Allergic reactions to tick saliva components in zebrafish model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MCIN/AEI/10.13039/501100011033
Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación
BIOGAL PID2020-116761GB-I00
European Regional Development Fund
PubMed
37468955
PubMed Central
PMC10357745
DOI
10.1186/s13071-023-05874-2
PII: 10.1186/s13071-023-05874-2
Knihovny.cz E-zdroje
- Klíčová slova
- Allergy, Alpha-gal syndrome, Glycan, Tick, Zebrafish,
- MeSH
- dánio pruhované metabolismus MeSH
- galaktosa MeSH
- imunoglobulin E MeSH
- imunoglobulin M MeSH
- klíště * MeSH
- kousnutí klíštětem * MeSH
- lidé MeSH
- potravinová alergie * etiologie MeSH
- proteiny členovců MeSH
- savci MeSH
- sliny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galaktosa MeSH
- imunoglobulin E MeSH
- imunoglobulin M MeSH
- proteiny členovců MeSH
BACKGROUND: Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS: Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS: Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS: Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.
Zobrazit více v PubMed
Van Nunen SA, O’Connor KS, Clarke LR, Boyle RX, Fernando SL. An association between tick bite reactions and red meat allergy in humans. Med J Aust. 2009;190:510–511. doi: 10.5694/j.1326-5377.2009.tb02533.x. PubMed DOI
Mullins RJ, James H, Platts-Mills TAE, Commins S. Relationship between red meat allergy and sensitization to gelatin and galactose-α-1,3-galactose. J Allergy Clin Immunol. 2012;129:1334–42.e1. doi: 10.1016/j.jaci.2012.02.038. PubMed DOI PMC
Çelebioğlu E, Akarsu A, Şahiner ÜM. IgE-mediated food allergy throughout life. Turk J Med Sci. 2021;51:49–60. doi: 10.3906/sag-2006-95. PubMed DOI PMC
Ramasamy R. Mosquito vector proteins homologous to α1-3 galactosyl transferases of tick vectors in the context of protective immunity against malaria and hypersensitivity to vector bites. Parasit Vectors. 2021;14:303. doi: 10.1186/s13071-021-04801-7. PubMed DOI PMC
Galili U. Evolution in primates by “Catastrophic-selection” interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural anti-carbohydrate antibodies. Am J Phys Anthropol. 2019;168:352–363. doi: 10.1002/ajpa.23745. PubMed DOI
Kersh GJ, Salzer J, Jones ES, et al. Tick bite as a risk factor for alpha-gal-specific immunoglobulin E antibodies and development of alpha-gal syndrome. Ann Allergy Asthma Immunol. 2023;130:472–478. doi: 10.1016/j.anai.2022.11.021. PubMed DOI PMC
Sharma SR, Karim S. Tick saliva and the alpha-gal syndrome: finding a needle in a haystack. Front Cell Infect Microbiol. 2021;11:680264. doi: 10.3389/fcimb.2021.680264. PubMed DOI PMC
Carson AS, Gardner A, Iweala OI. Where’s the beef? Understanding allergic responses to red meat in Alpha-Gal Syndrome. J Immunol. 2022;208:267–277. doi: 10.4049/jimmunol.2100712. PubMed DOI PMC
Cabezas-Cruz A, Hodžić A, Román-Carrasco P, Mateos-Hernández L, Duscher GG, Sinha DK, et al. Environmental and molecular drivers of the α-Gal syndrome. Front Immunol. 2019;10:1210. doi: 10.3389/fimmu.2019.01210. PubMed DOI PMC
Saretta F, Giovannini M, Mori F, Arasi S, Liotti L, Pecoraro L, et al. Alpha-Gal Syndrome in children: peculiarities of a “tick-borne” allergic disease. Front Pediatr. 2021;9:801753. doi: 10.3389/fped.2021.801753. PubMed DOI PMC
Chandrasekhar JL, Cox KM, Erickson LD. B Cell responses in the development of mammalian meat allergy. Front Immunol. 2020;11:1532. doi: 10.3389/fimmu.2020.01532. PubMed DOI PMC
Apostolovic D, Rodrigues R, Thomas P, Starkhammar M, Hamsten C, van Hage M. Immunoprofile of α-Gal- and B-antigen-specific responses differentiates red meat-allergic patients from healthy individuals. Allergy. 2018;73:1525–1531. doi: 10.1111/all.13400. PubMed DOI
Apostolovic D, Mihailovic J, Commins SP, Wijnveld M, Kazimirova M, Starkhammar M, et al. Allergenomics of the tick Ixodes ricinus reveals important α-Gal-carrying IgE-binding proteins in red meat allergy. Allergy. 2020;75:217–220. doi: 10.1111/all.13978. PubMed DOI PMC
Chung CH, Chan E, Morse M, Hosen J, Zhou Q, Hicklin DJ. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. New England J Med. 2008;358:1109–1117. doi: 10.1056/NEJMoa074943. PubMed DOI PMC
Cabezas-Cruz A, Espinosa PJ, Alberdi P, Šimo L, Valdés JJ, Mateos-Hernánde L, et al. Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. Sci Rep. 2018;8:14224. doi: 10.1038/s41598-018-32664-z. PubMed DOI PMC
Sharma SR, Crispell G, Mohamed A, Cox C, Lange J, Choudhary S, et al. Alpha-Gal Syndrome: Involvement of Amblyomma americanum α-D-Galactosidase and β-1,4 Galactosyltransferase enzymes in α-Gal metabolism. Front Cell Infect Microbiol. 2021;11:775371. doi: 10.3389/fcimb.2021.775371. PubMed DOI PMC
Vora A, Taank V, Dutta SM, Anderson JF, Fish D, Sonenshine DE, et al. Ticks elicit variable fibrinogenolytic activities upon feeding on hosts with different immune backgrounds. Sci Rep. 2017;7:44593. doi: 10.1038/srep44593. PubMed DOI PMC
Nuttall PA. Wonders of tick saliva. Ticks Tick-borne Dis. 2019;10:470–481. doi: 10.1016/j.ttbdis.2018.11.005. PubMed DOI
Villar M, Pacheco I, Merino O, Contreras M, Mateos-Hernández L, Padro E, et al. Tick and host derived compounds detected in the cement complex substance. Biomolecules. 2020;10:E555. doi: 10.3390/biom10040555. PubMed DOI PMC
Neelakanta G, Sultana H. Tick saliva and salivary glands: what do we know so far on their role in arthropod blood feeding and pathogen transmission. Front Cell Infect Microbiol. 2022;11:816547. doi: 10.3389/fcimb.2021.816547. PubMed DOI PMC
Zhou J, Gong H, Zhou Y, Xuan X, Fujisaki K. Identification of a glycine-rich protein from the tick Rhipicephalus haemaphysaloides and evaluation of its vaccine potential against tick feeding. Parasitol Res. 2006;100:77–84. doi: 10.1007/s00436-006-0243-7. PubMed DOI
Vaz-Rodrigues R, Mazuecos L, de la Fuente J. current and future strategies for the diagnosis and treatment of the Alpha-Gal Syndrome (AGS) J Asthma Allergy. 2022;15:957–970. doi: 10.2147/JAA.S265660. PubMed DOI PMC
Villar M, Pacheco I, Mateos-Hernández L, et al. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev Proteomics. 2021;18:1099–1116. doi: 10.1080/14789450.2021.2018305. PubMed DOI
Contreras M, Pacheco I, Alberdi P, Díaz-Sánchez S, Artigas-Jerónimo S, Mateos-Hernández L, et al. Allergic reactions and immunity in response to tick salivary biogenic substances and red meat consumption in the zebrafish model. Front Cell Infect Microbiol. 2020;10:78. doi: 10.3389/fcimb.2020.00078. PubMed DOI PMC
Kageyama R, Fujiyama T, Satoh T, Keneko Y, Kitano S, Tokura Y, et al. The contribution made by skin-infiltrating basophils to the development of alpha gal syndrome. Allergy. 2019;74:1805–1807. doi: 10.1111/all.13794. PubMed DOI
Balla KM, Lugo-Villarino G, Spitsbergen JM, et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood. 2010;116:3944–3954. doi: 10.1182/blood-2010-03-267419. PubMed DOI PMC
Li CL, Liu N. Expression of interleukin-1β, interleukin-4, interferon-γ and tumour necrosis factor α in different tissue in a dinitrochlorobenzene-induced ear swelling test in mice. Skin Res Technol. 2023;29:e13255. doi: 10.1111/srt.13255. PubMed DOI PMC
