Reactivity Factors in Catalytic Methanogenesis and Their Tuning upon Coenzyme F430 Biosynthesis

. 2023 Apr 26 ; 145 (16) : 9039-9051. [epub] 20230412

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37043414

Methyl-coenzyme M reductase, responsible for the biological production of methane by catalyzing the reaction between coenzymes B (CoBS-H) and M (H3C-SCoM), hosts in its core an F430 cofactor with the low-valent NiI ion. The critical methanogenic step involves F430-assisted reductive cleavage of the H3C-S bond in coenzyme M, yielding the transient CH3 radical capable of hydrogen atom abstraction from the S-H bond in coenzyme B. Here, we computationally explored whether and why F430 is unique for methanogenesis in comparison to four identified precursors formed consecutively during its biosynthesis. Indeed, all precursors are less proficient than the native F430, and catalytic competence improves at each biosynthetic step toward F430. Against the expectation that F430 is tuned to be the strongest possible reductant to expedite the rate-determining reductive cleavage of H3C-S by NiI, we discovered the opposite. The unfavorable increase in reduction potential along the F430 biosynthetic pathway is outweighed by strengthening of the Ni-S bond formed upon reductive cleavage of the H3C-S bond. We found that F430 is the weakest electron donor, compared to its precursors, giving rise to the most covalent Ni-S bond, which stabilizes the transition state and hence reduces the rate-determining barrier. In addition, the transition state displays high pro-reactive motion of the transient CH3 fragment toward the H-S bond, superior to its biosynthetic ancestors and likely preventing the formation of a deleterious radical intermediate. Thus, we show a plausible view of how the evolutionary driving force shaped the biocatalytic proficiency of F430 toward CH4 formation.

Zobrazit více v PubMed

Prakash D.; Wu Y.; Suh S. J.; Duin E. C. Elucidating the process of activation of methyl-coenzyme M reductase. J. Bacteriol. 2014, 196, 2491–2498. 10.1128/JB.01658-14. PubMed DOI PMC

Lide D. R. (Ed.) CRC handbook of chemistry and physics; CRC press, 2004; Vol. 85.

Allen K. D.; Wegener G.; White R. H. Discovery of multiple modified F-430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F-430 in nature. Appl. Environ. Microbiol. 2014, 80, 6403–6412. 10.1128/AEM.02202-14. PubMed DOI PMC

Richard R. M.; Ball D. W. Ab initio calculations on the thermodynamic properties of azaborospiropentanes. J. Mol. Model. 2008, 14, 871–878. 10.1007/s00894-008-0329-5. PubMed DOI

Thauer R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 1998, 144, 2377–2406. 10.1099/00221287-144-9-2377. PubMed DOI

Krüger M.; Meyerdierks A.; Glöckner F. O.; Amann R.; Widdel F.; Kube M.; Shima S. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 2003, 426, 878–881. 10.1038/nature02207. PubMed DOI

Shima S.; Krueger M.; Weinert T.; Demmer U.; Kahnt J.; Thauer R. K.; Ermler U. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 2012, 481, 98–101. 10.1038/nature10663. PubMed DOI

Scheller S.; Goenrich M.; Boecher R.; Thauer R. K.; Jaun B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 2010, 465, 606–608. 10.1038/nature09015. PubMed DOI

Shima S.; Thauer R. K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr. Opin. Microbiol. 2005, 8, 643–648. 10.1016/j.mib.2005.10.002. PubMed DOI

Timmers P. H. A.; Welte C. U.; Koehorst J. J.; Plugge C. M.; Jetten M. S. M.; Stams A. J. M. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017, 2017, 165423710.1155/2017/1654237. PubMed DOI PMC

Lemaire O. N.; Wagner T. A Structural View of Alkyl-Coenzyme M Reductases, the First Step of Alkane Anaerobic Oxidation Catalyzed by Archaea. Biochemistry 2022, 61, 805–821. 10.1021/acs.biochem.2c00135. PubMed DOI PMC

Thauer R. K. Methyl (alkyl)-coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 2019, 58, 5198–5220. 10.1021/acs.biochem.9b00164. PubMed DOI PMC

Lane N.The Vital Question: Why is Life the Way it is?; Profile Books, 2016.

