A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1

. 2021 Sep 17 ; 433 (19) : 167174. [epub] 20210721

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34302818
Odkazy

PubMed 34302818
PubMed Central PMC8505757
DOI 10.1016/j.jmb.2021.167174
PII: S0022-2836(21)00407-1
Knihovny.cz E-zdroje

Expansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability. Here we show that 14-3-3 also has a direct anti-aggregation or "chaperone" effect on Ataxin-1. Furthermore, we provide structural and biophysical information revealing how phosphorylated S776 in the intrinsically disordered C terminus of Ataxin-1 mediates the cytoplasmic interaction with 14-3-3 proteins. Based on these findings, we propose that 14-3-3 exerts the observed chaperone effect by interfering with Ataxin-1 dimerization through its AXH domain, reducing further self-association. The chaperone effect is particularly important in the context of SCA1, as it was previously shown that a soluble form of mutant Ataxin-1 is the major driver of pathology.

Biotech Sciences UCB Biopharma UK Slough SL1 3WE UK

Department of Physical and Macromolecular Chemistry Faculty of Science Charles University Prague 12843 Czech Republic

Global Chemistry UCB Biopharma UK Slough SL1 3WE UK

Global Chemistry UCB Biopharma UK Slough SL1 3WE UK; Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Technische Universiteit Eindhoven Eindhoven 5600 MB the Netherlands

Immuno Bone Discovery UCB Biopharma UK Slough SL1 3WE UK

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital Houston TX USA; Department of Molecular and Human Genetics Baylor College of Medicine Houston TX 77030 USA

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital Houston TX USA; Department of Molecular and Human Genetics Baylor College of Medicine Houston TX 77030 USA; Howard Hughes Medical Institute Baylor College of Medicine Houston TX 77030 USA

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital Houston TX USA; Department of Molecular and Human Genetics Baylor College of Medicine Houston TX 77030 USA; Howard Hughes Medical Institute Baylor College of Medicine Houston TX 77030 USA; Department of Neuroscience Baylor College of Medicine Houston TX 77030 USA

Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Technische Universiteit Eindhoven Eindhoven 5600 MB the Netherlands

Protein Structure and Biophysics UCB Biopharma UK Slough SL1 3WE UK

Zobrazit více v PubMed

Opal P., Ashizawa T. In: GeneReviews((R)) Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., editors. University of Washington; Seattle (WA): 1993. Spinocerebellar Ataxia Type 1. PubMed

Wagner J.L., O'Connor D.M., Donsante A., Boulis N.M. Gene, Stem Cell, and Alternative Therapies for SCA 1. Front. Mol. Neurosci. 2016;9:67. PubMed PMC

Cummings C.J., Orr H.T., Zoghbi H.Y. Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999;354:1079–1081. PubMed PMC

Zoghbi H.Y., Orr H.T. Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J. Biol. Chem. 2009;284:7425–7429. PubMed PMC

de Chiara C., Pastore A. Kaleidoscopic protein-protein interactions in the life and death of ataxin-1: new strategies against protein aggregation. Trends Neurosci. 2014;37:211–218. PubMed PMC

Lim J., Crespo-Barreto J., Jafar-Nejad P., Bowman A.B., Richman R., Hill D.E. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature. 2008;452:713–718. PubMed PMC

Rousseaux M.W.C., Tschumperlin T., Lu H.C., Lackey E.P., Bondar V.V., Wan Y.W. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97 1235–43.e5. PubMed PMC

Emamian E.S., Kaytor M.D., Duvick L.A., Zu T., Tousey S.K., Zoghbi H.Y. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron. 2003;38:375–387. PubMed

Klement I.A., Skinner P.J., Kaytor M.D., Yi H., Hersch S.M., Clark H.B. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998;95:41–53. PubMed

Tsuda H., Jafar-Nejad H., Patel A.J., Sun Y., Chen H.K., Rose M.F. The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell. 2005;122:633–644. PubMed

Park J., Al-Ramahi I., Tan Q., Mollema N., Diaz-Garcia J.R., Gallego-Flores T. RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature. 2013;498:325–331. PubMed PMC

Perez Ortiz J.M., Mollema N., Toker N., Adamski C.J., O'Callaghan B., Duvick L. Reduction of protein kinase A-mediated phosphorylation of ATXN1-S776 in Purkinje cells delays onset of Ataxia in a SCA1 mouse model. Neurobiol. Dis. 2018 PubMed PMC

Chen H.K., Fernandez-Funez P., Acevedo S.F., Lam Y.C., Kaytor M.D., Fernandez M.H. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003;113:457–468. PubMed

Berg D., Holzmann C.F., Riess O. 14-3-3 proteins in the nervous system. Nature Rev. Neurosci. 2003;4:752–762. PubMed

van Hemert M.J., Steensma H.Y., van Heusden G.P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. BioEssays: News Rev. Mol. Cell. Dev. Biol. 2001;23:936–946. PubMed

