A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34302818
PubMed Central
PMC8505757
DOI
10.1016/j.jmb.2021.167174
PII: S0022-2836(21)00407-1
Knihovny.cz E-zdroje
- Klíčová slova
- HDX-MS, SAXS, crystal structure, neurodegeneration, protein aggregation,
- MeSH
- ataxin-1 chemie metabolismus MeSH
- buněčné linie MeSH
- cytoplazma metabolismus MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- proteinové domény MeSH
- proteiny 14-3-3 metabolismus MeSH
- stabilita proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ataxin-1 MeSH
- ATXN1 protein, human MeSH Prohlížeč
- proteiny 14-3-3 MeSH
Expansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability. Here we show that 14-3-3 also has a direct anti-aggregation or "chaperone" effect on Ataxin-1. Furthermore, we provide structural and biophysical information revealing how phosphorylated S776 in the intrinsically disordered C terminus of Ataxin-1 mediates the cytoplasmic interaction with 14-3-3 proteins. Based on these findings, we propose that 14-3-3 exerts the observed chaperone effect by interfering with Ataxin-1 dimerization through its AXH domain, reducing further self-association. The chaperone effect is particularly important in the context of SCA1, as it was previously shown that a soluble form of mutant Ataxin-1 is the major driver of pathology.
Biotech Sciences UCB Biopharma UK Slough SL1 3WE UK
Global Chemistry UCB Biopharma UK Slough SL1 3WE UK
Immuno Bone Discovery UCB Biopharma UK Slough SL1 3WE UK
Protein Structure and Biophysics UCB Biopharma UK Slough SL1 3WE UK
Zobrazit více v PubMed
Opal P., Ashizawa T. In: GeneReviews((R)) Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., editors. University of Washington; Seattle (WA): 1993. Spinocerebellar Ataxia Type 1. PubMed
Wagner J.L., O'Connor D.M., Donsante A., Boulis N.M. Gene, Stem Cell, and Alternative Therapies for SCA 1. Front. Mol. Neurosci. 2016;9:67. PubMed PMC
Cummings C.J., Orr H.T., Zoghbi H.Y. Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999;354:1079–1081. PubMed PMC
Zoghbi H.Y., Orr H.T. Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J. Biol. Chem. 2009;284:7425–7429. PubMed PMC
de Chiara C., Pastore A. Kaleidoscopic protein-protein interactions in the life and death of ataxin-1: new strategies against protein aggregation. Trends Neurosci. 2014;37:211–218. PubMed PMC
Lim J., Crespo-Barreto J., Jafar-Nejad P., Bowman A.B., Richman R., Hill D.E. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature. 2008;452:713–718. PubMed PMC
Rousseaux M.W.C., Tschumperlin T., Lu H.C., Lackey E.P., Bondar V.V., Wan Y.W. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97 1235–43.e5. PubMed PMC
Emamian E.S., Kaytor M.D., Duvick L.A., Zu T., Tousey S.K., Zoghbi H.Y. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron. 2003;38:375–387. PubMed
Klement I.A., Skinner P.J., Kaytor M.D., Yi H., Hersch S.M., Clark H.B. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998;95:41–53. PubMed
Tsuda H., Jafar-Nejad H., Patel A.J., Sun Y., Chen H.K., Rose M.F. The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell. 2005;122:633–644. PubMed
Park J., Al-Ramahi I., Tan Q., Mollema N., Diaz-Garcia J.R., Gallego-Flores T. RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature. 2013;498:325–331. PubMed PMC
Perez Ortiz J.M., Mollema N., Toker N., Adamski C.J., O'Callaghan B., Duvick L. Reduction of protein kinase A-mediated phosphorylation of ATXN1-S776 in Purkinje cells delays onset of Ataxia in a SCA1 mouse model. Neurobiol. Dis. 2018 PubMed PMC
Chen H.K., Fernandez-Funez P., Acevedo S.F., Lam Y.C., Kaytor M.D., Fernandez M.H. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003;113:457–468. PubMed
Berg D., Holzmann C.F., Riess O. 14-3-3 proteins in the nervous system. Nature Rev. Neurosci. 2003;4:752–762. PubMed
van Hemert M.J., Steensma H.Y., van Heusden G.P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. BioEssays: News Rev. Mol. Cell. Dev. Biol. 2001;23:936–946. PubMed
Kleppe R., Martinez A., Døskeland S.O., Haavik J. The 14-3-3 proteins in regulation of cellular metabolism. Semin. Cell Dev. Biol. 2011;22:713–719. PubMed
Kaplan A., Ottmann C., Fournier A.E. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharmacol. Res. 2017;125:114–121. PubMed
Lai S., O'Callaghan B., Zoghbi H.Y., Orr H.T. 14-3-3 Binding to ataxin-1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus. J. Biol. Chem. 2011;286:34606–34616. PubMed PMC
Jafar-Nejad P., Ward C.S., Richman R., Orr H.T., Zoghbi H.Y. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. PNAS. 2011;108:2142–2147. PubMed PMC
Jorgensen N.D., Andresen J.M., Lagalwar S., Armstrong B., Stevens S., Byam C.E. Phosphorylation of ATXN1 at Ser776 in the cerebellum. J. Neurochem. 2009;110:675–686. PubMed PMC
van Heusden G.P., Griffiths D.J., Ford J.C., Chin A.W.T.F., Schrader P.A., Carr A.M. The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur. J. Biochem. 1995;229:45–53. PubMed