Ermler U.; Grabarse W.; Shima S.; Goubeaud M.; Thauer R. K. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 1997, 278, 1457–1462. 10.1126/science.278.5342.1457. PubMed DOI

Dey M.; Li X.; Kunz R. C.; Ragsdale S. W. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue. Biochemistry 2010, 49, 10902–10911. 10.1021/bi101562m. PubMed DOI

Signor L.; Knuppe C.; Hug R.; Schweizer B.; Pfaltz A.; Jaun B. Methane formation by reaction of a methyl Thioether with a photo-excited nickel Thiolate—a process mimicking methanogenesis in Archaea. Chem. – Eur. J. 2000, 6, 3508–3516. 10.1002/1521-3765(20001002)6:19<3508::AID-CHEM3508>3.0.CO;2-W. PubMed DOI

Grabarse W.; Mahlert F.; Duin E. C.; Goubeaud M.; Shima S.; Thauer R. K.; Victor L.; Ermler U. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J. Mol. Biol. 2001, 309, 315–330. 10.1006/jmbi.2001.4647. PubMed DOI

Duin E. C.; McKee M. L. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations. J. Phys. Chem. B 2008, 112, 2466–2482. 10.1021/jp709860c. PubMed DOI

Pelmenschikov V.; Blomberg M. R.; Siegbahn P. E.; Crabtree R. H. A mechanism from quantum chemical studies for methane formation in methanogenesis. J. Am. Chem. Soc. 2002, 124, 4039–4049. 10.1021/ja011664r. PubMed DOI

Pelmenschikov V.; Siegbahn P. E. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation. J. Biol. Inorg. Chem. 2003, 8, 653–662. 10.1007/s00775-003-0461-8. PubMed DOI

Chen S. L.; Blomberg M. R.; Siegbahn P. E. How Is Methane Formed and Oxidized Reversibly When Catalyzed by Ni-Containing Methyl-Coenzyme M Reductase?. Chem. – Eur. J. 2012, 18, 6309–6315. 10.1002/chem.201200274. PubMed DOI

Patwardhan A.; Sarangi R.; Ginovska B.; Raugei S.; Ragsdale S. W. Nickel–sulfonate mode of substrate binding for forward and reverse reactions of methyl-SCoM reductase suggest a radical mechanism involving long-range electron transfer. J. Am. Chem. Soc. 2021, 143, 5481–5496. 10.1021/jacs.1c01086. PubMed DOI

Chen S. L.; Blomberg M. R.; Siegbahn P. E. An investigation of possible competing mechanisms for Ni-containing methyl–coenzyme M reductase. Phys. Chem. Chem. Phys. 2014, 16, 14029–14035. 10.1039/c4cp01483a. PubMed DOI

Wongnate T.; Sliwa D.; Ginovska B.; Smith D.; Wolf M. W.; Lehnert N.; Simone R.; Ragsdale S. W. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 2016, 352, 953–958. 10.1126/science.aaf0616. PubMed DOI

Moore S. J.; Sowa S. T.; Schuchardt C.; Deery E.; Lawrence A. D.; Ramos J. V.; Billig S.; Birkemeyer C.; Chivers P. T.; Howard M. J.; Rigby S. E. J.; Layer G.; Warren M. J. Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 2017, 543, 78–82. 10.1038/nature21427. PubMed DOI PMC

Becke A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. 10.1063/1.464304. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI

Hay P. J.; Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. 10.1063/1.448799. DOI

Wadt W. R.; Hay P. J. Ab initio effective core potentials for molecular calculations – potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. 10.1063/1.448800. DOI

Hay P. J.; Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. 10.1063/1.448975. DOI

Francl M. M.; Pietro W. J.; Hehre W. J.; Binkley J. S.; Gordon M. S.; DeFrees D. J.; Pople J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. 10.1063/1.444267. DOI

Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. 10.1002/jcc.10189. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16 Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.

Biegler-König F. W.; Bader R. F. W.; Tang T.-H. Calculation of the Average Properties of Atoms in Molecules. II. J. Comput. Chem. 1982, 3, 317–328. 10.1002/jcc.540030306. DOI

Kelly C. P.; Cramer C. J.; Truhlar D. G. Aqueous Solvation Free Energies of Ions and Ion-Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton. J. Phys. Chem. B 2006, 110, 16066–16081. 10.1021/jp063552y. PubMed DOI

Holliger C.; Pierik A. J.; Reijerse E. J.; Hagen W. R. A spectroelectrochemical study of factor F430 nickel (II/I) from methanogenic bacteria in aqueous solution. J. Am. Chem. Soc. 1993, 115, 5651–5656. 10.1021/ja00066a034. DOI

Jaun B.; Pfaltz A. Coenzyme F430 from methanogenic bacteria: reversible one-electron reduction of F430 pentamethyl ester to the nickel (I) form. J. Chem. Soc., Chem. Commun. 1986, 513, 1327–1329. 10.1039/C39860001327. DOI

Zilbermann I.; Maimon E.; Cohen H.; Meyerstein D. Redox chemistry of nickel complexes in aqueous solutions. Chem. Rev. 2005, 105, 2609–2626. 10.1021/cr030717f. PubMed DOI

Kratky C.; Fässler A.; Pfaltz A.; Kräutler B.; Jaun B.; Eschenmoser A. Chemistry of corphinoids: structural properties of corphinoid nickel (II) complexes related to coenzyme F430. J. Chem. Soc., Chem. Commun. 1984, 1368–1371. 10.1039/C39840001368. DOI

Chalupský J.Charmol: Program for molecular graphics, 2018. https://sourceforge.net/projects/charmol (accessed Jun 19, 2022).

Widmark P.-O.; Malmqvist P.-Å.; Roos B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 1990, 77, 291–306. 10.1007/BF01120130. DOI

Roos B. O.; Lindh R.; Malmqvist P.-Å.; Veryazov V.; Widmark P.-O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851–2858. 10.1021/jp031064+. DOI

Roos B. O.; Lindh R.; Malmqvist P.-Å.; Veryazov V.; Widmark P.-O. New Relativistic ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575–6579. 10.1021/jp0581126. PubMed DOI

Stoychev G. L.; Auer A. A.; Neese F. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017, 13, 554–562. 10.1021/acs.jctc.6b01041. PubMed DOI

Douglas M.; Kroll N. M. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 1974, 82, 89–155. 10.1016/0003-4916(74)90333-9. DOI

Hess B. A. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 1986, 33, 3742–3748. 10.1103/PhysRevA.33.3742. PubMed DOI

Jansen G.; Hess B. A. Revision of the Douglas-Kroll transformation. Phys. Rev. A 1989, 39, 6016–6017. 10.1103/PhysRevA.39.6016. PubMed DOI

Ruedenberg K.; Schmidt M.; Gilbert M.; Elbert S. Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model. Chem. Phys. 1982, 71, 41–49. 10.1016/0301-0104(82)87004-3. DOI

Roos B. O. The complete active space self-consistent field method and its applications in electronic structure calculations. Adv. Chem. Phys. 1987, 69, 399–445. 10.1002/9780470142943.ch7. DOI

Yanai T.; Kurashige Y.; Mizukami W.; Chalupský J.; Lan T. N.; Saitow M. Density matrix renormalization group for ab initio Calculations and associated dynamic correlation methods: A review of theory and applications. Int. J. Quantum Chem. 2015, 115, 283–299. 10.1002/qua.24808. DOI

Maldonado-Domínguez M.; Bím D.; Fučík R.; Čurík R.; Srnec M. Reactive mode composition factor analysis of transition states: The case of coupled electron–proton transfers. Phys. Chem. Chem. Phys. 2019, 21, 24912–24918. 10.1039/C9CP05131G. PubMed DOI

Bharadwaz P.; Maldonado-Domínguez M.; Srnec M. Bifurcating reactions: distribution of products from energy distribution in a shared reactive mode. Chem. Sci. 2021, 12, 12682–12694. 10.1039/D1SC02826J. PubMed DOI PMC

Maldonado-Dominguez M.; Srnec M. Understanding and predicting post H-atom abstraction selectivity through reactive mode composition factor analysis. J. Am. Chem. Soc. 2020, 142, 3947–3958. 10.1021/jacs.9b12800. PubMed DOI

Sun Y.; Benabbas A.; Zeng W.; Kleingardner J. G.; Bren K. L.; Champion P. M. Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 6570–6575. 10.1073/pnas.1322274111. PubMed DOI PMC

Wiberg K. B.; Frisch M. J. Effect of Conjugation of Electron Distributions. Separation of σ and π Terms. J. Chem. Theory Comput. 2016, 12, 1220–1227. 10.1021/acs.jctc.5b01149. PubMed DOI

Lu T.; Chen F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. 10.1002/jcc.22885. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...