Bifurcating reactions: distribution of products from energy distribution in a shared reactive mode
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34703554
PubMed Central
PMC8494029
DOI
10.1039/d1sc02826j
PII: d1sc02826j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Bifurcating reactions yield two different products emerging from one single transition state and are therefore archetypal examples of reactions that cannot be described within the framework of the traditional Eyring's transition state theory (TST). With the growing number and importance of these reactions in organic and biosynthetic chemistry, there is also an increasing demand for a theoretical tool that would allow for the accurate quantification of reaction outcome at low cost. Here, we introduce such an approach that fulfils these criteria, by evaluating bifurcation selectivity through the energy distribution within the reactive mode of the key transition state. The presented method yields an excellent agreement with experimentally reported product ratios and predicts the correct selectivity for 89% of nearly 50 various cases, covering pericyclic reactions, rearrangements, fragmentations and metal-catalyzed processes as well as a series of trifurcating reactions. With 71% of product ratios determined within the error of less than 20%, we also found that the methodology outperforms three other tested protocols introduced recently in the literature. Given its predictive power, the procedure makes reaction design feasible even in the presence of complex non-TST chemical steps.
Zobrazit více v PubMed
Modern Physical Organic Chemistry, ed. E. V. Anslyn and D. A. Dougherty, University Science Books, Sausalito, CA, 2006
Bao J. L. Truhlar D. G. Chem. Soc. Rev. 2017;46:7548–7596. PubMed
Ess D. H. Wheeler S. E. Iafe R. G. Xu L. Çelebi-Ölçüm N. Houk K. N. Angew. Chem., Int. Ed. 2008;47:7592–7601. PubMed PMC
Rehbein J. Carpenter B. K. Phys. Chem. Chem. Phys. 2011;13:20906–20922. PubMed
Hare S. R. Tantillo D. J. Pure Appl. Chem. 2017;89:679–698.
Singleton D. A. Hang C. Szymanski M. J. Meyer M. P. Leach A. G. Kuwata K. T. Chen J. S. Greer A. Foote C. S. Houk K. N. J. Am. Chem. Soc. 2003;125:1319–1328. PubMed
Bekele T. Christian C. F. Lipton M. A. Singleton D. A. J. Am. Chem. Soc. 2005;127:9216–9223. PubMed PMC
Litovitz A. E. Keresztes I. Carpenter B. K. J. Am. Chem. Soc. 2008;130:12085–12094. PubMed PMC
Glowacki D. R. Marsden S. P. Pilling M. J. J. Am. Chem. Soc. 2009;131:13896–13897. PubMed
Wang Z. Hirschi J. S. Singleton D. A. Angew. Chem., Int. Ed. 2009;48:9156–9159. PubMed PMC
Patel A. Chen Z. Yang Z. Gutierrez O. Liu H. Houk K. N. Singleton D. A. J. Am. Chem. Soc. 2016;138:3631–3634. PubMed PMC
Pasto D. J. Garves K. Serve M. P. J. Org. Chem. 1967;32:774–778.
Hare S. R. Li A. Tantillo D. J. Chem. Sci. 2018;9:8937–8945. PubMed PMC
Hong Y. J. Tantillo D. J. Org. Biomol. Chem. 2010;8:4589–4600. PubMed
Noey E. L. Wang X. Houk K. N. J. Org. Chem. 2011;76:3477–3483. PubMed
Hong Y. J. Tantillo D. J. Nat. Chem. 2014;6:104–111. PubMed
Ang S. J. Wang W. Schwalbe-Koda D. Axelrod S. Gómez-Bombarelli R. Chem. 2021;7:738–751.
Hare S. R. Pemberton R. P. Tantillo D. J. J. Am. Chem. Soc. 2017;139:7485–7493. PubMed
Peterson T. H. Carpenter B. K. J. Am. Chem. Soc. 1992;114:766–767.
Yang Z. Dong X. Yu Y. Yu P. Li Y. Jamieson C. Houk K. N. J. Am. Chem. Soc. 2018;140:3061–3067. PubMed
Li B. Li Y. Dang Y. Houk K. N. ACS Catal. 2021;11:6816–6824.
Zhang H. Novak A. J. E. Jamieson C. S. Xue X.-S. Chen S. Trauner D. Houk K. N. J. Am. Chem. Soc. 2021;143:6601–6608. PubMed PMC
Jamieson C. S. Sengupta A. Houk K. N. J. Am. Chem. Soc. 2021;143:3918–3926. PubMed
Lee S. Goodman J. M. J. Am. Chem. Soc. 2020;142:9210–9219. PubMed
Lee S. Goodman J. M. Org. Biomol. Chem. 2021;19:3940–3947. PubMed
Maldonado-Domínguez M. Bím D. Fučík R. Čurík R. Srnec M. Phys. Chem. Chem. Phys. 2019;21:24912–24918. PubMed
Maldonado-Domínguez M. Srnec M. J. Am. Chem. Soc. 2020;142:3947–3958. PubMed
Becke A. D. J. Chem. Phys. 1993;98:5648–5652.
Weigend F. Alhrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. PubMed
Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. PubMed
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. PubMed
Cossi M. Rega N. Scalmani G. Barone V. J. Comput. Chem. 2003;24:669–681. PubMed
Chai J. D. Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615–6620. PubMed
Adamo C. Barone V. J. Chem. Phys. 1998;108:664–675.
Francl M. M. Pietro W. J. Hehre W. J. J. Chem. Phys. 1982;77:3654–3665.
