Optical saturation as a versatile tool to enhance resolution in confocal microscopy

. 2009 Nov 04 ; 97 (9) : 2623-9.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19883606
Odkazy

PubMed 19883606
PubMed Central PMC2770608
DOI 10.1016/j.bpj.2009.08.002
PII: S0006-3495(09)01317-4
Knihovny.cz E-zdroje

One of the most actively developing areas in fluorescence microscopy is the achievement of spatial resolution below Abbe's diffraction limit, which restricts the resolution to several hundreds of nanometers. Most of the approaches in use at this time require a complex optical setup, a difficult mathematical treatment, or usage of dyes with special photophysical properties. In this work, we present a new, to our knowledge, approach in confocal microscopy that enhances the resolution moderately but is both technically and computationally simple. As it is based on the saturation of the transition from the ground state to the first excited state, it is universally applicable with respect to the dye used. The idea of the method presented is based on a principle similar to that underlying saturation excitation microscopy, but instead of applying harmonically modulated excitation light, the fluorophores are excited by picosecond laser pulses at different intensities, resulting in different levels of saturation. We show that the method can be easily combined with the concept of triplet relaxation, which by tuning the dark periods between pulses helps to suppress the formation of a photolabile triplet state and effectively reduces photobleaching. We demonstrate our approach imaging GFP-labeled protein patches within the plasma membrane of yeast cells.

Zobrazit více v PubMed

Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780–782. PubMed

Donnert G., Keller J., Medda R., Andrei M.A., Rizzoli S.O. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Sci. USA. 2006;103:11440–11445. PubMed PMC

Dyba M., Keller J., Hell S.W. Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment. New J. Phys. 2005;7:134.

Wildanger D., Rittweger E., Kastrup L., Hell S.W. STED microscopy with a supercontinuum laser source. Opt. Express. 2008;16:9614–9621. PubMed

Rust M.J., Bates M., Zhuang X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–795. PubMed PMC

Huang B., Wang W.Q., Bates M., Zhuang X.W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–813. PubMed PMC

Bates M., Huang B., Dempsey G.T., Zhuang X.W. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science. 2007;317:1749–1753. PubMed PMC

van de Linde S., Kasper R., Heilemann M., Sauer M. Photoswitching microscopy with standard fluorophores. Appl. Phys. B. 2008;93:725–731.

Heilemann M., van de Linde S., Schuttpelz M., Kasper R., Seefeldt B. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 2008;47:6172–6176. PubMed

Gustafsson M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA. 2005;102:13081–13086. PubMed PMC

Heintzmann R., Jovin T.M., Cremer C. Saturated patterned excitation microscopy: a concept for optical resolution improvement. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2002;19:1599–1609. PubMed

Fujita K., Kobayashi M., Kawano S., Yamanaka M., Kawata S. High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 2007;99:228105. PubMed

Yamanaka M., Kawano S., Fujita K., Smith N.I., Kawata S. Beyond the diffraction-limit biological imaging by saturated excitation microscopy. J. Biomed. Opt. 2008;13:050507. PubMed

Donnert G., Eggeling C., Hell S.W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods. 2007;4:81–86. PubMed

Donnert G., Eggeling C., Hell S.W. Triplet-relaxation microscopy with bunched pulsed excitation. Photochem. Photobiol. Sci. 2009;8:481–485. PubMed

Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996;12:259–265. PubMed

Sheff M.A., Thorn K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast. 2004;21:661–670. PubMed

Gietz R.D., Schiestl R.H., Willems A.R., Woods R.A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355–360. PubMed

Palkova Z., Devaux F., Ricicova M., Minarikova L., Le Crom S. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol. Biol. Cell. 2002;13:3901–3914. PubMed PMC

Vogelsang J., Kasper R., Steinhauer C., Person B., Heilemann M. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. Int. Ed. 2008;47:5465–5469. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...