1002/wrna.1144. PubMed DOI PMC

Nedialkova D.D., Leidel S.A. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell. 2015;161:1606–1618. doi: 10.1016/j.cell.2015.05.022. PubMed DOI PMC

Raabe C.A., Tang T.H., Brosius J., Rozhdestvensky T.S. Biases in Small RNA Deep Sequencing Data. Nucleic Acids Res. 2014;42:1414–1426. doi: 10.1093/nar/gkt1021. PubMed DOI PMC

Nagai A., Mori K., Shiomi Y., Yoshihisa T. OTTER, a New Method for Quantifying Absolute Amounts of tRNAs. RNA. 2021;27:628–640. doi: 10.1261/rna.076489.120. PubMed DOI PMC

Walsh I.M., Bowman M.A., Soto Santarriaga I.F., Rodriguez A., Clark P.L. Synonymous Codon Substitutions Perturb Cotranslational Protein Folding In Vivo and Impair Cell Fitness. Proc. Natl. Acad. Sci. USA. 2020;117:3528–3534. doi: 10.1073/pnas.1907126117. PubMed DOI PMC

Rapino F., Zhou Z., Roncero Sanchez A.M., Joiret M., Seca C., El Hachem N., Valenti G., Latini S., Shostak K., Geris L., et al. Wobble tRNA Modification and Hydrophilic Amino Acid Patterns Dictate Protein Fate. Nat. Commun. 2021;12:2170. doi: 10.1038/s41467-021-22254-5. PubMed DOI PMC

Presnyak V., Alhusaini N., Chen Y.-H., Martin S., Morris N., Kline N., Olson S., Weinberg D., Baker K.E., Graveley B.R., et al. Codon Optimality Is a Major Determinant of mRNA Stability. Cell. 2015;160:1111–1124. doi: 10.1016/j.cell.2015.02.029. PubMed DOI PMC

Hanson G., Alhusaini N., Morris N., Sweet T., Coller J. Translation Elongation and mRNA Stability Are Coupled through the Ribosomal A-Site. RNA. 2018;24:1377–1389. doi: 10.1261/rna.066787.118. PubMed DOI PMC

Harigaya Y., Parker R. Analysis of the Association between Codon Optimality and mRNA Stability in Schizosaccharomyces pombe. BMC Genom. 2016;17:1–16. doi: 10.1186/s12864-016-3237-6. PubMed DOI PMC

Cheng J., Maier K.C., Avsec Ž., Petra R.U.S., Gagneur J. Cis-Regulatory Elements Explain Most of the mRNA Stability Variation across Genes in Yeast. RNA. 2017;23:1648–1659. doi: 10.1261/rna.062224.117. PubMed DOI PMC

Wu Q., Medina S.G., Kushawah G., Devore M.L., Castellano L.A., Hand J.M., Wright M., Bazzini A.A. Translation Affects mRNA Stability in a Codon-Dependent Manner in Human Cells. eLife. 2019;8:e45396. doi: 10.7554/eLife.45396. PubMed DOI PMC

Bae H., Coller J. Codon Optimality-Mediated mRNA Degradation: Linking Translational Elongation to mRNA Stability. Mol. Cell. 2022;82:1467–1476. doi: 10.1016/j.molcel.2022.03.032. PubMed DOI PMC

Rahaman S., Faravelli S., Voegeli S., Becskei A. Polysome Propensity and Tunable Thresholds in Coding Sequence Length Enable Differential mRNA Stability. Sci. Adv. 2023;9:eadh9545. doi: 10.1126/sciadv.adh9545. PubMed DOI PMC

Heyer E.E., Moore M.J. Redefining the Translational Status of 80S Monosomes. Cell. 2016;164:757–769. doi: 10.1016/j.cell.2016.01.003. PubMed DOI

Maier T., Güell M., Serrano L. Correlation of mRNA and Protein in Complex Biological Samples. FEBS Lett. 2009;583:3966–3973. doi: 10.1016/j.febslet.2009.10.036. PubMed DOI

Vogel C., Marcotte E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC

Payne S.H. The Utility of Protein and mRNA Correlation. Trends Biochem. Sci. 2015;40:1–3. doi: 10.1016/j.tibs.2014.10.010. PubMed DOI PMC

Chan P.P., Lin B.Y., Mak A.J., Lowe T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021;49:9077–9096. doi: 10.1093/nar/gkab688. PubMed DOI PMC

Moir R.D., Willis I.M. Regulation of Pol III Transcription by Nutrient and Stress Signaling Pathways. Biochim. Biophys. Acta Gene Regul. Mech. 2013;1829:361–375. doi: 10.1016/j.bbagrm.2012.11.001. PubMed DOI PMC

Whitney M.L., Hurto R.L., Shaheen H.H., Hopper A.K. Rapid and Reversible Nuclear Accumulation of CytoplasmictRNA in Response to Nutrient Availability. Mol. Biol. Cell. 2007;18:2678–2686. doi: 10.1091/mbc.e07-01-0006. PubMed DOI PMC

Bloom-Ackermann Z., Navon S., Gingold H., Towers R., Pilpel Y., Dahan O. A Comprehensive tRNA Deletion Library Unravels the Genetic Architecture of the tRNA Pool. PLoS Genet. 2014;10:e1004084. doi: 10.1371/journal.pgen.1004084. PubMed DOI PMC

Cieśla M., Towpik J., Graczyk D., Oficjalska-Pham D., Harismendy O., Suleau A., Balicki K., Conesa C., Lefebvre O., Boguta M. Maf1 Is Involved in Coupling Carbon Metabolism to RNA Polymerase III Transcription. Mol. Cell. Biol. 2007;27:7693–7702. doi: 10.1128/MCB.01051-07. PubMed DOI PMC

Shukla A., Bhalla P., Potdar P.K., Jampala P., Bhargava P. Transcription-Dependent Enrichment of the Yeast FACT Complex Influences Nucleosome Dynamics on the RNA Polymerase III-Transcribed Genes. RNA. 2021;27:273–290. doi: 10.1261/rna.077974.120. PubMed DOI PMC

Gerber A., Ito K., Chu C.S., Roeder R.G. Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol. Cell. 2020;78:765–778. doi: 10.1016/j.molcel.2020.03.023. PubMed DOI PMC

Yague-Sanz C., Migeot V., Larochelle M., Bachand F., Wéry M., Morillon A., Hermand D. Chromatin Remodeling by Pol II Primes Efficient Pol III Transcription. Nat. Commun. 2023;14:3587. doi: 10.1038/s41467-023-39387-4. PubMed DOI PMC

Yang J., Smith D.K., Ni H., Wu K., Huang D., Pan S., Sathe A.A., Tang Y., Liu M.-L., Xing C., et al. SOX4-Mediated Repression of Specific tRNAs Inhibits Proliferation of Human Glioblastoma Cells. Proc. Natl. Acad. Sci. USA. 2020;117:5782–5790. doi: 10.1073/pnas.1920200117. PubMed DOI PMC

van Breugel M.E., van Kruijsbergen I., Mittal C., Lieftink C., Brouwer I., van den Brand T., Kluin R.J.C., Hoekman L., Menezes R.X., van Welsem T., et al. Locus-Specific Proteome Decoding Reveals Fpt1 as a Chromatin-Associated Negative Regulator of RNA Polymerase III Assembly. Mol. Cell. 2023;83:4205–4221.e9. doi: 10.1016/j.molcel.2023.10.037. PubMed DOI PMC

Pang Y.L.J., Abo R., Levine S.S., Dedon P.C. Diverse Cell Stresses Induce Unique Patterns of tRNA Up- and down-Regulation: tRNA-Seq for Quantifying Changes in tRNA Copy Number. Nucleic Acids Res. 2014;42:e170. doi: 10.1093/nar/gku945. PubMed DOI PMC

Torrent M., Chalancon G., de Groot N.S., Wuster A., Madan Babu M. Cells Alter Their tRNA Abundance to Selectively Regulate Protein Synthesis during Stress Conditions. Sci. Signal. 2018;11:eaat6409. doi: 10.1126/scisignal.aat6409. PubMed DOI PMC

Fisher D.L., Nurse P. A Single Fission Yeast Mitotic Cyclin B P34cdc2 Kinase Promotes Both S-Phase and Mitosis in the Absence of G1 Cyclins. EMBO J. 1996;15:850–860. doi: 10.1002/j.1460-2075.1996.tb00420.x. PubMed DOI PMC

Thompson D.M., Parker R. The RNase Rny1p Cleaves tRNAs and Promotes Cell Death during Oxidative Stress in Saccharomyces cerevisiae. J. Cell Biol. 2009;185:43–50. doi: 10.1083/jcb.200811119. PubMed DOI PMC

Luhtala N., Parker R. Structure-Function Analysis of Rny1 in tRNA Cleavage and Growth Inhibition. PLoS ONE. 2012;7:e41111. doi: 10.1371/journal.pone.0041111. PubMed DOI PMC

Pelechano V., Wei W., Steinmetz L.M. Widespread Co-Translational RNA Decay Reveals Ribosome Dynamics. Cell. 2015;161:1400–1412. doi: 10.1016/j.cell.2015.05.008. PubMed DOI PMC

Thompson D.M., Lu C., Green P.J., Parker R. tRNA Cleavage Is a Conserved Response to Oxidative Stress in Eukaryotes. RNA. 2008;14:2095–2103. doi: 10.1261/rna.1232808. PubMed DOI PMC

Tyczewska A., Grzywacz K. tRNA-Derived Fragments as New Players in Regulatory Processes in Yeast. Yeast. 2023;40:283–289. doi: 10.1002/yea.3829. PubMed DOI

Alves C.S., Nogueira F.T.S. Plant Small RNA World Growing Bigger: tRNA-Derived Fragments, Longstanding Players in Regulatory Processes. Front. Mol. Biosci. 2021;8:638911. doi: 10.3389/fmolb.2021.638911. PubMed DOI PMC

Xie Y., Yao L., Yu X., Ruan Y., Li Z., Guo J. Action Mechanisms and Research Methods of tRNA-Derived Small RNAs. Signal Transduct. Target. Ther. 2020;5:109. doi: 10.1038/s41392-020-00217-4. PubMed DOI PMC

Bąkowska-Żywicka K., Mleczko A.M., Kasprzyk M., Machtel P., Żywicki M., Twardowski T. The Widespread Occurrence of tRNA-Derived Fragments in Saccharomyces cerevisiae. FEBS Open Bio. 2016;6:1186–1200. doi: 10.1002/2211-5463.12127. PubMed DOI PMC

Zywicki M., Bakowska-Zywicka K., Polacek N. Revealing Stable Processing Products from Ribosome-Associated Small RNAs by Deep-Sequencing Data Analysis. Nucleic Acids Res. 2012;40:4013–4024. doi: 10.1093/nar/gks020. PubMed DOI PMC

Mleczko A.M., Celichowski P., Bąkowska-Żywicka K. Transfer RNA-Derived Fragments Target and Regulate Ribosome-Associated Aminoacyl-Transfer RNA Synthetases. Biochim. Biophys. Acta Gene Regul. Mech. 2018;1861:647–656. doi: 10.1016/j.bbagrm.2018.06.001. PubMed DOI

Bakowska-Zywicka K., Kasprzyk M., Twardowski T. tRNA-Derived Short RNAs Bind to Saccharomyces cerevisiae Ribosomes in a Stress-Dependent Manner and Inhibit Protein Synthesis In Vitro. FEMS Yeast Res. 2016;16:fow077. doi: 10.1093/femsyr/fow077. PubMed DOI PMC