KrstićRistivojević M, Apostolović D, Smiljanić K. Enterocytes in food hypersensitivity reactions. Animals. 2021;11:2713. doi: 10.3390/ani11092713. PubMed DOI PMC
Bailone RL, de Aguiar LK, de Oliveira Roca R, Borra RC, Corrêa T, Janke H, Fukushima HCS. Zebrafish as an animal model for food safety research: Trends in the animal research. Food Biotechnol. 2019;33:283–302. doi: 10.1080/08905436.2019.1673173. DOI
Fuentes-Appelgren P, Opazo R, Barros L, Feijoó CG, Urzúa V, Romero J. Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish. Zebrafish. 2014;11:41–49. doi: 10.1089/zeb.2013.0934. PubMed DOI
Macdougall JD, Thomas KO, Iweala OI. The meat of the matter: understanding and managing alpha-gal syndrome. Immunotargets Ther. 2022;11:37–54. doi: 10.2147/ITT.S276872. PubMed DOI PMC
Mashoof S, Criscitiello M. Fish immunoglobulins. Biology. 2016;5:45. doi: 10.3390/biology5040045. PubMed DOI PMC
Kýčková K, Kopecký J. Effect of tick saliva on mechanisms of innate immune response against Borrelia afzelii. J Med Entomol. 2006;43:1208–1214. doi: 10.1093/jmedent/43.6.1208. PubMed DOI
Narasimhan S, Kurokawa C, Diktas H, Strank NO, Černý J, Murfin K, et al. Ixodes scapularis saliva components that elicit responses associated with acquired tick-resistance. Ticks Tick Borne Dis. 2020;11:101369. doi: 10.1016/j.ttbdis.2019.101369. PubMed DOI PMC
Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1:2856–2860. doi: 10.1038/nprot.2006.468. PubMed DOI
Matthews M, Varga ZM. Anesthesia and euthanasia in zebrafish. ILAR J. 2012;53:192–204. doi: 10.1093/ilar.53.2.192. PubMed DOI
Lu Y, Shao A, Shan Y, Zhao H, Leiguo M, Zhang Y, Tang Y, Zhang W, Jin Y, Xu L. A standardized quantitative method for detecting remnant alpha-Gal antigen in animal tissues or animal tissue-derived biomaterials and its application. Sci Rep. 2018;8:15424. doi: 10.1038/s41598-018-32959-1. PubMed DOI PMC
Obukhova P, Tsygankova S, Chinarev A, et al. Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? [published correction appears in Glycobiology. 2020 May 19;30(6):415]. Glycobiology. 2020;30:395-406. 10.1093/glycob/cwz107 PubMed
Pacheco I, Díaz-Sánchez S, Contreras M, et al. Probiotic bacteria with high Alpha-Gal content protect zebrafish against mycobacteriosis. Pharmaceuticals. 2021;14:635. doi: 10.3390/ph14070635. PubMed DOI PMC
Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984;160:1519–1531. doi: 10.1084/jem.160.5.1519. PubMed DOI PMC
Mateos-Hernández L, Villar M, Moral A, Rodríguez CG, Arias TA, de la Osa V, et al. Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget. 2017;8:20630–20644. doi: 10.18632/oncotarget.15243. PubMed DOI PMC
de la Fuente J, Urra JM, Contreras M, Pacheco I, Ferreras-Colina E, Doncel-Pérez E, et al. A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Res. 2021;9:1366. 10.12688/f1000research.27495.2 PubMed PMC
Pacheco I, Fernández de Mera IG, Feo Brito F, Gómez Torrijos E, Villar M, Contreras M, et al. Characterization of the anti-α-Gal antibody profile in association with Guillain-Barré syndrome, implications for tick-related allergic reactions. Ticks Tick Borne Dis. 2021;12:101651. 10.1016/j.ttbdis.2021.101651 PubMed
Young I, Prematunge C, Pussegoda K, Corrin T, Waddell L. Tick exposures and alpha-gal syndrome: a systematic review of the evidence. Ticks Tick Borne Dis. 2021;12:101674. doi: 10.1016/j.ttbdis.2021.101674. PubMed DOI
CDC. Alpha-gal syndrome | CDC. Centers for Disease Control and Prevention. Published March 28, 2022. https://www.cdc.gov/ticks/alpha-gal/index.html. Accessed 12 Sep 2022.
Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF. Pilocarpine induced behavioral and biochemical alterations in chronic seizure-like condition in adult zebrafish. Int J Mol Sci. 2020;21:2492. doi: 10.3390/ijms21072492. PubMed DOI PMC
Ribeiro JM, Zeidner NS, Ledin K, Dolan MC, Mather TN. How much pilocarpine contaminates pilocarpine-induced tick saliva? Med Vet Entomol. 2004;18:20–24. doi: 10.1111/j.0269-283x.2003.0469.x. PubMed DOI
Park Y, Kim D, Boorgula GD, De Schutter K, Smagghe G, Šimo L, Archer-Hartmann SA, Azadi P. Alpha-Gal and cross-reactive carbohydrate determinants in the N-glycans of salivary glands in the lone star tick. Amblyomma americanum Vaccines. 2020;8:18. doi: 10.3390/vaccines8010018. PubMed DOI PMC
Shilova NV, Navakouski MJ, Huflejt M, et al. Changes in the repertoire of natural antibodies caused by immunization with bacterial antigens. Biochemistry (Mosc) 2011;76:862–866. doi: 10.1134/S0006297911070170. PubMed DOI
Ricci Hagman J, Westman JS, Hellberg Å, Olsson ML. An update on the GLOB blood group system (and former GLOB collection) Immunohematology. 2018;34:161–163. doi: 10.21307/immunohematology-2018-026. PubMed DOI
Okajima T, Nakamura Y, Uchikawa M, et al. Expression cloning of human globoside synthase cDNAs. Identification of beta 3Gal-T3 as UDP-N-acetylgalactosamine:globotriaosylceramide beta 1,3-N-acetylgalactosaminyltransferase. J Biol Chem. 2000;275:40498–40503. doi: 10.1074/jbc.M006902200. PubMed DOI
Thuresson B, Westman JS, Olsson ML. Identification of a novel A4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups. Blood. 2011;117:678–687. doi: 10.1182/blood-2010-08-301333. PubMed DOI
Spitalnik PF, Spitalnik SL. The P blood group system: biochemical, serological, and clinical aspects. Transfus Med Rev. 1995;9:110–122. doi: 10.1016/s0887-7963(05)80050-1. PubMed DOI
Černý J, Lynn G, DePonte K, Ledizet M, Narasimhan S, Fikrig E. Fractionation of tick saliva reveals proteins associated with the development of acquired resistance to Ixodes scapularis. Vaccine. 2020;38:8121–8129. doi: 10.1016/j.vaccine.2020.10.087. PubMed DOI
Villar M, Urra JM, Rodríguez-Del-Río FJ, Artigas-Jerónimo S, Jiménez-Collados N, Ferreras-Colino E, et al. Characterization by quantitative serum proteomics of immune-related prognostic biomarkers for COVID-19 symptomatology. Front Immunol. 2021;12:730710. doi: 10.3389/fimmu.2021.730710. PubMed DOI PMC
Tan KW, Jobichen C, Ong TC, Gao YF, Tiong YS, Wong KN, et al. Crystal structure of Der f 7, a dust mite allergen from Dermatophagoides farinae. PLoS ONE. 2012;7:e44850. doi: 10.1371/journal.pone.0044850. PubMed DOI PMC