Structural basis of ubiquitin ligase Nedd4-2 autoinhibition and regulation by calcium and 14-3-3 proteins
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-04686S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
67985823
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
90254
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
52310440
International Visegrad Fund (IVF)
PubMed
40419858
PubMed Central
PMC12106849
DOI
10.1038/s41467-025-60207-4
PII: 10.1038/s41467-025-60207-4
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- proteiny 14-3-3 * metabolismus chemie MeSH
- ubikvitinace MeSH
- ubikvitinligasy Nedd4 * metabolismus chemie genetika ultrastruktura MeSH
- vápník * metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Nedd4 protein, human MeSH Prohlížeč
- Nedd4L protein, human MeSH Prohlížeč
- proteiny 14-3-3 * MeSH
- ubikvitinligasy Nedd4 * MeSH
- vápník * MeSH
Nedd4-2 E3 ligase regulates Na+ homeostasis by ubiquitinating various channels and membrane transporters, including the epithelial sodium channel ENaC. In turn, Nedd4-2 dysregulation leads to various conditions, including electrolytic imbalance, respiratory distress, hypertension, and kidney diseases. However, Nedd4-2 regulation remains mostly unclear. The present study aims at elucidating Nedd4-2 regulation by structurally characterizing Nedd4-2 and its complexes using several biophysical techniques. Our cryo-EM reconstruction shows that the C2 domain blocks the E2-binding surface of the HECT domain. This blockage, ubiquitin-binding exosite masking by the WW1 domain, catalytic C922 blockage and HECT domain stabilization provide the structural basis for Nedd4-2 autoinhibition. Furthermore, Ca2+-dependent C2 membrane binding disrupts C2/HECT interactions, but not Ca2+ alone, whereas 14-3-3 protein binds to a flexible region of Nedd4-2 containing the WW2 and WW3 domains, thereby inhibiting its catalytic activity and membrane binding. Overall, our data provide key mechanistic insights into Nedd4-2 regulation toward fostering the development of strategies targeting Nedd4-2 function.
Zobrazit více v PubMed
Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med.20, 1242–1253 (2014). PubMed
Foot, N., Henshall, T. & Kumar, S. Ubiquitination and the regulation of membrane proteins. Physiol. Rev.97, 253–281 (2017). PubMed
Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol.10, 398–409 (2009). PubMed
Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE3, e1487 (2008). PubMed PMC
Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem.86, 129–157 (2017). PubMed
Harvey, K. F. & Kumar, S. Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions. Trends Cell Biol.9, 166–169 (1999). PubMed
Staub, O. et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J.15, 2371–2380 (1996). PubMed PMC
Goel, P., Manning, J. A. & Kumar, S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene557, 1–10 (2015). PubMed PMC
Bernassola, F., Chillemi, G. & Melino, G. HECT-Type E3 Ubiquitin ligases in cancer. Trends Biochem. Sci.44, 1057–1075 (2019). PubMed
Rizzo, F. & Staub, O. NEDD4-2 and salt-sensitive hypertension. Curr. Opin. Nephrol. Hypertens.24, 111–116 (2015). PubMed
Vanli-Yavuz, E. N. et al. Investigation of the possible association of NEDD4-2 (NEDD4L) gene with idiopathic photosensitive epilepsy. Acta Neurol. Belg.115, 241–245 (2015). PubMed
Mund, T., Lewis, M. J., Maslen, S. & Pelham, H. R. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc. Natl Acad. Sci. USA111, 16736–16741 (2014). PubMed PMC
Sudol, M. Structure and function of the WW domain. Prog. Biophys. Mol. Biol.65, 113–132 (1996). PubMed
Plant, P. J., Yeger, H., Staub, O., Howard, P. & Rotin, D. The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J. Biol. Chem.272, 32329–32336 (1997). PubMed
Kim, H. C. & Huibregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell Biol.29, 3307–3318 (2009). PubMed PMC
Wang, J. et al. Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J. Biol. Chem.285, 12279–12288 (2010). PubMed PMC
Escobedo, A. et al. Structural basis of the activation and degradation mechanisms of the E3 ubiquitin ligase Nedd4L. Structure22, 1446–1457 (2014). PubMed
Wiesner, S. et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell130, 651–662 (2007). PubMed
Mari, S. et al. Structural and functional framework for the autoinhibition of Nedd4-family ubiquitin ligases. Structure22, 1639–1649 (2014). PubMed
Chen, Z. et al. A tunable brake for HECT ubiquitin ligases. Mol. Cell66, 345–357 e346 (2017). PubMed PMC
Zhu, K. et al. Allosteric auto-inhibition and activation of the Nedd4 family E3 ligase Itch. EMBO Rep.18, 1618–1630 (2017). PubMed PMC
Wang, Z. et al. A multi-lock inhibitory mechanism for fine-tuning enzyme activities of the HECT family E3 ligases. Nat. Commun.10, 3162 (2019). PubMed PMC
Maspero, E. et al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep.12, 342–349 (2011). PubMed PMC
Maspero, E. et al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol.20, 696–701 (2013). PubMed
Bhalla, V. et al. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol. Endocrinol.19, 3073–3084 (2005). PubMed
Ichimura, T. et al. 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J. Biol. Chem.280, 13187–13194 (2005). PubMed
Chandran, S. et al. Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem.286, 37830–37840 (2011). PubMed PMC
Pohl, P., Joshi, R., Petrvalska, O., Obsil, T. & Obsilova, V. 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun. Biol.4, 899 (2021). PubMed PMC
Joshi, R. et al. Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophys. J.121, 1299–1311 (2022). PubMed PMC
Ishikawa, K. et al. Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro. DNA Res.4, 307–313 (1997). PubMed
Fotia, A. B. et al. The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J.17, 70–72 (2003). PubMed
Kamadurai, H. B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol. Cell36, 1095–1102 (2009). PubMed PMC
French, M. E., Kretzmann, B. R. & Hicke, L. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. J. Biol. Chem.284, 12071–12079 (2009). PubMed PMC
Zhang, W. et al. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol. Cell62, 121–136 (2016). PubMed PMC
Nalefski, E. A. & Falke, J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci.5, 2375–2390 (1996). PubMed PMC
Petoukhov, M. V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr.45, 342–350 (2012). PubMed PMC
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.157, 105–132 (1982). PubMed
Obsilova, V. & Obsil, T. Structural insights into the functional roles of 14-3-3 proteins. Front. Mol. Biosci.9, 1016071 (2022). PubMed PMC
Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science286, 1321–1326 (1999). PubMed
Verdecia, M. A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell11, 249–259 (2003). PubMed
Eletr, Z. M. & Kuhlman, B. Sequence determinants of E2-E6AP binding affinity and specificity. J. Mol. Biol.369, 419–428 (2007). PubMed PMC
Ogunjimi, A. A. et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell19, 297–308 (2005). PubMed
Persaud, A. et al. Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity. Sci. Signal7, ra95 (2014). PubMed
Todaro, D. R., Augustus-Wallace, A. C., Klein, J. M. & Haas, A. L. The mechanism of neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2)/NEDD4L-catalyzed polyubiquitin chain assembly. J. Biol. Chem.292, 19521–19536 (2017). PubMed PMC
Todaro, D. R., Augustus-Wallace, A. C., Klein, J. M. & Haas, A. L. Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly. J. Biol. Chem.293, 18192–18206 (2018). PubMed PMC
Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S. & Dyda, F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell105, 257–267 (2001). PubMed
Obsilova, V. et al. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem.279, 4531–4540 (2004). PubMed
Meyer, S., Savaresi, S., Forster, I. C. & Dutzler, R. Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat. Struct. Mol. Biol.14, 60–67 (2007). PubMed
Wellhauser, L. et al. Nucleotides bind to the C-terminus of ClC-5. Biochem. J.398, 289–294 (2006). PubMed PMC
Das, S., Dixon, J. E. & Cho, W. Membrane-binding and activation mechanism of PTEN. Proc. Natl Acad. Sci. USA100, 7491–7496 (2003). PubMed PMC
Ansell, G. B. Form and Function of Phospholipids (Elsevier Scientific Pub. Co., 1973).
Julkowska, M. M., Rankenberg, J. M. & Testerink, C. Liposome-binding assays to assess specificity and affinity of phospholipid-protein interactions. Methods Mol. Biol.1009, 261–271 (2013). PubMed
Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc.2, 2212–2221 (2007). PubMed
Laue, T. M., Shah, B. D., Ridgeway, T. M. & Pelletier, S. L. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds Harding, S. E., Rowe, A. J. & Horton, J. C.) (Royal Society of Chemistry, 1992).
Brautigam, C. A. Calculations and publication-quality illustrations for analytical ultracentrifugation data. Methods Enzymol.562, 109–133 (2015). PubMed
Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J.78, 1606–1619 (2000). PubMed PMC
Dam, J., Velikovsky, C. A., Mariuzza, R. A., Urbanke, C. & Schuck, P. Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys. J.89, 619–634 (2005). PubMed PMC
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods14, 290–296 (2017). PubMed
Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ6, 5–17 (2019). PubMed PMC
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D. Struct. Biol.75, 861–877 (2019). PubMed PMC
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr.60, 2126–2132 (2004). PubMed
Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature628, 450–457 (2024). PubMed PMC
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci.27, 293–315 (2018). PubMed PMC
Trcka, F. et al. Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell Proteom.18, 320–337 (2019). PubMed PMC
Kavan, D. & Man, P. MSTools-web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom.302, 53–58 (2011).
Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods16, 595–602 (2019). PubMed PMC
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res.50, D543–D552 (2022). PubMed PMC
Panjkovich, A. & Svergun, D. I. CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics34, 1944–1946 (2018). PubMed PMC
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr.36, 1277–1282 (2003).
Svergun, D. I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr.25, 495–503 (1992).
Yang, X. et al. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl Acad. Sci. USA103, 17237–17242 (2006). PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC
Grant, T. D. Ab initio electron density determination directly from solution scattering data. Nat. Methods15, 191–193 (2018). PubMed