Streit R.S.A., Ferrareze P.A.G., Vainstein M.H., Staats C.C. Analysis of tRNA-Derived RNA Fragments (TRFs) in Cryptococcus spp.: RNAi-Independent Generation and Possible Compensatory Effects in a RNAi-Deficient Genotype. Fungal Biol. 2021;125:389–399. doi: 10.1016/j.funbio.2020.12.003. PubMed DOI

Kumar P., Anaya J., Mudunuri S.B., Dutta A. Meta-Analysis of tRNA Derived RNA Fragments Reveals That They Are Evolutionarily Conserved and Associate with AGO Proteins to Recognize Specific RNA Targets. BMC Biol. 2014;12:78. doi: 10.1186/s12915-014-0078-0. PubMed DOI PMC

Hu Y., Wu L., Zhang P., Wang Z., Shang J., Huang Y. Global View of Dynamic Expression and Precise Mapping of Mitochondrial tRNAs-Derived Fragments during Stressed Conditions in S. pombe. Mitochondrion. 2021;60:219–227. doi: 10.1016/j.mito.2021.08.012. PubMed DOI

Natarajan K., Meyer M.R., Jackson B.M., Slade D., Roberts C., Hinnebusch A.G., Marton M.J. Transcriptional Profiling Shows That Gcn4p Is a Master Regulator of Gene Expression during Amino Acid Starvation in Yeast. Mol. Cell. Biol. 2001;21:4347. doi: 10.1128/MCB.21.13.4347-4368.2001. PubMed DOI PMC

Hinnebusch A.G. Translational Regulation of GCN4 and the General Amino Acid Control of Yeast. Annu. Rev. Microbiol. 2005;59:407–450. doi: 10.1146/annurev.micro.59.031805.133833. PubMed DOI

Kamada Y. Novel tRNA Function in Amino Acid Sensing of Yeast TOR Complex1. Genes Cells. 2017;22:135–147. doi: 10.1111/gtc.12462. PubMed DOI

Otsubo Y., Matsuo T., Nishimura A., Yamamoto M., Yamashita A. tRNA Production Links Nutrient Conditions to the Onset of Sexual Differentiation through the TORC 1 Pathway. EMBO Rep. 2018;19:e44867. doi: 10.15252/embr.201744867. PubMed DOI PMC

Hueso G., Aparicio-Sanchis R., Montesinos C., Lorenz S., Murguía J.R., Serrano R. A Novel Role for Protein Kinase Gcn2 in Yeast Tolerance to Intracellular Acid Stress. Biochem. J. 2012;441:255–264. doi: 10.1042/BJ20111264. PubMed DOI

Chen S.-J., Wu Y.-H., Huang H.-Y., Wang C.-C. Saccharomyces cerevisiae Possesses a Stress-Inducible Glycyl-tRNA Synthetase Gene. PLoS ONE. 2012;7:e33363. doi: 10.1371/journal.pone.0033363. PubMed DOI PMC

Simos G., Sauer A., Fasiolo F., Hurt E.C. A Conserved Domain within Arc1p Delivers tRNA to Aminoacyl-tRNA Synthetases. Mol. Cell. 1998;1:235–242. doi: 10.1016/S1097-2765(00)80024-6. PubMed DOI

Godinic V., Mocibob M., Rocak S., Ibba M., Weygand-Durasevic I. Peroxin Pex21p Interacts with the C-Terminal Noncatalytic Domain of Yeast Seryl-tRNA Synthetase and Forms a Specific Ternary Complex with tRNA Ser. FEBS J. 2007;274:2788–2799. doi: 10.1111/j.1742-4658.2007.05812.x. PubMed DOI

Chang C.-Y., Chang C.-P., Chakraborty S., Wang S.-W., Tseng Y.-K., Wang C.-C. Modulating the Structure and Function of an Aminoacyl-tRNA Synthetase Cofactor by Biotinylation. J. Biol. Chem. 2016;291:17102–17111. doi: 10.1074/jbc.M116.734343. PubMed DOI PMC

Frechin M., Enkler L., Tetaud E., Laporte D., Senger B., Blancard C., Hammann P., Bader G., Clauder-Münster S., Steinmetz L.M., et al. Expression of Nuclear and Mitochondrial Genes Encoding ATP Synthase Is Synchronized by Disassembly of a Multisynthetase Complex. Mol. Cell. 2014;56:763–776. doi: 10.1016/j.molcel.2014.10.015. PubMed DOI

Lorenz C., Lünse C.E., Mörl M. tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules. 2017;7:35. doi: 10.3390/biom7020035. PubMed DOI PMC

Gustilo E.M., Vendeix F.A., Agris P.F. tRNA’s Modifications Bring Order to Gene Expression. Curr. Opin. Microbiol. 2008;11:134–140. doi: 10.1016/j.mib.2008.02.003. PubMed DOI PMC

Tavares J.F., Davis N.K., Poim A., Reis A., Kellner S., Sousa I., Soares A.R., Moura G.M.R., Dedon P.C., Santos M. tRNA-Modifying Enzyme Mutations Induce Codon-Specific Mistranslation and Protein Aggregation in Yeast. RNA Biol. 2021;18:563–575. doi: 10.1080/15476286.2020.1819671. PubMed DOI PMC

Gieg R., Eriani G. The tRNA Identity Landscape for Aminoacylation and Beyond. Nucleic Acids Res. 2023;51:1528–1570. doi: 10.1093/nar/gkad007. PubMed DOI PMC

Kimura S., Waldor M.K. The RNA Degradosome Promotes tRNA Quality Control through Clearance of Hypomodified tRNA. Proc. Natl. Acad. Sci. USA. 2019;116:1394–1403. doi: 10.1073/pnas.1814130116. PubMed DOI PMC

