Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30242261
PubMed Central
PMC6154994
DOI
10.1038/s41598-018-32664-z
PII: 10.1038/s41598-018-32664-z
Knihovny.cz E-zdroje
- MeSH
- alfa-galaktosidasa genetika metabolismus MeSH
- Anaplasma phagocytophilum patogenita MeSH
- ehrlichióza genetika metabolismus MeSH
- galaktosyltransferasy metabolismus MeSH
- genom genetika MeSH
- HL-60 buňky MeSH
- infekce přenášené vektorem MeSH
- interakce hostitele a patogenu genetika MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proteiny členovců metabolismus MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-galaktosidasa MeSH
- galaktosyltransferasy MeSH
- GLA protein, human MeSH Prohlížeč
- proteiny členovců MeSH
The carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) is produced in all mammals except for humans, apes and old world monkeys that lost the ability to synthetize this carbohydrate. Therefore, humans can produce high antibody titers against α-Gal. Anti-α-Gal IgE antibodies have been associated with tick-induced allergy (i.e. α-Gal syndrome) and anti-α-Gal IgG/IgM antibodies may be involved in protection against malaria, leishmaniasis and Chagas disease. The α-Gal on tick salivary proteins plays an important role in the etiology of the α-Gal syndrome. However, whether ticks are able to produce endogenous α-Gal remains currently unknown. In this study, the Ixodes scapularis genome was searched for galactosyltransferases and three genes were identified as potentially involved in the synthesis of α-Gal. Heterologous gene expression in α-Gal-negative cells and gene knockdown in ticks confirmed that these genes were involved in α-Gal synthesis and are essential for tick feeding. Furthermore, these genes were shown to play an important role in tick-pathogen interactions. Results suggested that tick cells increased α-Gal levels in response to Anaplasma phagocytophilum infection to control bacterial infection. These results provided the molecular basis of endogenous α-Gal production in ticks and suggested that tick galactosyltransferases are involved in vector development, tick-pathogen interactions and possibly the etiology of α-Gal syndrome in humans.
Department of Virology Veterinary Research Institute Brno Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
SaBio Instituto de Investigación en Recursos Cinegéticos IREC 13005 Ciudad Real Spain
UMR BIPAR INRA Ecole Nationale Vétérinaire d'Alfort ANSES Université Paris Est Maisons Alfort France
Zobrazit více v PubMed
Hennet T. The galactosyltransferase family. Cell. Mol. Life. Sci. 2002;59:1081–1095. doi: 10.1007/s00018-002-8489-4. PubMed DOI PMC
Macher BA, Galili U. The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta. 2008;1780:75–88. doi: 10.1016/j.bbagen.2007.11.003. PubMed DOI PMC
Commins SP, et al. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose. J. Allergy. Clin. Immunol. 2011;127:1286–1293.e6. doi: 10.1016/j.jaci.2011.02.019. PubMed DOI PMC
Yilmaz B, et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014;159:1277–89. doi: 10.1016/j.cell.2014.10.053. PubMed DOI PMC
Cabezas-Cruz A, de la Fuente J. Immunity to α-Gal: Toward a Single-Antigen Pan-Vaccine To Control Major Infectious Diseases. ACS. Cent. Sci. 2017;3:1140–1142. doi: 10.1021/acscentsci.7b00517. PubMed DOI PMC
Cabezas-Cruz A, et al. Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases. Exp. Mol. Med. 2017;49:e301. doi: 10.1038/emm.2016.164. PubMed DOI PMC
Cabezas-Cruz A, Mateos-Hernández L, Chmelař J, Villar M, de la Fuente J. Salivary Prostaglandin E2: Role in Tick-Induced Allergy to Red Meat. Trends. Parasitol. 2017;33:495–498. doi: 10.1016/j.pt.2017.03.004. PubMed DOI
Milland J, Christiansen D, Sandrin MS. Alpha1,3-galactosyltransferase knockout pigs are available for xenotransplantation: are glycosyltransferases still relevant? Immunol. Cell. Biol. 2005;83:687–693. doi: 10.1111/j.1440-1711.2005.01398.x. PubMed DOI
Milland J, et al. The molecular basis for galalpha(1,3)gal expression in animals with a deletion of thealpha1,3galactosyltransferase gene. J. Immunol. 2006;176:2448–2454. doi: 10.4049/jimmunol.176.4.2448. PubMed DOI
Thorlacius-Ussing L, Ludvigsen M, Kirkeby S, Vorum H, Honoré B. Proteomic analysis of tissue from α1,3-galactosyltransferase knockout mice reveals that a wide variety of proteins and protein fragments change expression level. PLoS One. 2013;8:e80600. doi: 10.1371/journal.pone.0080600. PubMed DOI PMC
Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU. Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. J. Biol. Chem. 2000;275:25308–25314. doi: 10.1074/jbc.M002629200. PubMed DOI
Taylor SG, McKenzie IF, Sandrin MS. Characterization of the rat alpha(1,3)galactosyltransferase: evidence for two independent genes encoding glycosyltransferases that synthesize Galalpha(1,3)Gal by two separate glycosylation pathways. Glycobiology. 2003;13:327–337. doi: 10.1093/glycob/cwg030. PubMed DOI
Butler JR, et al. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection. Xenotransplantation. 2016;23:106–116. doi: 10.1111/xen.12217. PubMed DOI
Jennings MP, et al. Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol. Microbiol. 1998;29:975–984. doi: 10.1046/j.1365-2958.1998.00962.x. PubMed DOI
Ohashi T, Fujiyama K, Takegawa K. Identification of novel α1,3-galactosyltransferase and elimination of α-galactose-containing glycans by disruption of multiple α-galactosyltransferase genes in Schizosaccharomyces pombe. J. Biol. Chem. 2012;287:38866–38875. doi: 10.1074/jbc.M112.347351. PubMed DOI PMC
Chen C, et al. Biochemical characterization of the novel α-1,3-galactosyltransferase WclR from Escherichia coli O3. Carbohydr Res. 2016;430:36–43. doi: 10.1016/j.carres.2016.04.012. PubMed DOI
Bishop JR, Gagneux P. Evolution of carbohydrate antigens–microbial forces shaping host glycomes? Glycobiology. 2007;17:23R–34R. doi: 10.1093/glycob/cwm005. PubMed DOI
Cabezas-Cruz A, et al. Regulation of the Immune Response to α-Gal and Vector-borne Diseases. Trends. Parasitol. 2015;31:470–476. doi: 10.1016/j.pt.2015.06.016. PubMed DOI
Soares MP, Yilmaz B. Microbiota Control of Malaria Transmission. Trends Parasitol. 2016;32:120–130. doi: 10.1016/j.pt.2015.11.004. PubMed DOI
Araujo RN, et al. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int. J. Parasitol. 2016;46:213–220. doi: 10.1016/j.ijpara.2015.12.005. PubMed DOI PMC
Mateos-Hernández L, et al. Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget. 2017;8:20630–20644. doi: 10.18632/oncotarget.15243. PubMed DOI PMC
de la Fuente J, Estrada-Peña A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008;13:6938–6946. doi: 10.2741/3200. PubMed DOI
Kocan KM, de la Fuente J, Cabezas-Cruz A. The genus Anaplasma: new challenges after reclassification. Rev. Sci. Tech. 2015;34:577–586. doi: 10.20506/rst.34.2.2381. PubMed DOI
de la Fuente J, Estrada-Peña A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends. Microbiol. 2016;24:173–180. doi: 10.1016/j.tim.2015.12.001. PubMed DOI
de la Fuente J, et al. Tick-host-pathogen interactions: conflict and cooperation. PLoS. Pathog. 2016;12:e1005488. doi: 10.1371/journal.ppat.1005488. PubMed DOI PMC