Kleppe R., Martinez A., Døskeland S.O., Haavik J. The 14-3-3 proteins in regulation of cellular metabolism. Semin. Cell Dev. Biol. 2011;22:713–719. PubMed

Kaplan A., Ottmann C., Fournier A.E. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharmacol. Res. 2017;125:114–121. PubMed

Lai S., O'Callaghan B., Zoghbi H.Y., Orr H.T. 14-3-3 Binding to ataxin-1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus. J. Biol. Chem. 2011;286:34606–34616. PubMed PMC

Jafar-Nejad P., Ward C.S., Richman R., Orr H.T., Zoghbi H.Y. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. PNAS. 2011;108:2142–2147. PubMed PMC

Jorgensen N.D., Andresen J.M., Lagalwar S., Armstrong B., Stevens S., Byam C.E. Phosphorylation of ATXN1 at Ser776 in the cerebellum. J. Neurochem. 2009;110:675–686. PubMed PMC

van Heusden G.P., Griffiths D.J., Ford J.C., Chin A.W.T.F., Schrader P.A., Carr A.M. The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur. J. Biochem. 1995;229:45–53. PubMed

Marblestone J.G., Edavettal S.C., Lim Y., Lim P., Zuo X., Butt T.R. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci. 2006;15:182–189. PubMed PMC

Chen Y.W., Allen M.D., Veprintsev D.B., Lowe J., Bycroft M. The structure of the AXH domain of spinocerebellar ataxin-1. J. Biol. Chem. 2004;279:3758–3765. PubMed

de Chiara C., Kelly G., Menon R.P., McCormick J., Pastore A. Chemical shift assignment of the ataxin-1 AXH domain in complex with a CIC ligand peptide. Biomol. NMR Assign. 2014;8:325–327. PubMed PMC

de Chiara C., Menon R.P., Kelly G., Pastore A. Protein-protein interactions as a strategy towards protein-specific drug design: the example of ataxin-1. PLoS ONE. 2013;8 PubMed PMC

de Chiara C., Rees M., Menon R.P., Pauwels K., Lawrence C., Konarev P.V. Self-assembly and conformational heterogeneity of the AXH domain of ataxin-1: an unusual example of a chameleon fold. Biophys. J. 2013;104:1304–1313. PubMed PMC

Kim E., Lu H.C., Zoghbi H.Y., Song J.J. Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein Ataxin-1 and Capicua. Genes Dev. 2013;27:590–595. PubMed PMC

Darling A.L., Uversky V.N. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules. 2017;22 PubMed PMC

ULC CCG. Molecular Operating Environment (MOE). (2019).

Obsil T., Ghirlando R., Klein D.C., Ganguly S., Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. PubMed

Sluchanko N.N., Beelen S., Kulikova A.A., Weeks S.D., Antson A.A., Gusev N.B. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure (London, England) 1993;2017(25):305–316. PubMed PMC

Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell. 2007;25:427–440. PubMed

Kondo Y., Ognjenović J., Banerjee S., Karandur D., Merk A., Kulhanek K. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science (New York, NY) 2019;366:109–115. PubMed PMC

Taoka K., Ohki I., Tsuji H., Furuita K., Hayashi K., Yanase T. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature. 2011;476:332–335. PubMed

Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. PNAS. 2017;114 E9811-e20. PubMed PMC

Sijbesma E., Skora L., Leysen S., Brunsveld L., Koch U., Nussbaumer P. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Biochemistry. 2017;56:3972–3982. PubMed PMC

Receveur-Brechot V., Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr. Protein Pept. Sci. 2012;13:55–75. PubMed PMC

Tria G., Mertens H.D.T., Kachala M., Svergun D.I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015;2:207–217. PubMed PMC

Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajd New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012;45:342–350. PubMed PMC

Schneidman-Duhovny D., Hammel M., Tainer J.A., Sali A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 2016;44:W424–W429. PubMed PMC

Cummings C.J., Reinstein E., Sun Y., Antalffy B., Jiang Y., Ciechanover A. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron. 1999;24:879–892. PubMed

Lasagna-Reeves C.A., Rousseaux M.W., Guerrero-Munoz M.J., Park J., Jafar-Nejad P., Richman R. A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. eLife. 2015;4 PubMed PMC

Sluchanko N.N., Gusev N.B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J. 2017;284:1279–1295. PubMed

Ichimura T., Taoka M., Shoji I., Kato H., Sato T., Hatakeyama S. 14-3-3 proteins sequester a pool of soluble TRIM32 ubiquitin ligase to repress autoubiquitylation and cytoplasmic body formation. J. Cell Sci. 2013;126:2014–2026. PubMed

de Chiara C., Menon R.P., Dal Piaz F., Calder L., Pastore A. Polyglutamine is not all: the functional role of the AXH domain in the ataxin-1 protein. J. Mol. Biol. 2005;354:883–893. PubMed