Marblestone J.G., Edavettal S.C., Lim Y., Lim P., Zuo X., Butt T.R. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci. 2006;15:182–189. PubMed PMC
Chen Y.W., Allen M.D., Veprintsev D.B., Lowe J., Bycroft M. The structure of the AXH domain of spinocerebellar ataxin-1. J. Biol. Chem. 2004;279:3758–3765. PubMed
de Chiara C., Kelly G., Menon R.P., McCormick J., Pastore A. Chemical shift assignment of the ataxin-1 AXH domain in complex with a CIC ligand peptide. Biomol. NMR Assign. 2014;8:325–327. PubMed PMC
de Chiara C., Menon R.P., Kelly G., Pastore A. Protein-protein interactions as a strategy towards protein-specific drug design: the example of ataxin-1. PLoS ONE. 2013;8 PubMed PMC
de Chiara C., Rees M., Menon R.P., Pauwels K., Lawrence C., Konarev P.V. Self-assembly and conformational heterogeneity of the AXH domain of ataxin-1: an unusual example of a chameleon fold. Biophys. J. 2013;104:1304–1313. PubMed PMC
Kim E., Lu H.C., Zoghbi H.Y., Song J.J. Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein Ataxin-1 and Capicua. Genes Dev. 2013;27:590–595. PubMed PMC
Darling A.L., Uversky V.N. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules. 2017;22 PubMed PMC
ULC CCG. Molecular Operating Environment (MOE). (2019).
Obsil T., Ghirlando R., Klein D.C., Ganguly S., Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. PubMed
Sluchanko N.N., Beelen S., Kulikova A.A., Weeks S.D., Antson A.A., Gusev N.B. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure (London, England) 1993;2017(25):305–316. PubMed PMC
Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell. 2007;25:427–440. PubMed
Kondo Y., Ognjenović J., Banerjee S., Karandur D., Merk A., Kulhanek K. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science (New York, NY) 2019;366:109–115. PubMed PMC
Taoka K., Ohki I., Tsuji H., Furuita K., Hayashi K., Yanase T. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature. 2011;476:332–335. PubMed
Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. PNAS. 2017;114 E9811-e20. PubMed PMC
Sijbesma E., Skora L., Leysen S., Brunsveld L., Koch U., Nussbaumer P. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Biochemistry. 2017;56:3972–3982. PubMed PMC
Receveur-Brechot V., Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr. Protein Pept. Sci. 2012;13:55–75. PubMed PMC
Tria G., Mertens H.D.T., Kachala M., Svergun D.I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015;2:207–217. PubMed PMC
Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajd New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012;45:342–350. PubMed PMC
Schneidman-Duhovny D., Hammel M., Tainer J.A., Sali A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 2016;44:W424–W429. PubMed PMC
Cummings C.J., Reinstein E., Sun Y., Antalffy B., Jiang Y., Ciechanover A. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron. 1999;24:879–892. PubMed
Lasagna-Reeves C.A., Rousseaux M.W., Guerrero-Munoz M.J., Park J., Jafar-Nejad P., Richman R. A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. eLife. 2015;4 PubMed PMC
Sluchanko N.N., Gusev N.B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J. 2017;284:1279–1295. PubMed
Ichimura T., Taoka M., Shoji I., Kato H., Sato T., Hatakeyama S. 14-3-3 proteins sequester a pool of soluble TRIM32 ubiquitin ligase to repress autoubiquitylation and cytoplasmic body formation. J. Cell Sci. 2013;126:2014–2026. PubMed
de Chiara C., Menon R.P., Dal Piaz F., Calder L., Pastore A. Polyglutamine is not all: the functional role of the AXH domain in the ataxin-1 protein. J. Mol. Biol. 2005;354:883–893. PubMed
Grasso G., Morbiducci U., Massai D., Tuszynski J., Danani A., Deriu M. Destabilizing the AXH Tetramer by Mutations: Mechanisms and Potential Antiaggregation Strategies. Biophys. J. 2018;114:323–330. PubMed PMC
Ballone A., Centorrino F., Ottmann C. 14-3-3: A Case Study in PPI Modulation. Molecules. 2018;23 PubMed PMC
Stevers L.M., Sijbesma E., Botta M., MacKintosh C., Obsil T., Landrieu I. Modulators of 14-3-3 Protein-Protein Interactions. J. Med. Chem. 2018;61:3755–3778. PubMed PMC
Lai A.C., Crews C.M. Induced protein degradation: an emerging drug discovery paradigm. Nature Rev. Drug Discov. 2017;16:101–114. PubMed PMC
Ottis P., Crews C.M. Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. ACS Chem. Biol. 2017;12:892–898. PubMed
Weeks S.D., Drinker M., Loll P.J. Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr. Purif. 2007;53:40–50. PubMed PMC
Schumacher B., Skwarczynska M., Rose R., Ottmann C. Structure of a 14-3-3sigma-YAP phosphopeptide complex at 1.15 A resolution. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2010;66:978–984. PubMed PMC
Franke D., Petoukhov M.V., Konarev P.V., Panjkovich A., Tuukkanen A., Mertens H.D.T. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017;50:1212–1225. PubMed PMC
Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003;36:1277–1282.