Alexandrov A., Chernyakov I., Gu W., Hiley S.L., Hughes T.R., Grayhack E.J., Phizicky E.M. Rapid tRNA Decay Can Result from Lack of Nonessential Modifications. Mol. Cell. 2006;21:87–96. doi: 10.1016/j.molcel.2005.10.036. PubMed DOI

Chan C.T.Y., Dyavaiah M., DeMott M.S., Taghizadeh K., Dedon P.C., Begley T.J. A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress. PLoS Genet. 2010;6:e1001247. doi: 10.1371/journal.pgen.1001247. PubMed DOI PMC

Yoluç Y., van de Logt E., Kellner-Kaiser S. The Stress-Dependent Dynamics of Saccharomyces cerevisiae tRNA and rRNA Modification Profiles. Genes. 2021;12:1344. doi: 10.3390/genes12091344. PubMed DOI PMC

Chan C.T.Y., Deng W., Li F., Demott M.S., Babu I.R., Begley T.J., Dedon P.C. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chem. Res. Toxicol. 2015;28:978–988. doi: 10.1021/acs.chemrestox.5b00004. PubMed DOI PMC

Chan C.T.Y., Pang Y.L.J., Deng W., Babu I.R., Dyavaiah M., Begley T.J., Dedon P.C. Reprogramming of tRNA Modifications Controls the Oxidative Stress Response by Codon-Biased Translation of Proteins. Nat. Commun. 2012;3:937. doi: 10.1038/ncomms1938. PubMed DOI PMC

Nakai Y., Nakai M., Yano T. Sulfur Modifications of the Wobble U34 in tRNAs and Their Intracellular Localization in Eukaryotic Cells. Biomolecules. 2017;7:17. doi: 10.3390/biom7010017. PubMed DOI PMC

Damon J.R., Pincus D., Ploegh H.L. tRNA Thiolation Links Translation to Stress Responses in Saccharomyces cerevisiae. Mol. Biol. Cell. 2015;26:270–282. doi: 10.1091/mbc.E14-06-1145. PubMed DOI PMC

Laxman S., Sutter B.M., Wu X., Kumar S., Guo X., Trudgian D.C., Mirzaei H., Tu B.P. Sulfur Amino Acids Regulate Translational Capacity and Metabolic Homeostasis through Modulation of tRNA Thiolation. Cell. 2013;154:416–429. doi: 10.1016/j.cell.2013.06.043. PubMed DOI PMC

Kaduhr L., Brachmann C., Ravichandran K.E., West J.D., Glatt S., Schaffrath R. Urm1, Not Quite a Ubiquitin-like Modifier? Microb. Cell. 2021;8:256–261. doi: 10.15698/mic2021.11.763. PubMed DOI PMC

Goehring A.S., Rivers D.M., Sprague G.F. Attachment of the Ubiquitin-Related Protein Urm1p to the Antioxidant Protein Ahp1p. Eukaryot. Cell. 2003;2:930–936. doi: 10.1128/EC.2.5.930-936.2003. PubMed DOI PMC

Joshi K., Bhatt M.J., Farabaugh P.J. Codon-Specific Effects of tRNA Anticodon Loop Modifications on Translational Misreading Errors in the Yeast Saccharomyces cerevisiae. Nucleic Acids Res. 2018;46:10331–10339. doi: 10.1093/nar/gky664. PubMed DOI PMC

Eaglestone S.S., Cox B.S., Tuite M.F. Translation Termination Efficiency Can Be Regulated in Saccharomyces cerevisiae by Environmental Stress through a Prion-Mediated Mechanism. EMBO J. 1999;18:1974–1981. doi: 10.1093/emboj/18.7.1974. PubMed DOI PMC

True H.L., Lindquist S.L. A Yeast Prion Provides a Mechanism for Genetic Variation and Phenotypic Diversity. Nature. 2000;407:477–483. doi: 10.1038/35035005. PubMed DOI

Wang X., Jia H., Jankowsky E., Anderson J.T. Degradation of Hypomodified tRNAiMet In Vivo Involves RNA-Dependent ATPase Activity of the DExH Helicase Mtr4p. RNA. 2008;14:107–116. doi: 10.1261/rna.808608. PubMed DOI PMC

Vanácová S., Wolf J., Martin G., Blank D., Dettwiler S., Friedlein A., Langen H., Keith G., Keller W. A New Yeast Poly(A) Polymerase Complex Involved in RNA Quality Control. PLoS Biol. 2005;3:e189. doi: 10.1371/journal.pbio.0030189. PubMed DOI PMC

Chernyakov I., Whipple J.M., Kotelawala L., Grayhack E.J., Phizicky E.M. Degradation of Several Hypomodified Mature tRNA Species in Saccharomyces cerevisiae Is Mediated by Met22 and the 5′–3′ Exonucleases Rat1 and Xrn1. Genes Dev. 2008;22:1369–1380. doi: 10.1101/gad.1654308. PubMed DOI PMC

Tasak M., Phizicky E.M. Initiator tRNA Lacking 1-Methyladenosine Is Targeted by the Rapid tRNA Decay Pathway in Evolutionarily Distant Yeast Species. PLOS Genet. 2022;18:e1010215. doi: 10.1371/journal.pgen.1010215. PubMed DOI PMC

Kramer E.B., Hopper A.K. Retrograde Transfer RNA Nuclear Import Provides a New Level of tRNA Quality Control in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 2013;110:21042–21047. doi: 10.1073/pnas.1316579110. PubMed DOI PMC

Liu F., Clark W., Luo G., Wang X., Fu Y., Wei J., Wang X., Hao Z., Dai Q., Zheng G., et al. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell. 2016;167:816–828.e16. doi: 10.1016/j.cell.2016.09.038. PubMed DOI PMC

