Bifurcating reactions: distribution of products from energy distribution in a shared reactive mode

. 2021 Oct 06 ; 12 (38) : 12682-12694. [epub] 20210823

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34703554

Bifurcating reactions yield two different products emerging from one single transition state and are therefore archetypal examples of reactions that cannot be described within the framework of the traditional Eyring's transition state theory (TST). With the growing number and importance of these reactions in organic and biosynthetic chemistry, there is also an increasing demand for a theoretical tool that would allow for the accurate quantification of reaction outcome at low cost. Here, we introduce such an approach that fulfils these criteria, by evaluating bifurcation selectivity through the energy distribution within the reactive mode of the key transition state. The presented method yields an excellent agreement with experimentally reported product ratios and predicts the correct selectivity for 89% of nearly 50 various cases, covering pericyclic reactions, rearrangements, fragmentations and metal-catalyzed processes as well as a series of trifurcating reactions. With 71% of product ratios determined within the error of less than 20%, we also found that the methodology outperforms three other tested protocols introduced recently in the literature. Given its predictive power, the procedure makes reaction design feasible even in the presence of complex non-TST chemical steps.

Zobrazit více v PubMed

Modern Physical Organic Chemistry, ed. E. V. Anslyn and D. A. Dougherty, University Science Books, Sausalito, CA, 2006

Bao J. L. Truhlar D. G. Chem. Soc. Rev. 2017;46:7548–7596. PubMed

Ess D. H. Wheeler S. E. Iafe R. G. Xu L. Çelebi-Ölçüm N. Houk K. N. Angew. Chem., Int. Ed. 2008;47:7592–7601. PubMed PMC

Rehbein J. Carpenter B. K. Phys. Chem. Chem. Phys. 2011;13:20906–20922. PubMed

Hare S. R. Tantillo D. J. Pure Appl. Chem. 2017;89:679–698.

Singleton D. A. Hang C. Szymanski M. J. Meyer M. P. Leach A. G. Kuwata K. T. Chen J. S. Greer A. Foote C. S. Houk K. N. J. Am. Chem. Soc. 2003;125:1319–1328. PubMed

Bekele T. Christian C. F. Lipton M. A. Singleton D. A. J. Am. Chem. Soc. 2005;127:9216–9223. PubMed PMC

Litovitz A. E. Keresztes I. Carpenter B. K. J. Am. Chem. Soc. 2008;130:12085–12094. PubMed PMC

Glowacki D. R. Marsden S. P. Pilling M. J. J. Am. Chem. Soc. 2009;131:13896–13897. PubMed

Wang Z. Hirschi J. S. Singleton D. A. Angew. Chem., Int. Ed. 2009;48:9156–9159. PubMed PMC

Patel A. Chen Z. Yang Z. Gutierrez O. Liu H. Houk K. N. Singleton D. A. J. Am. Chem. Soc. 2016;138:3631–3634. PubMed PMC

Pasto D. J. Garves K. Serve M. P. J. Org. Chem. 1967;32:774–778.

Hare S. R. Li A. Tantillo D. J. Chem. Sci. 2018;9:8937–8945. PubMed PMC

Hong Y. J. Tantillo D. J. Org. Biomol. Chem. 2010;8:4589–4600. PubMed

Noey E. L. Wang X. Houk K. N. J. Org. Chem. 2011;76:3477–3483. PubMed

Hong Y. J. Tantillo D. J. Nat. Chem. 2014;6:104–111. PubMed

Ang S. J. Wang W. Schwalbe-Koda D. Axelrod S. Gómez-Bombarelli R. Chem. 2021;7:738–751.

Hare S. R. Pemberton R. P. Tantillo D. J. J. Am. Chem. Soc. 2017;139:7485–7493. PubMed

Peterson T. H. Carpenter B. K. J. Am. Chem. Soc. 1992;114:766–767.

Yang Z. Dong X. Yu Y. Yu P. Li Y. Jamieson C. Houk K. N. J. Am. Chem. Soc. 2018;140:3061–3067. PubMed

Li B. Li Y. Dang Y. Houk K. N. ACS Catal. 2021;11:6816–6824.

Zhang H. Novak A. J. E. Jamieson C. S. Xue X.-S. Chen S. Trauner D. Houk K. N. J. Am. Chem. Soc. 2021;143:6601–6608. PubMed PMC

Jamieson C. S. Sengupta A. Houk K. N. J. Am. Chem. Soc. 2021;143:3918–3926. PubMed

Lee S. Goodman J. M. J. Am. Chem. Soc. 2020;142:9210–9219. PubMed

Lee S. Goodman J. M. Org. Biomol. Chem. 2021;19:3940–3947. PubMed

Maldonado-Domínguez M. Bím D. Fučík R. Čurík R. Srnec M. Phys. Chem. Chem. Phys. 2019;21:24912–24918. PubMed

Maldonado-Domínguez M. Srnec M. J. Am. Chem. Soc. 2020;142:3947–3958. PubMed

Becke A. D. J. Chem. Phys. 1993;98:5648–5652.

Weigend F. Alhrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. PubMed

Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. PubMed

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. PubMed

Cossi M. Rega N. Scalmani G. Barone V. J. Comput. Chem. 2003;24:669–681. PubMed

Chai J. D. Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615–6620. PubMed

Adamo C. Barone V. J. Chem. Phys. 1998;108:664–675.

Francl M. M. Pietro W. J. Hehre W. J. J. Chem. Phys. 1982;77:3654–3665.

Linder M. Brinck T. Phys. Chem. Chem. Phys. 2013;15:5108–5114. PubMed

Ussing B. R. Hang C. Singleton D. A. J. Am. Chem. Soc. 2006;128:7594–7607. PubMed PMC

Schlegel H. B. Millam J. M. Iyengar S. S. Voth G. A. Scuseria G. E. Daniels A. D. Frisch M. J. J. Chem. Phys. 2001;114:9758–9763.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016

Kikouchi H. Singleton D. A. Nat. Chem. 2018;10:237–241. PubMed PMC

Quijano L. M. M. Singleton D. A. J. Am. Chem. Soc. 2011;133:13824–13827. PubMed PMC

Doubleday C. Hase W. L. J. Phys. Chem. A. 1998;102:3648–3658.

Hanessian S. Compain P. Tetrahedron. 2002;58:6521–6529.

Denmark S. E. Kesler B. S. Moon Y. C. J. Org. Chem. 1992;57:4912–4924.

Çelebi-Ölçüm N. Ess D. H. Aviyente V. Houk K. N. J. Am. Chem. Soc. 2007;129:4528–4529. PubMed

Limanto J. Khuong K. S. Houk K. N. J. Am. Chem. Soc. 2003;125:16310–16321. PubMed

Harmata M. Gomes M. G. Eur. J. Org. Chem. 2006:2273–2277.

Thomas J. B. Waas J. R. Harmata M. Singleton D. A. J. Am. Chem. Soc. 2008;130:14544–14555. PubMed PMC

Wang Z. Hirschi J. S. Singleton D. A. Angew. Chem., Int. Ed. 2009;48:9156–9159. PubMed PMC

Schmittel M. Keller M. Kiau S. Strittmatter M. Chem.–Eur. J. 1997;3:807–816.

Yamabe S. Dai T. Minato T. Machiguchi T. Hasegawa T. J. Am. Chem. Soc. 1996;118:6518–6519.

Yu P. Chen T. Q. Yang Z. He C. Q. Patel A. Lam Y. H. Liu C. Y. Houk K. N. J. Am. Chem. Soc. 2017;139:8251–8258. PubMed

Chen S. Yu P. Houk K. N. J. Am. Chem. Soc. 2018;140:18124–18131. PubMed

Ohashi M. Liu F. Hai Y. Chen M. Tang M. C. Yang Z. Sato M. Watanabe K. Houk K. N. Tang Y. Nature. 2017;549:502–506. PubMed PMC

Villar López R. Faza O. N. Silva López C. J. Org. Chem. 2017;82:4758–4765. PubMed

Ye L. Wang Y. Aue D. H. Zhang L. J. Am. Chem. Soc. 2012;134:31–34. PubMed PMC

Campos R. B. Tantillo D. J. Chem. 2019;5:227–236.

Katori T. Itoh S. Sato M. Yamataka H. J. Am. Chem. Soc. 2010;132:3413–3422. PubMed

Mandal N. Datta A. J. Phys. Chem. B. 2018;122:1239–1244. PubMed

Major D. T. Weitman M. J. Am. Chem. Soc. 2012;134:19454–19462. PubMed

Bogle X. S. Singleton D. A. Org. Lett. 2012;14:2528–2531. PubMed PMC

Carpenter B. K. Angew. Chem., Int. Ed. 1998;37:3340–3350. PubMed

Khrapunovich M. Zelenova E. Seu L. Sabo A. N. Flatherty A. Merrer D. C. J. Org. Chem. 2007;72:7574–7580. PubMed

Itoh S. Yoshimura N. Sato M. Yamataka H. J. Org. Chem. 2011;76:8294–8299. PubMed

Jamieson C. S. Sengupta A. Houk K. N. J. Am. Chem. Soc. 2021;143:3918–3926. PubMed

Merrer D. C. Rablen P. R. J. Org. Chem. 2005;70:1630–1635. PubMed

Khrapunovich M. Zelenova E. Seu L. Sabo A. N. Flaherty A. Merrer D. C. J. Org. Chem. 2007;72:7574–7580. PubMed

Hong Y. J. Tantillo D. J. Nat. Chem. 2014;6:104–111. PubMed

Noey E. L. Yang Z. Li Y. Yu H. Richey R. N. Merritt J. M. Kjell D. P. Houk K. N. J. Org. Chem. 2017;82:5904–5909. PubMed

Kim H. J. Ruszczycky M. W. Choi S. H. Liu Y. N. Liu H. W. Nature. 2011;473:109–112. PubMed PMC

Xue X. S. Jamieson C. S. García-Borrás M. Dong X. Yang Z. Houk K. N. J. Am. Chem. Soc. 2019;141:1217–1221. PubMed

Liu C. Y. Ding S. T. J. Org. Chem. 1992;57:4539–4544.

Liu C. Y. Ding S. T. Chen S. Y. You C. Y. Shie H. Y. J. Org. Chem. 1993;58:1628–1630.

Itoh S. Yoshimura N. Sato M. Yamataka H. J. Org. Chem. 2011;76:8294–8299. PubMed

Sweeny B. C. Pan H. Kassem A. Sawyer J. C. Ard S. G. Shuman N. S. Viggiano A. A. Brickel S. Unke O. T. Upadhyay M. Meuwly M. Phys. Chem. Chem. Phys. 2020;22:8913–8923. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...