Grasso G., Morbiducci U., Massai D., Tuszynski J., Danani A., Deriu M. Destabilizing the AXH Tetramer by Mutations: Mechanisms and Potential Antiaggregation Strategies. Biophys. J. 2018;114:323–330. PubMed PMC

Ballone A., Centorrino F., Ottmann C. 14-3-3: A Case Study in PPI Modulation. Molecules. 2018;23 PubMed PMC

Stevers L.M., Sijbesma E., Botta M., MacKintosh C., Obsil T., Landrieu I. Modulators of 14-3-3 Protein-Protein Interactions. J. Med. Chem. 2018;61:3755–3778. PubMed PMC

Lai A.C., Crews C.M. Induced protein degradation: an emerging drug discovery paradigm. Nature Rev. Drug Discov. 2017;16:101–114. PubMed PMC

Ottis P., Crews C.M. Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. ACS Chem. Biol. 2017;12:892–898. PubMed

Weeks S.D., Drinker M., Loll P.J. Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr. Purif. 2007;53:40–50. PubMed PMC

Schumacher B., Skwarczynska M., Rose R., Ottmann C. Structure of a 14-3-3sigma-YAP phosphopeptide complex at 1.15 A resolution. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2010;66:978–984. PubMed PMC

Franke D., Petoukhov M.V., Konarev P.V., Panjkovich A., Tuukkanen A., Mertens H.D.T. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017;50:1212–1225. PubMed PMC

Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003;36:1277–1282.

Petoukhov M.V., Konarev P.V., Kikhney A.G., Svergun D.I. ATSAS 2.1 - towards automated and web-supported small-angle scattering data analysis. J. Appl. Crystallogr. 2007;40:s223–s228.

Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 1992;25:495–503.

Molzan M., Kasper S., Röglin L., Skwarczynska M., Sassa T., Inoue T. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem. Biol. 2013;8:1869–1875. PubMed

Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protocols Bioinf. 2016;54:5.6.1–5.6.37. PubMed PMC

Pelikan M., Hura G.L., Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen. Physiol. Biophys. 2009;28:174–189. PubMed PMC

Merrifield R.B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963;85:2149–2154.

Chan W., White P. Oxford University Press; 1999. Fmoc Solid Phase Peptide Synthesis.

Hood C.A., Fuentes G., Patel H., Page K., Menakuru M., Park J.H. Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J. Pept. Sci. 2008;14:97–101. PubMed

Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. PubMed PMC

Evans P.R., Murshudov G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013;69:1204–1214. PubMed PMC

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. PubMed PMC

McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Adams P.M.D., W M.D., Storoni L.C. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. PubMed PMC

Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. PubMed PMC

Afonine P.V., Grosse-Kunstleve R.W., Echols N., Headd J.J., Moriarty N.M., Mustyakimov M. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D. 2012;68:352–367. PubMed PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. PubMed PMC

L.L.C. Schrodinger, The PyMOL Molecular Graphics System, Version 1.8. (2015).

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. PubMed PMC

Brown P.H., Schuck P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 2006;90:4651–4661. PubMed PMC

Brookes E., Demeler B. Genetic Algorithm Optimization for obtaining accurate Molecular Weight Distributions from Sedimentation Velocity Experiments. Analytical Ultracentrifugation VIII. Prog. Colloid Polym. Sci. 2006:78–82.

Garcia de la Torre J. Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins. Biophys. Chem. 2001;93:159–170. PubMed

Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids. 2013;10:29. PubMed

Tugaeva K.V., Tsvetkov P.O., Sluchanko N.N. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. PLoS ONE. 2017;12 PubMed PMC

Stevers L.M., Lam C.V., Leysen S.F., Meijer F.A., van Scheppingen D.S., de Vries R.M. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. PNAS. 2016;113:E1152–E1161. PubMed PMC

Meerbrey K.L., Hu G., Kessler J.D., Roarty K., Li M.Z., Fang J.E. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. PNAS. 2011;108:3665–3670. PubMed PMC

Nitschke L., Tewari A., Coffin S.L., Xhako E., Pang K., Gennarino V.A. miR760 regulates ATXN1 levels via interaction with its 5' untranslated region. Genes Dev. 2020;34:1147–1160. PubMed PMC

Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002;58:899–907. PubMed

Kikhney A.G., Borges C.R., Molodenskiy D.S., Jeffries C.M., Svergun D.I. SASBDB: Towards an automatically curated and validated repository for biological scattering data. Protein Sci. 2020;29:66–75. PubMed PMC

Karplus P.A., Diederichs K. Linking crystallographic model and data quality. Science (New York, NY) 2012;336:1030–1033. PubMed PMC

Chen V.B., Arendall W.B., 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. PubMed PMC

Schneidman-Duhovny D., Hammel M., Tainer J.A., Sali A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 2013;105:962–974. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...