You X.-J., Zhang S., Chen J.-J., Tang F., He J., Wang J., Qi C.-B., Feng Y.-Q., Yuan B.-F. Formation and Removal of 1, N 6-Dimethyladenosine in Mammalian Transfer RNA. Nucleic Acids Res. 2022;50:9858–9872. doi: 10.1093/nar/gkac770. PubMed DOI PMC

Nawrot B., Sochacka E., Düchler M. tRNA Structural and Functional Changes Induced by Oxidative Stress. Cell. Mol. Life Sci. 2011;68:4023–4032. doi: 10.1007/s00018-011-0773-8. PubMed DOI PMC

Statello L., Guo C.-J., Chen L.-L., Huarte M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021;22:96–118. doi: 10.1038/s41580-020-00315-9. PubMed DOI PMC

Brockdorff N., Ashworth A., Kay G.F., McCabe V.M., Norris D.P., Cooper P.J., Swift S., Rastan S. The Product of the Mouse Xist Gene Is a 15 Kb Inactive X-Specific Transcript Containing No Conserved ORF and Located in the Nucleus. Cell. 1992;71:515–526. doi: 10.1016/0092-8674(92)90519-I. PubMed DOI

David L., Huber W., Granovskaia M., Toedling J., Palm C.J., Bofkin L., Jones T., Davis R.W., Steinmetz L.M. A High-Resolution Map of Transcription in the Yeast Genome. Proc. Natl. Acad. Sci. USA. 2006;103:5320–5325. doi: 10.1073/pnas.0601091103. PubMed DOI PMC

Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science. 2008;320:1344–1349. doi: 10.1126/science.1158441. PubMed DOI PMC

Hovhannisyan H., Gabaldón T. The Long Non-Coding RNA Landscape of Candida Yeast Pathogens. Nat. Commun. 2021;12:7317. doi: 10.1038/s41467-021-27635-4. PubMed DOI PMC

Atkinson S.R., Marguerat S., Bitton D.A., Rodríguez-López M., Rallis C., Lemay J.F., Cotobal C., Malecki M., Smialowski P., Mata J., et al. Long Noncoding RNA Repertoire and Targeting by Nuclear Exosome, Cytoplasmic Exonuclease, and RNAi in Fission Yeast. RNA. 2018;24:1195–1213. doi: 10.1261/rna.065524.118. PubMed DOI PMC

Kalem M.C., Panepinto J.C. Long Non-Coding RNAs in Cryptococcus neoformans: Insights Into Fungal Pathogenesis. Front. Cell. Infect. Microbiol. 2022;12:261. doi: 10.3389/fcimb.2022.858317. PubMed DOI PMC

Jenjaroenpun P., Wongsurawat T., Pereira R., Patumcharoenpol P., Ussery D.W., Nielsen J., Nookaew I. Complete Genomic and Transcriptional Landscape Analysis Using Third-Generation Sequencing: A Case Study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Res. 2018;46:e38. doi: 10.1093/nar/gky014. PubMed DOI PMC

Xu Z., Wei W., Gagneur J., Clauder-Münster S., Smolik M., Huber W., Steinmetz L.M. Antisense Expression Increases Gene Expression Variability and Locus Interdependency. Mol. Syst. Biol. 2011;7:468. doi: 10.1038/msb.2011.1. PubMed DOI PMC

Xu Z., Wei W., Gagneur J., Perocchi F., Clauder-Münster S., Camblong J., Guffanti E., Stutz F., Huber W., Steinmetz L.M. Bidirectional Promoters Generate Pervasive Transcription in Yeast. Nature. 2009;457:1033–1037. doi: 10.1038/nature07728. PubMed DOI PMC

Quintales L., Sánchez M., Antequera F. Analysis of DNA Strand-Specific Differential Expression with High Density Tiling Microarrays. BMC Bioinform. 2010;11:136. doi: 10.1186/1471-2105-11-136. PubMed DOI PMC

Leong H.S., Dawson K., Wirth C., Li Y., Connolly Y., Smith D.L., Wilkinson C.R.M., Miller C.J. A Global Non-Coding RNA System Modulates Fission Yeast Protein Levels in Response to Stress. Nat. Commun. 2014;5:3947. doi: 10.1038/ncomms4947. PubMed DOI PMC

Wilkinson D., Váchová L., Hlaváček O., Maršíková J., Gilfillan G.D., Palková Z. Long Noncoding RNAs in Yeast Cells and Differentiated Subpopulations of Yeast Colonies and Biofilms. Oxid. Med. Cell. Longev. 2018;2018:4950591. doi: 10.1155/2018/4950591. PubMed DOI PMC

Parker S., Fraczek M.G., Wu J., Shamsah S., Manousaki A., Dungrattanalert K., de Almeida R.A., Invernizzi E., Burgis T., Omara W., et al. Large-Scale Profiling of Noncoding RNA Function in Yeast. PLoS Genet. 2018;14:e1007253. doi: 10.1371/journal.pgen.1007253. PubMed DOI PMC

Camblong J., Beyrouthy N., Guffanti E., Schlaepfer G., Steinmetz L.M., Stutz F. Trans-Acting Antisense RNAs Mediate Transcriptional Gene Cosuppression in S. cerevisiae. Genes Dev. 2009;23:1534–1545. doi: 10.1101/gad.522509. PubMed DOI PMC

Li J., Liu X., Yin Z., Hu Z., Zhang K.-Q. An Overview on Identification and Regulatory Mechanisms of Long Non-Coding RNAs in Fungi. Front. Microbiol. 2021;12:995. doi: 10.3389/fmicb.2021.638617. PubMed DOI PMC

Niederer R.O., Hass E.P., Zappulla D.C. Advances in Experimental Medicine and Biology. Volume 1008. Springer; New York, NY, USA: 2017. Long Noncoding RNAs in the Yeast S. cerevisiae; pp. 119–132. PubMed DOI

Smith J.E., Alvarez-Dominguez J.R., Kline N., Huynh N.J., Geisler S., Hu W., Coller J., Baker K.E. Translation of Small Open Reading Frames within Unannotated RNA Transcripts in Saccharomyces cerevisiae. Cell Rep. 2014;7:1858–1866. doi: 10.1016/j.celrep.2014.05.023. PubMed DOI PMC

Andjus S., Szachnowski U., Vogt N., Gioftsidi S., Hatin I., Cornu D., Papadopoulos C., Lopes A., Namy O., Wery M., et al. Pervasive Translation of Xrn1-Sensitive Unstable Long Non-Coding RNAs in Yeast. RNA. 2024:rna.079903.123. doi: 10.1261/rna.079903.123. PubMed DOI PMC

Erpf P.E., Fraser J.A. The Long History of the Diverse Roles of Short ORFs: sPEPs in Fungi. Proteomics. 2018;18:1700219. doi: 10.1002/pmic.201700219. PubMed DOI

Bouyx C., Schiavone M., François J.M. Flo11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens. 2021;10:1509. doi: 10.3390/pathogens10111509. PubMed DOI PMC

Váchová L., Štovíček V., Hlaváček O., Chernyavskiy O., Štěpánek L., Kubínová L., Palková Z. Flo11p, Drug Efflux Pumps, and the Extracellular Matrix Cooperate to Form Biofilm Yeast Colonies. J. Cell Biol. 2011;194:679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC

Voordeckers K., De Maeyer D., van der Zande E., Vinces M.D., Meert W., Cloots L., Ryan O., Marchal K., Verstrepen K.J. Identification of a Complex Genetic Network Underlying Saccharomyces cerevisiae Colony Morphology. Mol. Microbiol. 2012;86:225–239. doi: 10.1111/j.1365-2958.2012.08192.x. PubMed DOI PMC

Van Nguyen P., Plocek V., Váchová L., Palková Z. Glucose, Cyc8p and Tup1p Regulate Biofilm Formation and Dispersal in Wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6:7. doi: 10.1038/s41522-020-0118-1. PubMed DOI PMC

Correia-Melo C., Kamrad S., Tengölics R., Messner C.B., Trebulle P., Townsend S.J., Jayasree Varma S., Freiwald A., Heineike B.M., Campbell K., et al. Cell-Cell Metabolite Exchange Creates a pro-Survival Metabolic Environment That Extends Lifespan. Cell. 2023;186:63–79.e21. doi: 10.1016/j.cell.2022.12.007. PubMed DOI

Palková Z., Váchová L. Life within a Community: Benefit to Yeast Long-Term Survival. FEMS Microbiol. Rev. 2006;30:806–824. doi: 10.1111/j.1574-6976.2006.00034.x. PubMed DOI

Brückner S., Mösch H.U. Choosing the Right Lifestyle: Adhesion and Development in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2012;36:25–58. doi: 10.1111/j.1574-6976.2011.00275.x. PubMed DOI

Bumgarner S.L., Dowell R.D., Grisafi P., Gifford D.K., Fink G.R. Toggle Involving Cis-Interfering Noncoding RNAs Controls Variegated Gene Expression in Yeast. Proc. Natl. Acad. Sci. USA. 2009;106:18321–18326. doi: 10.1073/pnas.0909641106. PubMed DOI PMC

Chacko N., Zhao Y., Yang E., Wang L., Cai J.J., Lin X. The lncRNA RZE1 Controls Cryptococcal Morphological Transition. PLoS Genet. 2015;11:e1005692. doi: 10.1371/journal.pgen.1005692. PubMed DOI PMC

Tian X., Lin X. Matricellular Protein Cfl1 Regulates Cell Differentiation. Commun. Integr. Biol. 2013;6:e26444. doi: 10.4161/cib.26444. PubMed DOI PMC

Solé C., Nadal-Ribelles M., de Nadal E., Posas F. A Novel Role for lncRNAs in Cell Cycle Control during Stress Adaptation. Curr. Genet. 2015;61:299–308. doi: 10.1007/s00294-014-0453-y. PubMed DOI PMC

Nadal-Ribelles M., Solé C., Xu Z., Steinmetz L.M., de Nadal E., Posas F. Control of Cdc28 CDK1 by a Stress-Induced lncRNA. Mol. Cell. 2014;53:549–561. doi: 10.1016/j.molcel.2014.01.006. PubMed DOI PMC

Neil H., Malabat C., D’Aubenton-Carafa Y., Xu Z., Steinmetz L.M., Jacquier A. Widespread Bidirectional Promoters Are the Major Source of Cryptic Transcripts in Yeast. Nature. 2009;457:1038–1042. doi: 10.1038/nature07747. PubMed DOI

Balarezo-Cisneros L.N., Parker S., Fraczek M.G., Timouma S., Wang P., O’Keefe R.T., Millar C.B., Delneri D. Functional and Transcriptional Profiling of Non-Coding RNAs in Yeast Reveal Context-Dependent Phenotypes and in Trans Effects on the Protein Regulatory Network. PLoS Genet. 2021;17:e1008761. doi: 10.1371/journal.pgen.1008761. PubMed DOI PMC

Hirota K., Miyoshi T., Kugou K., Hoffman C.S., Shibata T., Ohta K. Stepwise Chromatin Remodelling by a Cascade of Transcription Initiation of Non-Coding RNAs. Nature. 2008;456:130–134. doi: 10.1038/nature07348. PubMed DOI

Oda A., Takemata N., Hirata Y., Miyoshi T., Suzuki Y., Sugano S., Ohta K. Dynamic Transition of Transcription and Chromatin Landscape during Fission Yeast Adaptation to Glucose Starvation. Genes Cells. 2015;20:392–407. doi: 10.1111/gtc.12229. PubMed DOI

Rodriguez-Lopez M., Anver S., Cotobal C., Kamrad S., Malecki M., Correia-Melo C., Hoti M., Townsend S., Marguerat S., Pong S.K., et al. Functional Profiling of Long Intergenic Non-Coding RNAs in Fission Yeast. eLife. 2022;11:e76000. doi: 10.7554/eLife.76000. PubMed DOI PMC

He C., Zhou C., Kennedy B.K. The Yeast Replicative Aging Model. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:2690–2696. doi: 10.1016/j.bbadis.2018.02.023. PubMed DOI

Kobayashi T., Ganley A.R.D. Recombination Regulation by Transcription-Induced Cohesin Dissociation in rDNA Repeats. Science. 2005;309:1581–1584. doi: 10.1126/science.1116102. PubMed DOI

Yokoyama M., Sasaki M., Kobayashi T. Spt4 Promotes Cellular Senescence by Activating Non-Coding RNA Transcription in Ribosomal RNA Gene Clusters. Cell Rep. 2023;42:111944. doi: 10.1016/j.celrep.2022.111944. PubMed DOI

Traven A., Jänicke A., Harrison P., Swaminathan A., Seemann T., Beilharz T.H. Transcriptional Profiling of a Yeast Colony Provides New Insight into the Heterogeneity of Multicellular Fungal Communities. PLoS ONE. 2012;7:e46243. doi: 10.1371/journal.pone.0046243. PubMed DOI PMC

Čáp M., Štěpánek L., Harant K., Váchová L., Palková Z. Cell Differentiation within a Yeast Colony: Metabolic and Regulatory Parallels with a Tumor-Affected Organism. Mol. Cell. 2012;46:436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI

Čáp M., Váchová L., Palková Z. Reactive Oxygen Species in the Signaling and Adaptation of Multicellular Microbial Communities. Oxid. Med. Cell. Longev. 2012;2012:976753. doi: 10.1155/2012/976753. PubMed DOI PMC

Wilkinson D., Maršíková J., Hlaváček O., Gilfillan G.D., Ježková E., Aaløkken R., Váchová L., Palková Z. Transcriptome Remodeling of Differentiated Cells during Chronological Ageing of Yeast Colonies: New Insights into Metabolic Differentiation. Oxid. Med. Cell. Longev. 2018;2018:4932905. doi: 10.1155/2018/4932905. PubMed DOI PMC

Gao J., Chow E.W.L., Wang H., Xu X., Cai C., Song Y., Wang J., Wang Y. lncRNA DINOR Is a Virulence Factor and Global Regulator of Stress Responses in Candida auris. Nat. Microbiol. 2021;6:842–851. doi: 10.1038/s41564-021-00915-x. PubMed DOI

Willi J., Küpfer P., Eviquoz D., Fernandez G., Katz A., Leumann C., Polacek N. Oxidative Stress Damages rRNA inside the Ribosome and Differentially Affects the Catalytic Center. Nucleic Acids Res. 2018;46:1945–1957. doi: 10.1093/nar/gkx1308. PubMed DOI PMC

Mirzaei H., Regnier F. Protein−RNA Cross-Linking in the Ribosomes of Yeast under Oxidative Stress. J. Proteome Res. 2006;5:3249–3259. doi: 10.1021/pr060337l. PubMed DOI

Shedlovskiy D., Zinskie J.A., Gardner E., Pestov D.G., Shcherbik N. Endonucleolytic Cleavage in the Expansion Segment 7 of 25S rRNA Is an Early Marker of Low-Level Oxidative Stress in Yeast. J. Biol. Chem. 2017;292:18469–18485. doi: 10.1074/jbc.M117.800003. PubMed DOI PMC

Shankar V., Rauscher R., Reuther J., Gharib W.H., Koch M., Polacek N. rRNA Expansion Segment 27Lb Modulates the Factor Recruitment Capacity of the Yeast Ribosome and Shapes the Proteome. Nucleic Acids Res. 2020;48:3244–3256. doi: 10.1093/nar/gkaa003. PubMed DOI PMC

Knorr A.G., Schmidt C., Tesina P., Berninghausen O., Becker T., Beatrix B., Beckmann R. Ribosome–NatA Architecture Reveals That rRNA Expansion Segments Coordinate N-Terminal Acetylation. Nat. Struct. Mol. Biol. 2019;26:35–39. doi: 10.1038/s41594-018-0165-y. PubMed DOI

Fujii K., Susanto T.T., Saurabh S., Barna M. Decoding the Function of Expansion Segments in Ribosomes. Mol. Cell. 2018;72:1013–1020.e6. doi: 10.1016/j.molcel.2018.11.023. PubMed DOI PMC

Zinskie J.A., Ghosh A., Trainor B.M., Shedlovskiy D., Pestov D.G., Shcherbik N. Iron-Dependent Cleavage of Ribosomal RNA during Oxidative Stress in the Yeast Saccharomyces cerevisiae. J. Biol. Chem. 2018;293:14237–14248. doi: 10.1074/jbc.RA118.004174. PubMed DOI PMC

Zhang Y., Smith A.D., Renfrow M.B., Schneider D.A. The RNA Polymerase-Associated Factor 1 Complex (Paf1C) Directly Increases the Elongation Rate of RNA Polymerase I and Is Required for Efficient Regulation of rRNA Synthesis. J. Biol. Chem. 2010;285:14152–14159. doi: 10.1074/jbc.M110.115220. PubMed DOI PMC

Koper M., Mroczek S. Analysis of rRNA Synthesis Using Quantitative Transcription Run-on (qTRO) in Yeast. Biotechniques. 2018;65:163–168. doi: 10.2144/btn-2018-0073. PubMed DOI

Mroczek S., Kufel J. Apoptotic Signals Induce Specific Degradation of Ribosomal RNA in Yeast. Nucleic Acids Res. 2008;36:2874–2888. doi: 10.1093/nar/gkm1100. PubMed DOI PMC

Najmi S.M., Schneider D.A. Quorum Sensing Regulates rRNA Synthesis in Saccharomyces cerevisiae. Gene. 2021;776:145442. doi: 10.1016/j.gene.2021.145442. PubMed DOI PMC

Fleischmann J., Rocha M.A. Nutrient Depletion and TOR Inhibition Induce 18S and 25S Ribosomal RNAs Resistant to a 5′-Phosphate-Dependent Exonuclease in Candida albicans and Other Yeasts. BMC Mol. Biol. 2018;19:1. doi: 10.1186/s12867-018-0102-y. PubMed DOI PMC

Rocha M.A., Gowda B.S., Fleischmann J. RNAP II Produces Capped 18S and 25S Ribosomal RNAs Resistant to 5′-Monophosphate Dependent Processive 5′ to 3′ Exonuclease in Polymerase Switched Saccharomyces cerevisiae. BMC Mol. Cell Biol. 2022;23:17. doi: 10.1186/s12860-022-00417-6. PubMed DOI PMC

Bailey A.D., Talkish J., Ding H., Igel H., Duran A., Mantripragada S., Paten B., Ares M. Concerted Modification of Nucleotides at Functional Centers of the Ribosome Revealed by Single-Molecule RNA Modification Profiling. eLife. 2022;11:e76562. doi: 10.7554/eLife.76562. PubMed DOI PMC

Liu K., Santos D.A., Hussmann J.A., Wang Y., Sutter B.M., Weissman J.S., Tu B.P. Regulation of Translation by Methylation Multiplicity of 18S rRNA. Cell Rep. 2021;34:108825. doi: 10.1016/j.celrep.2021.108825. PubMed DOI PMC

Morgan J.T., Fink G.R., Bartel D.P. Excised Linear Introns Regulate Growth in Yeast. Nature. 2019;565:606–611. doi: 10.1038/s41586-018-0828-1. PubMed DOI PMC

Parenteau J., Maignon L., Berthoumieux M., Catala M., Gagnon V., Abou Elela S. Introns Are Mediators of Cell Response to Starvation. Nature. 2019;565:612–617. doi: 10.1038/s41586-018-0859-7. PubMed DOI

Juneau K., Miranda M., Hillenmeyer M.E., Nislow C., Davis R.W. Introns Regulate RNA and Protein Abundance in Yeast. Genetics. 2006;174:511–518. doi: 10.1534/genetics.106.058560. PubMed DOI PMC

Wu G., Xiao M., Yang C., Yu Y.-T. U2 snRNA Is Inducibly Pseudouridylated at Novel Sites by Pus7p and snR81 RNP. EMBO J. 2011;30:79–89. doi: 10.1038/emboj.2010.316. PubMed DOI PMC

Wu G., Radwan M.K., Xiao M., Adachi H., Fan J., Yu Y.T. The TOR Signaling Pathway Regulates Starvation-Induced Pseudouridylation of Yeast U2 snRNA. RNA. 2016;22:1146–1152. doi: 10.1261/rna.056796.116. PubMed DOI PMC

Basak A., Query C.C. A Pseudouridine Residue in the Spliceosome Core Is Part of the Filamentous Growth Program in Yeast. Cell Rep. 2014;8:966–973. doi: 10.1016/j.celrep.2014.07.004. PubMed DOI PMC

Cha S., Hong C.P., Kang H.A., Hahn J.S. Differential Activation Mechanisms of Two Isoforms of Gcr1 Transcription Factor Generated from Spliced and Un-Spliced Transcripts in Saccharomyces cerevisiae. Nucleic Acids Res. 2021;49:745–759. doi: 10.1093/nar/gkaa1221. PubMed DOI PMC

Fang Y., Wang Z., Liu X., Tyler B.M. Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Front. Microbiol. 2022;13:817844. doi: 10.3389/fmicb.2022.817844. PubMed DOI PMC

Liebana-Jordan M., Brotons B., Falcon-Perez J.M., Gonzalez E. Extracellular Vesicles in the Fungi Kingdom. Int. J. Mol. Sci. 2021;22:7221. doi: 10.3390/ijms22137221. PubMed DOI PMC

Da Silva R.P., Puccia R., Rodrigues M.L., Oliveira D.L., Joffe L.S., César G.V., Nimrichter L., Goldenberg S., Alves L.R. Extracellular Vesicle-Mediated Export of Fungal RNA. Sci. Rep. 2015;5:7763. doi: 10.1038/srep07763. PubMed DOI PMC

Smolarz M., Zawrotniak M., Satala D., Rapala-Kozik M. Extracellular Nucleic Acids Present in the Candida albicans Biofilm Trigger the Release of Neutrophil Extracellular Traps. Front. Cell. Infect. Microbiol. 2021;11:466. doi: 10.3389/fcimb.2021.681030. PubMed DOI PMC

Bielska E., Sisquella M.A., Aldeieg M., Birch C., O’Donoghue E.J., May R.C. Pathogen-Derived Extracellular Vesicles Mediate Virulence in the Fatal Human Pathogen Cryptococcus gattii. Nat. Commun. 2018;9:1556. doi: 10.1038/s41467-018-03991-6. PubMed DOI PMC

Halder L.D., Babych S., Palme D.I., Mansouri-Ghahnavieh E., Ivanov L., Ashonibare V., Langenhorst D., Prusty B., Rambach G., Wich M., et al. Candida albicans Induces Cross-Kingdom miRNA Trafficking in Human Monocytes To Promote Fungal Growth. mBio. 2022;13:e03563-21. doi: 10.1128/mbio.03563-21. PubMed DOI PMC

Lynch S.M., McKenna M.M., Walsh C.P., McKenna D.J. miR-24 Regulates CDKN1B/P27 Expression in Prostate Cancer. Prostate. 2016;76:637–648. doi: 10.1002/pros.23156. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...