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum–a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013;3:31. doi: 10.3389/fcimb.2013.00031. PubMed DOI PMC
Bonnet S, Nijhof A, de la Fuente J. Editorial: Tick-host-pathogen interactions. Front. Cell. Infect. Microbiol. 2018;8:194. doi: 10.3389/fcimb.2018.00194. PubMed DOI PMC
Lombard Vincent, Golaconda Ramulu Hemalatha, Drula Elodie, Coutinho Pedro M., Henrissat Bernard. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research. 2013;42(D1):D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Talhaoui I, et al. Identification of key functional residues in the active site of human β1,4-galactosyltransferase 7: a major enzyme in the glycosaminoglycan synthesis pathway. J. Biol. Chem. 2010;285:37342–37358. doi: 10.1074/jbc.M110.151951. PubMed DOI PMC
Coates BS, Sumerford DV, Hellmich RL, Lewis LC. A beta-1,3-galactosyltransferase and brainiac/bre5 homolog expressed in the midgut did not contribute to a Cry1Ab toxin resistance trait in Ostrinia nubilalis. Insect. Biochem. Mol. Biol. 2007;37:346–355. doi: 10.1016/j.ibmb.2006.12.008. PubMed DOI
Kaczmarek R, et al. Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase. Glycoconj. J. 2016;33:963–973. doi: 10.1007/s10719-016-9716-9. PubMed DOI PMC
Kaczmarek R, et al. Human Gb3/CD77 synthase reveals specificity toward two or four different acceptors depending on amino acid at position 211, creating P(k), P1 and NOR blood group antigens. Biochem. Biophys. Res. Commun. 2016;470:168–174. doi: 10.1016/j.bbrc.2016.01.017. PubMed DOI
Zhang Y, Wang PG, Brew K. Specificity and Mechanism of Metal Ion Activation in UDP-galactose:β Galactoside-α-1,3-galactosyltransferase. J. Biol. Chem. 2001;276:11567–11574. doi: 10.1074/jbc.M006530200. PubMed DOI
Galili U, LaTemple DC, Radic MZ. A sensitive assay for measuring alpha-Gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation. 1998;65:1129–1132. doi: 10.1097/00007890-199804270-00020. PubMed DOI
de la Fuente J, Kocan KM, Almazán C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends. Parasitol. 2007;23:427–433. doi: 10.1016/j.pt.2007.07.002. PubMed DOI
Ayllón N, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS. Genet. 2015;11:e1005120. doi: 10.1371/journal.pgen.1005120. PubMed DOI PMC
Villar M, et al. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells. Mol. Cell. Proteomics. 2015;14:3154–3172. doi: 10.1074/mcp.M115.051938. PubMed DOI PMC
Cabezas-Cruz A, et al. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics. 2016;11:303–319. doi: 10.1080/15592294.2016.1163460. PubMed DOI PMC
Cabezas-Cruz A, Alberdi P, Valdés JJ, Villar M, de la Fuente J. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Front. Cell. Infect. Microbiol. 2017;7:23. doi: 10.3389/fcimb.2017.00023. PubMed DOI PMC
Cabezas-Cruz A, Alberdi P, Valdés JJ, Villar M, de la Fuente J. Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum. Front. Biosciences. 2017;22:1830–1844. doi: 10.2741/4574. PubMed DOI
Platts-Mills TA, Schuyler AJ, Hoyt AE, Commins SP. Delayed Anaphylaxis Involving IgE to Galactose-alpha-1,3-galactose. Curr. Allergy. Asthma. Rep. 2015;15:12. doi: 10.1007/s11882-015-0512-6. PubMed DOI PMC
Hamsten C, et al. Identification of galactose-α-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy. 2013;68:549–552. doi: 10.1111/all.12128. PubMed DOI
Chinuki Y, Ishiwata K, Yamaji K, Takahashi H, Morita E. Haemaphysalis longicornis tick bites are a possible cause of red meat allergy in Japan. Allergy. 2016;71:421–425. doi: 10.1111/all.12804. PubMed DOI
Steinke JW, Platts-Mills TA, Commins SP. The alpha-gal story: lessons learned from connecting the dots. J. Allergy. Clin. Immunol. 2015;135:589–596. doi: 10.1016/j.jaci.2014.12.1947. PubMed DOI PMC
Duffy MS, Morris HR, Dell A, Appleton JA, Haslam SM. Protein glycosylation in Parelaphostrongylus tenuis–first description of the Galalpha1-3Gal sequence in a nematode. Glycobiology. 2006;16:854–862. doi: 10.1093/glycob/cwl001. PubMed DOI
Brown SJ, Galli SJ, Gleich GJ, Askenase PW. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in guinea pigs. J. Immunol. 1982;129:790–796. PubMed
Wada T, et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J. Clin. Invest. 2010;120:2867–2875. doi: 10.1172/JCI42680. PubMed DOI PMC
Nakahigashi K, Otsuka A, Tomari K, Miyachi Y, Kabashima K. Evaluation of basophil infiltration into the skin lesions of tick bites. Case. Rep. Dermatol. 2013;5:48–51. doi: 10.1159/000348650. PubMed DOI PMC
Mizumoto Shuji, Kosho Tomoki, Yamada Shuhei, Sugahara Kazuyuki. Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders. Pharmaceuticals. 2017;10(4):34. doi: 10.3390/ph10020034. PubMed DOI PMC
Alberdi P, et al. Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. Ticks. Tick. Borne. Dis. 2015;6:758–767. doi: 10.1016/j.ttbdis.2015.07.001. PubMed DOI
Seidman D, et al. Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog. 2015;11:e1004669. doi: 10.1371/journal.ppat.1004669. PubMed DOI PMC
Gulia-Nuss M, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507. doi: 10.1038/ncomms10507. PubMed DOI PMC
Finn RD, et al. Pfam: the protein families database. Nucleic. Acids. Res. 2014;42:D222–230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC
Marchler-Bauer A, et al. CDD: NCBI’s conserved domain database. Nucleic. Acids. Res. 2015;43:D222–226. doi: 10.1093/nar/gku1221. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Madden TL, Tatusov RL, Zhang J. Applications of network BLAST server. Methods. Enzymol. 1996;266:131–141. doi: 10.1016/S0076-6879(96)66011-X. PubMed DOI
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic. Acids. Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Berman HM, et al. The Protein Data Bank. Nucleic. Acids. Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic. Acids. Res. 2004;32:W526–31. doi: 10.1093/nar/gkh468. PubMed DOI PMC
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40. doi: 10.1186/1471-2105-9-40. PubMed DOI PMC
Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Katoh K, Standley D. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI
Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends. Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI
Bell-Sakyi L. Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J Comp Pathol. 2004;130:285–293. doi: 10.1016/j.jcpa.2003.12.002. PubMed DOI
de la Fuente J, et al. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell. Microbiol. 2005;7:549–559. doi: 10.1111/j.1462-5822.2004.00485.x. PubMed DOI
Merino M, et al. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31:5889–5896. doi: 10.1016/j.vaccine.2013.09.037. PubMed DOI
Moreno-Cid JA, et al. Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine. 2013;31:1187–1196. doi: 10.1016/j.vaccine.2012.12.073. PubMed DOI
Ayllón N, et al. Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect. Immun. 2013;81:2415–2425. doi: 10.1128/IAI.00194-13. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. PMCID: PMC55695 (2001). PubMed PMC
Koci J, Simo L, Park Y. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 2013;50:79–84. doi: 10.1603/ME12034. PubMed DOI PMC
Allergic reactions to tick saliva components in zebrafish model