Mapping the Binding Site of a Cross-Reactive Plasmodium falciparum PfEMP1 Monoclonal Antibody Inhibitory of ICAM-1 Binding
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
101020
Wellcome Trust - United Kingdom
G0901062
Medical Research Council - United Kingdom
PubMed
26320251
PubMed Central
PMC4574524
DOI
10.4049/jimmunol.1501404
PII: jimmunol.1501404
Knihovny.cz E-zdroje
- MeSH
- antigeny protozoální imunologie MeSH
- buněčná adheze MeSH
- cévní endotel metabolismus parazitologie MeSH
- epitopy imunologie MeSH
- erytrocytární membrána imunologie MeSH
- erytrocyty parazitologie MeSH
- hybridomy MeSH
- kultivované buňky MeSH
- mezibuněčná adhezivní molekula-1 imunologie MeSH
- molekulární sekvence - údaje MeSH
- monoklonální protilátky imunologie MeSH
- myši MeSH
- Plasmodium falciparum imunologie MeSH
- protilátky protozoální imunologie MeSH
- protozoální proteiny imunologie MeSH
- terciární struktura proteinů MeSH
- tropická malárie imunologie parazitologie MeSH
- vazebná místa protilátek imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny protozoální MeSH
- epitopy MeSH
- erythrocyte membrane protein 1, Plasmodium falciparum MeSH Prohlížeč
- mezibuněčná adhezivní molekula-1 MeSH
- monoklonální protilátky MeSH
- protilátky protozoální MeSH
- protozoální proteiny MeSH
The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLβ3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLβ3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLβ3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLβ3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLβ3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLβ3_D4 has previously been shown to contain the ICAM-1 binding site of DBLβ domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1-specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.
Department of Biochemistry University of Cambridge Cambridge CB2 1GA United Kingdom;
Department of Biochemistry University of Oxford Oxford OX1 3QU United Kingdom;
Zobrazit více v PubMed
World Health Organization. 2014. World Health Organization, Geneva, Switzerland.
Hafalla J. C., Silvie O., Matuschewski K. 2011. Cell biology and immunology of malaria. Immunol. Rev. 240: 297–316. PubMed
Kraemer S. M., Smith J. D. 2006. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr. Opin. Microbiol. 9: 374–380. PubMed
Smith J. D., Subramanian G., Gamain B., Baruch D. I., Miller L. H. 2000. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol. Biochem. Parasitol. 110: 293–310. PubMed
Rask T. S., Hansen D. A., Theander T. G., Gorm Pedersen A., Lavstsen T. 2010. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer. PLOS Comput. Biol. 6: 6. PubMed PMC
Turner G. D., Morrison H., Jones M., Davis T. M., Looareesuwan S., Buley I. D., Gatter K. C., Newbold C. I., Pukritayakamee S., Nagachinta B., et al. 1994. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am. J. Pathol. 145: 1057–1069. PubMed PMC
Newbold C., Warn P., Black G., Berendt A., Craig A., Snow B., Msobo M., Peshu N., Marsh K. 1997. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 57: 389–398. PubMed
Ochola L. B., Siddondo B. R., Ocholla H., Nkya S., Kimani E. N., Williams T. N., Makale J. O., Liljander A., Urban B. C., Bull P. C., et al. 2011. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS One 6: e14741. PubMed PMC
Marlin S. D., Springer T. A. 1987. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819. PubMed
Diamond M. S., Staunton D. E., de Fougerolles A. R., Stacker S. A., Garcia-Aguilar J., Hibbs M. L., Springer T. A. 1990. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J. Cell Biol. 111: 3129–3139. PubMed PMC
Joergensen L., Bengtsson D. C., Bengtsson A., Ronander E., Berger S. S., Turner L., Dalgaard M. B., Cham G. K., Victor M. E., Lavstsen T., et al. 2010. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum erythrocytes facilitates binding to ICAM1 and PECAM1. PLoS Pathog. 6: e1001083 Available at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1001083. PubMed PMC
Bengtsson A., Joergensen L., Rask T. S., Olsen R. W., Andersen M. A., Turner L., Theander T. G., Hviid L., Higgins M. K., Craig A., et al. 2013. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. J. Immunol. 190: 240–249. PubMed PMC
Jensen A. T., Magistrado P., Sharp S., Joergensen L., Lavstsen T., Chiucchiuini A., Salanti A., Vestergaard L. S., Lusingu J. P., Hermsen R., et al. 2004. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J. Exp. Med. 199: 1179–1190. PubMed PMC
Smith J. D., Craig A. G., Kriek N., Hudson-Taylor D., Kyes S., Fagan T., Pinches R., Baruch D. I., Newbold C. I., Miller L. H. 2000. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc. Natl. Acad. Sci. USA 97: 1766–1771. PubMed PMC
Chattopadhyay R., Taneja T., Chakrabarti K., Pillai C. R., Chitnis C. E. 2004. Molecular analysis of the cytoadherence phenotype of a Plasmodium falciparum field isolate that binds intercellular adhesion molecule-1. Mol. Biochem. Parasitol. 133: 255–265. PubMed
