Mapping the Binding Site of a Cross-Reactive Plasmodium falciparum PfEMP1 Monoclonal Antibody Inhibitory of ICAM-1 Binding

. 2015 Oct 01 ; 195 (7) : 3273-83. [epub] 20150828

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26320251

Grantová podpora
Wellcome Trust - United Kingdom
101020 Wellcome Trust - United Kingdom
G0901062 Medical Research Council - United Kingdom

The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLβ3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLβ3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLβ3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLβ3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLβ3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLβ3_D4 has previously been shown to contain the ICAM-1 binding site of DBLβ domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1-specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.

Zobrazit více v PubMed

World Health Organization. 2014. World Health Organization, Geneva, Switzerland.

Hafalla J. C., Silvie O., Matuschewski K. 2011. Cell biology and immunology of malaria. Immunol. Rev. 240: 297–316. PubMed

Kraemer S. M., Smith J. D. 2006. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr. Opin. Microbiol. 9: 374–380. PubMed

Smith J. D., Subramanian G., Gamain B., Baruch D. I., Miller L. H. 2000. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol. Biochem. Parasitol. 110: 293–310. PubMed

Rask T. S., Hansen D. A., Theander T. G., Gorm Pedersen A., Lavstsen T. 2010. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer. PLOS Comput. Biol. 6: 6. PubMed PMC

Turner G. D., Morrison H., Jones M., Davis T. M., Looareesuwan S., Buley I. D., Gatter K. C., Newbold C. I., Pukritayakamee S., Nagachinta B., et al. 1994. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am. J. Pathol. 145: 1057–1069. PubMed PMC

Newbold C., Warn P., Black G., Berendt A., Craig A., Snow B., Msobo M., Peshu N., Marsh K. 1997. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 57: 389–398. PubMed

Ochola L. B., Siddondo B. R., Ocholla H., Nkya S., Kimani E. N., Williams T. N., Makale J. O., Liljander A., Urban B. C., Bull P. C., et al. 2011. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS One 6: e14741. PubMed PMC

Marlin S. D., Springer T. A. 1987. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819. PubMed

Diamond M. S., Staunton D. E., de Fougerolles A. R., Stacker S. A., Garcia-Aguilar J., Hibbs M. L., Springer T. A. 1990. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J. Cell Biol. 111: 3129–3139. PubMed PMC

Joergensen L., Bengtsson D. C., Bengtsson A., Ronander E., Berger S. S., Turner L., Dalgaard M. B., Cham G. K., Victor M. E., Lavstsen T., et al. 2010. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum erythrocytes facilitates binding to ICAM1 and PECAM1. PLoS Pathog. 6: e1001083 Available at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1001083. PubMed PMC

Bengtsson A., Joergensen L., Rask T. S., Olsen R. W., Andersen M. A., Turner L., Theander T. G., Hviid L., Higgins M. K., Craig A., et al. 2013. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. J. Immunol. 190: 240–249. PubMed PMC

Jensen A. T., Magistrado P., Sharp S., Joergensen L., Lavstsen T., Chiucchiuini A., Salanti A., Vestergaard L. S., Lusingu J. P., Hermsen R., et al. 2004. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J. Exp. Med. 199: 1179–1190. PubMed PMC

Smith J. D., Craig A. G., Kriek N., Hudson-Taylor D., Kyes S., Fagan T., Pinches R., Baruch D. I., Newbold C. I., Miller L. H. 2000. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc. Natl. Acad. Sci. USA 97: 1766–1771. PubMed PMC

Chattopadhyay R., Taneja T., Chakrabarti K., Pillai C. R., Chitnis C. E. 2004. Molecular analysis of the cytoadherence phenotype of a Plasmodium falciparum field isolate that binds intercellular adhesion molecule-1. Mol. Biochem. Parasitol. 133: 255–265. PubMed

Springer A. L., Smith L. M., Mackay D. Q., Nelson S. O., Smith J. D. 2004. Functional interdependence of the DBLbeta domain and c2 region for binding of the Plasmodium falciparum variant antigen to ICAM-1. Mol. Biochem. Parasitol. 137: 55–64. PubMed

Mayor A., Bir N., Sawhney R., Singh S., Pattnaik P., Singh S. K., Sharma A., Chitnis C. E. 2005. Receptor-binding residues lie in central regions of Duffy-binding-like domains involved in red cell invasion and cytoadherence by malaria parasites. Blood 105: 2557–2563. PubMed

Bertonati C., Tramontano A. 2007. A model of the complex between the PfEMP1 malaria protein and the human ICAM-1 receptor. Proteins 69: 215–222. PubMed

Brown A., Turner L., Christoffersen S., Andrews K. A., Szestak T., Zhao Y., Larsen S., Craig A. G., Higgins M. K. 2013. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1. J. Biol. Chem. 288: 5992–6003. PubMed PMC

Howell D. P., Levin E. A., Springer A. L., Kraemer S. M., Phippard D. J., Schief W. R., Smith J. D. 2008. Mapping a common interaction site used by Plasmodium falciparum Duffy binding-like domains to bind diverse host receptors. Mol. Microbiol. 67: 78–87. PubMed

Bengtsson A., Joergensen L., Barbati Z. R., Craig A., Hviid L., Jensen A. T. 2013. Transfected HEK293 cells expressing functional recombinant intercellular adhesion molecule 1 (ICAM-1)--a receptor associated with severe Plasmodium falciparum malaria. PLoS One 8: e69999. PubMed PMC

Owens R. M., Gu X., Shin M., Springer T. A., Jin M. M. 2010. Engineering of single Ig superfamily domain of intercellular adhesion molecule 1 (ICAM-1) for native fold and function. J. Biol. Chem. 285: 15906–15915. PubMed PMC

Yokoyama W. M., Christensen M., Santos G. D., Miller D. 2006. Production of monoclonal antibodies. Curr. Protoc. Immunol. Chapter 2:Unit 2.5. PubMed

Barfod L., Dalgaard M. B., Pleman S. T., Ofori M. F., Pleass R. J., Hviid L. 2011. Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1. Proc. Natl. Acad. Sci. USA 108: 12485–12490. PubMed PMC

Wang Z., Raifu M., Howard M., Smith L., Hansen D., Goldsby R., Ratner D. 2000. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3′ to 5′ exonuclease activity. J. Immunol. Methods 233: 167–177. PubMed

Nielsen M. A., Staalsoe T., Kurtzhals J. A., Goka B. Q., Dodoo D., Alifrangis M., Theander T. G., Akanmori B. D., Hviid L. 2002. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J. Immunol. 168: 3444–3450. PubMed

Snounou G., Zhu X., Siripoon N., Jarra W., Thaithong S., Brown K. N., Viriyakosol S. 1999. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans. R. Soc. Trop. Med. Hyg. 93: 369–374. PubMed

Kadek A., Tretyachenko V., Mrazek H., Ivanova L., Halada P., Rey M., Schriemer D. C., Man P. 2014. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Protein Expr. Purif. 95: 121–128. PubMed

Konarev P. V., Volkov V. V., Sokolova A. V., Koch M. H. J., Svergun D. I. 2003. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36: 1277–1282.

Svergun D. 1992. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25: 495–503.

Franke D., Svergun D. I. 2009. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Cryst. 42: 342–346. PubMed PMC

Volkov V. V., Svergun D. I. 2003. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 36: 860–864. PubMed PMC

Svergun D. I. 1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76: 2879–2886. PubMed PMC

Birmanns S., Rusu M., Wriggers W. 2011. Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes. J. Struct. Biol. 173: 428–435. PubMed PMC

Silamut K., Phu N. H., Whitty C., Turner G. D., Louwrier K., Mai N. T., Simpson J. A., Hien T. T., White N. J. 1999. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am. J. Pathol. 155: 395–410. PubMed PMC

Abbott W. M., Damschroder M. M., Lowe D. C. 2014. Current approaches to fine mapping of antigen-antibody interactions. Immunology 142: 526–535. PubMed PMC

Zhang H., Cui W., Gross M. L. 2014. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett. 588: 308–317. PubMed PMC

Oleinikov A. V., Amos E., Frye I. T., Rossnagle E., Mutabingwa T. K., Fried M., Duffy P. E. 2009. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies. PLoS Pathog. 5: e1000386. PubMed PMC

Koch D. I. S. 2003. Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66: 1735.

Magistrado P. A., Lusingu J., Vestergaard L. S., Lemnge M., Lavstsen T., Turner L., Hviid L., Jensen A. T., Theander T. G. 2007. Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria. Infect. Immun. 75: 2415–2420. PubMed PMC

Chan J. A., Howell K. B., Reiling L., Ataide R., Mackintosh C. L., Fowkes F. J., Petter M., Chesson J. M., Langer C., Warimwe G. M., et al. 2012. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J. Clin. Invest. 122: 3227–3238. PubMed PMC

Bull P. C., Kortok M., Kai O., Ndungu F., Ross A., Lowe B. S., Newbold C. I., Marsh K. 2000. Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J. Infect. Dis. 182: 252–259. PubMed

Zobrazit více v PubMed

GENBANK
KJ418726, KJ418727

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace