Reactivity Factors in Catalytic Methanogenesis and Their Tuning upon Coenzyme F430 Biosynthesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37043414
PubMed Central
PMC10141249
DOI
10.1021/jacs.3c00469
Knihovny.cz E-zdroje
- MeSH
- biokatalýza MeSH
- katalýza MeSH
- metaloporfyriny * chemie MeSH
- methan chemie MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- factor F430 MeSH Prohlížeč
- metaloporfyriny * MeSH
- methan MeSH
Methyl-coenzyme M reductase, responsible for the biological production of methane by catalyzing the reaction between coenzymes B (CoBS-H) and M (H3C-SCoM), hosts in its core an F430 cofactor with the low-valent NiI ion. The critical methanogenic step involves F430-assisted reductive cleavage of the H3C-S bond in coenzyme M, yielding the transient CH3 radical capable of hydrogen atom abstraction from the S-H bond in coenzyme B. Here, we computationally explored whether and why F430 is unique for methanogenesis in comparison to four identified precursors formed consecutively during its biosynthesis. Indeed, all precursors are less proficient than the native F430, and catalytic competence improves at each biosynthetic step toward F430. Against the expectation that F430 is tuned to be the strongest possible reductant to expedite the rate-determining reductive cleavage of H3C-S by NiI, we discovered the opposite. The unfavorable increase in reduction potential along the F430 biosynthetic pathway is outweighed by strengthening of the Ni-S bond formed upon reductive cleavage of the H3C-S bond. We found that F430 is the weakest electron donor, compared to its precursors, giving rise to the most covalent Ni-S bond, which stabilizes the transition state and hence reduces the rate-determining barrier. In addition, the transition state displays high pro-reactive motion of the transient CH3 fragment toward the H-S bond, superior to its biosynthetic ancestors and likely preventing the formation of a deleterious radical intermediate. Thus, we show a plausible view of how the evolutionary driving force shaped the biocatalytic proficiency of F430 toward CH4 formation.
Zobrazit více v PubMed
Prakash D.; Wu Y.; Suh S. J.; Duin E. C. Elucidating the process of activation of methyl-coenzyme M reductase. J. Bacteriol. 2014, 196, 2491–2498. 10.1128/JB.01658-14. PubMed DOI PMC
Lide D. R. (Ed.) CRC handbook of chemistry and physics; CRC press, 2004; Vol. 85.
Allen K. D.; Wegener G.; White R. H. Discovery of multiple modified F-430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F-430 in nature. Appl. Environ. Microbiol. 2014, 80, 6403–6412. 10.1128/AEM.02202-14. PubMed DOI PMC
Richard R. M.; Ball D. W. Ab initio calculations on the thermodynamic properties of azaborospiropentanes. J. Mol. Model. 2008, 14, 871–878. 10.1007/s00894-008-0329-5. PubMed DOI
Thauer R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 1998, 144, 2377–2406. 10.1099/00221287-144-9-2377. PubMed DOI
Krüger M.; Meyerdierks A.; Glöckner F. O.; Amann R.; Widdel F.; Kube M.; Shima S. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 2003, 426, 878–881. 10.1038/nature02207. PubMed DOI
Shima S.; Krueger M.; Weinert T.; Demmer U.; Kahnt J.; Thauer R. K.; Ermler U. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 2012, 481, 98–101. 10.1038/nature10663. PubMed DOI
Scheller S.; Goenrich M.; Boecher R.; Thauer R. K.; Jaun B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 2010, 465, 606–608. 10.1038/nature09015. PubMed DOI
Shima S.; Thauer R. K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr. Opin. Microbiol. 2005, 8, 643–648. 10.1016/j.mib.2005.10.002. PubMed DOI
Timmers P. H. A.; Welte C. U.; Koehorst J. J.; Plugge C. M.; Jetten M. S. M.; Stams A. J. M. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017, 2017, 165423710.1155/2017/1654237. PubMed DOI PMC
Lemaire O. N.; Wagner T. A Structural View of Alkyl-Coenzyme M Reductases, the First Step of Alkane Anaerobic Oxidation Catalyzed by Archaea. Biochemistry 2022, 61, 805–821. 10.1021/acs.biochem.2c00135. PubMed DOI PMC
Thauer R. K. Methyl (alkyl)-coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 2019, 58, 5198–5220. 10.1021/acs.biochem.9b00164. PubMed DOI PMC
Lane N.The Vital Question: Why is Life the Way it is?; Profile Books, 2016.
Ermler U.; Grabarse W.; Shima S.; Goubeaud M.; Thauer R. K. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 1997, 278, 1457–1462. 10.1126/science.278.5342.1457. PubMed DOI
Dey M.; Li X.; Kunz R. C.; Ragsdale S. W. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue. Biochemistry 2010, 49, 10902–10911. 10.1021/bi101562m. PubMed DOI
Signor L.; Knuppe C.; Hug R.; Schweizer B.; Pfaltz A.; Jaun B. Methane formation by reaction of a methyl Thioether with a photo-excited nickel Thiolate—a process mimicking methanogenesis in Archaea. Chem. – Eur. J. 2000, 6, 3508–3516. 10.1002/1521-3765(20001002)6:19<3508::AID-CHEM3508>3.0.CO;2-W. PubMed DOI
Grabarse W.; Mahlert F.; Duin E. C.; Goubeaud M.; Shima S.; Thauer R. K.; Victor L.; Ermler U. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J. Mol. Biol. 2001, 309, 315–330. 10.1006/jmbi.2001.4647. PubMed DOI
Duin E. C.; McKee M. L. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations. J. Phys. Chem. B 2008, 112, 2466–2482. 10.1021/jp709860c. PubMed DOI
Pelmenschikov V.; Blomberg M. R.; Siegbahn P. E.; Crabtree R. H. A mechanism from quantum chemical studies for methane formation in methanogenesis. J. Am. Chem. Soc. 2002, 124, 4039–4049. 10.1021/ja011664r. PubMed DOI
Pelmenschikov V.; Siegbahn P. E. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation. J. Biol. Inorg. Chem. 2003, 8, 653–662. 10.1007/s00775-003-0461-8. PubMed DOI
Chen S. L.; Blomberg M. R.; Siegbahn P. E. How Is Methane Formed and Oxidized Reversibly When Catalyzed by Ni-Containing Methyl-Coenzyme M Reductase?. Chem. – Eur. J. 2012, 18, 6309–6315. 10.1002/chem.201200274. PubMed DOI
Patwardhan A.; Sarangi R.; Ginovska B.; Raugei S.; Ragsdale S. W. Nickel–sulfonate mode of substrate binding for forward and reverse reactions of methyl-SCoM reductase suggest a radical mechanism involving long-range electron transfer. J. Am. Chem. Soc. 2021, 143, 5481–5496. 10.1021/jacs.1c01086. PubMed DOI
Chen S. L.; Blomberg M. R.; Siegbahn P. E. An investigation of possible competing mechanisms for Ni-containing methyl–coenzyme M reductase. Phys. Chem. Chem. Phys. 2014, 16, 14029–14035. 10.1039/c4cp01483a. PubMed DOI
Wongnate T.; Sliwa D.; Ginovska B.; Smith D.; Wolf M. W.; Lehnert N.; Simone R.; Ragsdale S. W. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 2016, 352, 953–958. 10.1126/science.aaf0616. PubMed DOI
Moore S. J.; Sowa S. T.; Schuchardt C.; Deery E.; Lawrence A. D.; Ramos J. V.; Billig S.; Birkemeyer C.; Chivers P. T.; Howard M. J.; Rigby S. E. J.; Layer G.; Warren M. J. Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 2017, 543, 78–82. 10.1038/nature21427. PubMed DOI PMC
Becke A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. 10.1063/1.464304. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Hay P. J.; Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. 10.1063/1.448799. DOI
Wadt W. R.; Hay P. J. Ab initio effective core potentials for molecular calculations – potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. 10.1063/1.448800. DOI
Hay P. J.; Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. 10.1063/1.448975. DOI
Francl M. M.; Pietro W. J.; Hehre W. J.; Binkley J. S.; Gordon M. S.; DeFrees D. J.; Pople J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. 10.1063/1.444267. DOI
Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. 10.1002/jcc.10189. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16 Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.
Biegler-König F. W.; Bader R. F. W.; Tang T.-H. Calculation of the Average Properties of Atoms in Molecules. II. J. Comput. Chem. 1982, 3, 317–328. 10.1002/jcc.540030306. DOI
Kelly C. P.; Cramer C. J.; Truhlar D. G. Aqueous Solvation Free Energies of Ions and Ion-Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton. J. Phys. Chem. B 2006, 110, 16066–16081. 10.1021/jp063552y. PubMed DOI
Holliger C.; Pierik A. J.; Reijerse E. J.; Hagen W. R. A spectroelectrochemical study of factor F430 nickel (II/I) from methanogenic bacteria in aqueous solution. J. Am. Chem. Soc. 1993, 115, 5651–5656. 10.1021/ja00066a034. DOI
Jaun B.; Pfaltz A. Coenzyme F430 from methanogenic bacteria: reversible one-electron reduction of F430 pentamethyl ester to the nickel (I) form. J. Chem. Soc., Chem. Commun. 1986, 513, 1327–1329. 10.1039/C39860001327. DOI
Zilbermann I.; Maimon E.; Cohen H.; Meyerstein D. Redox chemistry of nickel complexes in aqueous solutions. Chem. Rev. 2005, 105, 2609–2626. 10.1021/cr030717f. PubMed DOI
Kratky C.; Fässler A.; Pfaltz A.; Kräutler B.; Jaun B.; Eschenmoser A. Chemistry of corphinoids: structural properties of corphinoid nickel (II) complexes related to coenzyme F430. J. Chem. Soc., Chem. Commun. 1984, 1368–1371. 10.1039/C39840001368. DOI
Chalupský J.Charmol: Program for molecular graphics, 2018. https://sourceforge.net/projects/charmol (accessed Jun 19, 2022).
Widmark P.-O.; Malmqvist P.-Å.; Roos B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 1990, 77, 291–306. 10.1007/BF01120130. DOI
Roos B. O.; Lindh R.; Malmqvist P.-Å.; Veryazov V.; Widmark P.-O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851–2858. 10.1021/jp031064+. DOI
Roos B. O.; Lindh R.; Malmqvist P.-Å.; Veryazov V.; Widmark P.-O. New Relativistic ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575–6579. 10.1021/jp0581126. PubMed DOI
Stoychev G. L.; Auer A. A.; Neese F. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017, 13, 554–562. 10.1021/acs.jctc.6b01041. PubMed DOI
Douglas M.; Kroll N. M. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 1974, 82, 89–155. 10.1016/0003-4916(74)90333-9. DOI
Hess B. A. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 1986, 33, 3742–3748. 10.1103/PhysRevA.33.3742. PubMed DOI
Jansen G.; Hess B. A. Revision of the Douglas-Kroll transformation. Phys. Rev. A 1989, 39, 6016–6017. 10.1103/PhysRevA.39.6016. PubMed DOI
Ruedenberg K.; Schmidt M.; Gilbert M.; Elbert S. Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model. Chem. Phys. 1982, 71, 41–49. 10.1016/0301-0104(82)87004-3. DOI
Roos B. O. The complete active space self-consistent field method and its applications in electronic structure calculations. Adv. Chem. Phys. 1987, 69, 399–445. 10.1002/9780470142943.ch7. DOI
Yanai T.; Kurashige Y.; Mizukami W.; Chalupský J.; Lan T. N.; Saitow M. Density matrix renormalization group for ab initio Calculations and associated dynamic correlation methods: A review of theory and applications. Int. J. Quantum Chem. 2015, 115, 283–299. 10.1002/qua.24808. DOI
Maldonado-Domínguez M.; Bím D.; Fučík R.; Čurík R.; Srnec M. Reactive mode composition factor analysis of transition states: The case of coupled electron–proton transfers. Phys. Chem. Chem. Phys. 2019, 21, 24912–24918. 10.1039/C9CP05131G. PubMed DOI
Bharadwaz P.; Maldonado-Domínguez M.; Srnec M. Bifurcating reactions: distribution of products from energy distribution in a shared reactive mode. Chem. Sci. 2021, 12, 12682–12694. 10.1039/D1SC02826J. PubMed DOI PMC
Maldonado-Dominguez M.; Srnec M. Understanding and predicting post H-atom abstraction selectivity through reactive mode composition factor analysis. J. Am. Chem. Soc. 2020, 142, 3947–3958. 10.1021/jacs.9b12800. PubMed DOI
Sun Y.; Benabbas A.; Zeng W.; Kleingardner J. G.; Bren K. L.; Champion P. M. Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 6570–6575. 10.1073/pnas.1322274111. PubMed DOI PMC
Wiberg K. B.; Frisch M. J. Effect of Conjugation of Electron Distributions. Separation of σ and π Terms. J. Chem. Theory Comput. 2016, 12, 1220–1227. 10.1021/acs.jctc.5b01149. PubMed DOI
Lu T.; Chen F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. 10.1002/jcc.22885. PubMed DOI