Springer A. L., Smith L. M., Mackay D. Q., Nelson S. O., Smith J. D. 2004. Functional interdependence of the DBLbeta domain and c2 region for binding of the Plasmodium falciparum variant antigen to ICAM-1. Mol. Biochem. Parasitol. 137: 55–64. PubMed
Mayor A., Bir N., Sawhney R., Singh S., Pattnaik P., Singh S. K., Sharma A., Chitnis C. E. 2005. Receptor-binding residues lie in central regions of Duffy-binding-like domains involved in red cell invasion and cytoadherence by malaria parasites. Blood 105: 2557–2563. PubMed
Bertonati C., Tramontano A. 2007. A model of the complex between the PfEMP1 malaria protein and the human ICAM-1 receptor. Proteins 69: 215–222. PubMed
Brown A., Turner L., Christoffersen S., Andrews K. A., Szestak T., Zhao Y., Larsen S., Craig A. G., Higgins M. K. 2013. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1. J. Biol. Chem. 288: 5992–6003. PubMed PMC
Howell D. P., Levin E. A., Springer A. L., Kraemer S. M., Phippard D. J., Schief W. R., Smith J. D. 2008. Mapping a common interaction site used by Plasmodium falciparum Duffy binding-like domains to bind diverse host receptors. Mol. Microbiol. 67: 78–87. PubMed
Bengtsson A., Joergensen L., Barbati Z. R., Craig A., Hviid L., Jensen A. T. 2013. Transfected HEK293 cells expressing functional recombinant intercellular adhesion molecule 1 (ICAM-1)--a receptor associated with severe Plasmodium falciparum malaria. PLoS One 8: e69999. PubMed PMC
Owens R. M., Gu X., Shin M., Springer T. A., Jin M. M. 2010. Engineering of single Ig superfamily domain of intercellular adhesion molecule 1 (ICAM-1) for native fold and function. J. Biol. Chem. 285: 15906–15915. PubMed PMC
Yokoyama W. M., Christensen M., Santos G. D., Miller D. 2006. Production of monoclonal antibodies. Curr. Protoc. Immunol. Chapter 2:Unit 2.5. PubMed
Barfod L., Dalgaard M. B., Pleman S. T., Ofori M. F., Pleass R. J., Hviid L. 2011. Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1. Proc. Natl. Acad. Sci. USA 108: 12485–12490. PubMed PMC
Wang Z., Raifu M., Howard M., Smith L., Hansen D., Goldsby R., Ratner D. 2000. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3′ to 5′ exonuclease activity. J. Immunol. Methods 233: 167–177. PubMed
Nielsen M. A., Staalsoe T., Kurtzhals J. A., Goka B. Q., Dodoo D., Alifrangis M., Theander T. G., Akanmori B. D., Hviid L. 2002. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J. Immunol. 168: 3444–3450. PubMed
Snounou G., Zhu X., Siripoon N., Jarra W., Thaithong S., Brown K. N., Viriyakosol S. 1999. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans. R. Soc. Trop. Med. Hyg. 93: 369–374. PubMed
Kadek A., Tretyachenko V., Mrazek H., Ivanova L., Halada P., Rey M., Schriemer D. C., Man P. 2014. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Protein Expr. Purif. 95: 121–128. PubMed
Konarev P. V., Volkov V. V., Sokolova A. V., Koch M. H. J., Svergun D. I. 2003. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36: 1277–1282.
Svergun D. 1992. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25: 495–503.
Franke D., Svergun D. I. 2009. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Cryst. 42: 342–346. PubMed PMC
Volkov V. V., Svergun D. I. 2003. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 36: 860–864. PubMed PMC
Svergun D. I. 1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76: 2879–2886. PubMed PMC
Birmanns S., Rusu M., Wriggers W. 2011. Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes. J. Struct. Biol. 173: 428–435. PubMed PMC
Silamut K., Phu N. H., Whitty C., Turner G. D., Louwrier K., Mai N. T., Simpson J. A., Hien T. T., White N. J. 1999. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am. J. Pathol. 155: 395–410. PubMed PMC
Abbott W. M., Damschroder M. M., Lowe D. C. 2014. Current approaches to fine mapping of antigen-antibody interactions. Immunology 142: 526–535. PubMed PMC
Zhang H., Cui W., Gross M. L. 2014. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett. 588: 308–317. PubMed PMC
Oleinikov A. V., Amos E., Frye I. T., Rossnagle E., Mutabingwa T. K., Fried M., Duffy P. E. 2009. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies. PLoS Pathog. 5: e1000386. PubMed PMC
Koch D. I. S. 2003. Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66: 1735.
Magistrado P. A., Lusingu J., Vestergaard L. S., Lemnge M., Lavstsen T., Turner L., Hviid L., Jensen A. T., Theander T. G. 2007. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria. Infect. Immun. 75: 2415–2420. PubMed PMC
Chan J. A., Howell K. B., Reiling L., Ataide R., Mackintosh C. L., Fowkes F. J., Petter M., Chesson J. M., Langer C., Warimwe G. M., et al. 2012. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J. Clin. Invest. 122: 3227–3238. PubMed PMC
Bull P. C., Kortok M., Kai O., Ndungu F., Ross A., Lowe B. S., Newbold C. I., Marsh K. 2000. Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J. Infect. Dis. 182: 252–259. PubMed
GENBANK
KJ418726, KJ418727