Linder M. Brinck T. Phys. Chem. Chem. Phys. 2013;15:5108–5114. PubMed
Ussing B. R. Hang C. Singleton D. A. J. Am. Chem. Soc. 2006;128:7594–7607. PubMed PMC
Schlegel H. B. Millam J. M. Iyengar S. S. Voth G. A. Scuseria G. E. Daniels A. D. Frisch M. J. J. Chem. Phys. 2001;114:9758–9763.
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016
Kikouchi H. Singleton D. A. Nat. Chem. 2018;10:237–241. PubMed PMC
Quijano L. M. M. Singleton D. A. J. Am. Chem. Soc. 2011;133:13824–13827. PubMed PMC
Doubleday C. Hase W. L. J. Phys. Chem. A. 1998;102:3648–3658.
Hanessian S. Compain P. Tetrahedron. 2002;58:6521–6529.
Denmark S. E. Kesler B. S. Moon Y. C. J. Org. Chem. 1992;57:4912–4924.
Çelebi-Ölçüm N. Ess D. H. Aviyente V. Houk K. N. J. Am. Chem. Soc. 2007;129:4528–4529. PubMed
Limanto J. Khuong K. S. Houk K. N. J. Am. Chem. Soc. 2003;125:16310–16321. PubMed
Harmata M. Gomes M. G. Eur. J. Org. Chem. 2006:2273–2277.
Thomas J. B. Waas J. R. Harmata M. Singleton D. A. J. Am. Chem. Soc. 2008;130:14544–14555. PubMed PMC
Wang Z. Hirschi J. S. Singleton D. A. Angew. Chem., Int. Ed. 2009;48:9156–9159. PubMed PMC
Schmittel M. Keller M. Kiau S. Strittmatter M. Chem.–Eur. J. 1997;3:807–816.
Yamabe S. Dai T. Minato T. Machiguchi T. Hasegawa T. J. Am. Chem. Soc. 1996;118:6518–6519.
Yu P. Chen T. Q. Yang Z. He C. Q. Patel A. Lam Y. H. Liu C. Y. Houk K. N. J. Am. Chem. Soc. 2017;139:8251–8258. PubMed
Chen S. Yu P. Houk K. N. J. Am. Chem. Soc. 2018;140:18124–18131. PubMed
Ohashi M. Liu F. Hai Y. Chen M. Tang M. C. Yang Z. Sato M. Watanabe K. Houk K. N. Tang Y. Nature. 2017;549:502–506. PubMed PMC
Villar López R. Faza O. N. Silva López C. J. Org. Chem. 2017;82:4758–4765. PubMed
Ye L. Wang Y. Aue D. H. Zhang L. J. Am. Chem. Soc. 2012;134:31–34. PubMed PMC
Campos R. B. Tantillo D. J. Chem. 2019;5:227–236.
Katori T. Itoh S. Sato M. Yamataka H. J. Am. Chem. Soc. 2010;132:3413–3422. PubMed
Mandal N. Datta A. J. Phys. Chem. B. 2018;122:1239–1244. PubMed
Major D. T. Weitman M. J. Am. Chem. Soc. 2012;134:19454–19462. PubMed
Bogle X. S. Singleton D. A. Org. Lett. 2012;14:2528–2531. PubMed PMC
Carpenter B. K. Angew. Chem., Int. Ed. 1998;37:3340–3350. PubMed
Khrapunovich M. Zelenova E. Seu L. Sabo A. N. Flatherty A. Merrer D. C. J. Org. Chem. 2007;72:7574–7580. PubMed
Itoh S. Yoshimura N. Sato M. Yamataka H. J. Org. Chem. 2011;76:8294–8299. PubMed
Jamieson C. S. Sengupta A. Houk K. N. J. Am. Chem. Soc. 2021;143:3918–3926. PubMed
Merrer D. C. Rablen P. R. J. Org. Chem. 2005;70:1630–1635. PubMed
Khrapunovich M. Zelenova E. Seu L. Sabo A. N. Flaherty A. Merrer D. C. J. Org. Chem. 2007;72:7574–7580. PubMed
Hong Y. J. Tantillo D. J. Nat. Chem. 2014;6:104–111. PubMed
Noey E. L. Yang Z. Li Y. Yu H. Richey R. N. Merritt J. M. Kjell D. P. Houk K. N. J. Org. Chem. 2017;82:5904–5909. PubMed
Kim H. J. Ruszczycky M. W. Choi S. H. Liu Y. N. Liu H. W. Nature. 2011;473:109–112. PubMed PMC
Xue X. S. Jamieson C. S. García-Borrás M. Dong X. Yang Z. Houk K. N. J. Am. Chem. Soc. 2019;141:1217–1221. PubMed
Liu C. Y. Ding S. T. J. Org. Chem. 1992;57:4539–4544.
Liu C. Y. Ding S. T. Chen S. Y. You C. Y. Shie H. Y. J. Org. Chem. 1993;58:1628–1630.
Itoh S. Yoshimura N. Sato M. Yamataka H. J. Org. Chem. 2011;76:8294–8299. PubMed
Sweeny B. C. Pan H. Kassem A. Sawyer J. C. Ard S. G. Shuman N. S. Viggiano A. A. Brickel S. Unke O. T. Upadhyay M. Meuwly M. Phys. Chem. Chem. Phys. 2020;22:8913–8923. PubMed
Reactivity Factors in Catalytic Methanogenesis and Their Tuning upon Coenzyme F430 Biosynthesis