Petoukhov M.V., Konarev P.V., Kikhney A.G., Svergun D.I. ATSAS 2.1 - towards automated and web-supported small-angle scattering data analysis. J. Appl. Crystallogr. 2007;40:s223–s228.
Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 1992;25:495–503.
Molzan M., Kasper S., Röglin L., Skwarczynska M., Sassa T., Inoue T. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem. Biol. 2013;8:1869–1875. PubMed
Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protocols Bioinf. 2016;54:5.6.1–5.6.37. PubMed PMC
Pelikan M., Hura G.L., Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen. Physiol. Biophys. 2009;28:174–189. PubMed PMC
Merrifield R.B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963;85:2149–2154.
Chan W., White P. Oxford University Press; 1999. Fmoc Solid Phase Peptide Synthesis.
Hood C.A., Fuentes G., Patel H., Page K., Menakuru M., Park J.H. Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J. Pept. Sci. 2008;14:97–101. PubMed
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. PubMed PMC
Evans P.R., Murshudov G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013;69:1204–1214. PubMed PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. PubMed PMC
McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Adams P.M.D., W M.D., Storoni L.C. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. PubMed PMC
Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. PubMed PMC
Afonine P.V., Grosse-Kunstleve R.W., Echols N., Headd J.J., Moriarty N.M., Mustyakimov M. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D. 2012;68:352–367. PubMed PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. PubMed PMC
L.L.C. Schrodinger, The PyMOL Molecular Graphics System, Version 1.8. (2015).
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. PubMed PMC
Brown P.H., Schuck P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 2006;90:4651–4661. PubMed PMC
Brookes E., Demeler B. Genetic Algorithm Optimization for obtaining accurate Molecular Weight Distributions from Sedimentation Velocity Experiments. Analytical Ultracentrifugation VIII. Prog. Colloid Polym. Sci. 2006:78–82.
Garcia de la Torre J. Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins. Biophys. Chem. 2001;93:159–170. PubMed
Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids. 2013;10:29. PubMed
Tugaeva K.V., Tsvetkov P.O., Sluchanko N.N. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. PLoS ONE. 2017;12 PubMed PMC
Stevers L.M., Lam C.V., Leysen S.F., Meijer F.A., van Scheppingen D.S., de Vries R.M. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. PNAS. 2016;113:E1152–E1161. PubMed PMC
Meerbrey K.L., Hu G., Kessler J.D., Roarty K., Li M.Z., Fang J.E. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. PNAS. 2011;108:3665–3670. PubMed PMC
Nitschke L., Tewari A., Coffin S.L., Xhako E., Pang K., Gennarino V.A. miR760 regulates ATXN1 levels via interaction with its 5' untranslated region. Genes Dev. 2020;34:1147–1160. PubMed PMC
Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002;58:899–907. PubMed
Kikhney A.G., Borges C.R., Molodenskiy D.S., Jeffries C.M., Svergun D.I. SASBDB: Towards an automatically curated and validated repository for biological scattering data. Protein Sci. 2020;29:66–75. PubMed PMC
Karplus P.A., Diederichs K. Linking crystallographic model and data quality. Science (New York, NY) 2012;336:1030–1033. PubMed PMC
Chen V.B., Arendall W.B., 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. PubMed PMC
Schneidman-Duhovny D., Hammel M., Tainer J.A., Sali A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 2013;105:962–974. PubMed PMC
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex