Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development

. 2018 Sep 21 ; 8 (1) : 14224. [epub] 20180921

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30242261
Odkazy

PubMed 30242261
PubMed Central PMC6154994
DOI 10.1038/s41598-018-32664-z
PII: 10.1038/s41598-018-32664-z
Knihovny.cz E-zdroje

The carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) is produced in all mammals except for humans, apes and old world monkeys that lost the ability to synthetize this carbohydrate. Therefore, humans can produce high antibody titers against α-Gal. Anti-α-Gal IgE antibodies have been associated with tick-induced allergy (i.e. α-Gal syndrome) and anti-α-Gal IgG/IgM antibodies may be involved in protection against malaria, leishmaniasis and Chagas disease. The α-Gal on tick salivary proteins plays an important role in the etiology of the α-Gal syndrome. However, whether ticks are able to produce endogenous α-Gal remains currently unknown. In this study, the Ixodes scapularis genome was searched for galactosyltransferases and three genes were identified as potentially involved in the synthesis of α-Gal. Heterologous gene expression in α-Gal-negative cells and gene knockdown in ticks confirmed that these genes were involved in α-Gal synthesis and are essential for tick feeding. Furthermore, these genes were shown to play an important role in tick-pathogen interactions. Results suggested that tick cells increased α-Gal levels in response to Anaplasma phagocytophilum infection to control bacterial infection. These results provided the molecular basis of endogenous α-Gal production in ticks and suggested that tick galactosyltransferases are involved in vector development, tick-pathogen interactions and possibly the etiology of α-Gal syndrome in humans.

Zobrazit více v PubMed

Hennet T. The galactosyltransferase family. Cell. Mol. Life. Sci. 2002;59:1081–1095. doi: 10.1007/s00018-002-8489-4. PubMed DOI PMC

Macher BA, Galili U. The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta. 2008;1780:75–88. doi: 10.1016/j.bbagen.2007.11.003. PubMed DOI PMC

Commins SP, et al. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose. J. Allergy. Clin. Immunol. 2011;127:1286–1293.e6. doi: 10.1016/j.jaci.2011.02.019. PubMed DOI PMC

Yilmaz B, et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014;159:1277–89. doi: 10.1016/j.cell.2014.10.053. PubMed DOI PMC

Cabezas-Cruz A, de la Fuente J. Immunity to α-Gal: Toward a Single-Antigen Pan-Vaccine To Control Major Infectious Diseases. ACS. Cent. Sci. 2017;3:1140–1142. doi: 10.1021/acscentsci.7b00517. PubMed DOI PMC

Cabezas-Cruz A, et al. Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases. Exp. Mol. Med. 2017;49:e301. doi: 10.1038/emm.2016.164. PubMed DOI PMC

Cabezas-Cruz A, Mateos-Hernández L, Chmelař J, Villar M, de la Fuente J. Salivary Prostaglandin E2: Role in Tick-Induced Allergy to Red Meat. Trends. Parasitol. 2017;33:495–498. doi: 10.1016/j.pt.2017.03.004. PubMed DOI

Milland J, Christiansen D, Sandrin MS. Alpha1,3-galactosyltransferase knockout pigs are available for xenotransplantation: are glycosyltransferases still relevant? Immunol. Cell. Biol. 2005;83:687–693. doi: 10.1111/j.1440-1711.2005.01398.x. PubMed DOI

Milland J, et al. The molecular basis for galalpha(1,3)gal expression in animals with a deletion of thealpha1,3galactosyltransferase gene. J. Immunol. 2006;176:2448–2454. doi: 10.4049/jimmunol.176.4.2448. PubMed DOI

Thorlacius-Ussing L, Ludvigsen M, Kirkeby S, Vorum H, Honoré B. Proteomic analysis of tissue from α1,3-galactosyltransferase knockout mice reveals that a wide variety of proteins and protein fragments change expression level. PLoS One. 2013;8:e80600. doi: 10.1371/journal.pone.0080600. PubMed DOI PMC

Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU. Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. J. Biol. Chem. 2000;275:25308–25314. doi: 10.1074/jbc.M002629200. PubMed DOI

Taylor SG, McKenzie IF, Sandrin MS. Characterization of the rat alpha(1,3)galactosyltransferase: evidence for two independent genes encoding glycosyltransferases that synthesize Galalpha(1,3)Gal by two separate glycosylation pathways. Glycobiology. 2003;13:327–337. doi: 10.1093/glycob/cwg030. PubMed DOI

Butler JR, et al. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection. Xenotransplantation. 2016;23:106–116. doi: 10.1111/xen.12217. PubMed DOI

Jennings MP, et al. Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol. Microbiol. 1998;29:975–984. doi: 10.1046/j.1365-2958.1998.00962.x. PubMed DOI

Ohashi T, Fujiyama K, Takegawa K. Identification of novel α1,3-galactosyltransferase and elimination of α-galactose-containing glycans by disruption of multiple α-galactosyltransferase genes in Schizosaccharomyces pombe. J. Biol. Chem. 2012;287:38866–38875. doi: 10.1074/jbc.M112.347351. PubMed DOI PMC

Chen C, et al. Biochemical characterization of the novel α-1,3-galactosyltransferase WclR from Escherichia coli O3. Carbohydr Res. 2016;430:36–43. doi: 10.1016/j.carres.2016.04.012. PubMed DOI

Bishop JR, Gagneux P. Evolution of carbohydrate antigens–microbial forces shaping host glycomes? Glycobiology. 2007;17:23R–34R. doi: 10.1093/glycob/cwm005. PubMed DOI

Cabezas-Cruz A, et al. Regulation of the Immune Response to α-Gal and Vector-borne Diseases. Trends. Parasitol. 2015;31:470–476. doi: 10.1016/j.pt.2015.06.016. PubMed DOI

Soares MP, Yilmaz B. Microbiota Control of Malaria Transmission. Trends Parasitol. 2016;32:120–130. doi: 10.1016/j.pt.2015.11.004. PubMed DOI

Araujo RN, et al. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int. J. Parasitol. 2016;46:213–220. doi: 10.1016/j.ijpara.2015.12.005. PubMed DOI PMC

Mateos-Hernández L, et al. Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget. 2017;8:20630–20644. doi: 10.18632/oncotarget.15243. PubMed DOI PMC

de la Fuente J, Estrada-Peña A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008;13:6938–6946. doi: 10.2741/3200. PubMed DOI

Kocan KM, de la Fuente J, Cabezas-Cruz A. The genus Anaplasma: new challenges after reclassification. Rev. Sci. Tech. 2015;34:577–586. doi: 10.20506/rst.34.2.2381. PubMed DOI

de la Fuente J, Estrada-Peña A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends. Microbiol. 2016;24:173–180. doi: 10.1016/j.tim.2015.12.001. PubMed DOI

de la Fuente J, et al. Tick-host-pathogen interactions: conflict and cooperation. PLoS. Pathog. 2016;12:e1005488. doi: 10.1371/journal.ppat.1005488. PubMed DOI PMC

Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum–a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013;3:31. doi: 10.3389/fcimb.2013.00031. PubMed DOI PMC

Bonnet S, Nijhof A, de la Fuente J. Editorial: Tick-host-pathogen interactions. Front. Cell. Infect. Microbiol. 2018;8:194. doi: 10.3389/fcimb.2018.00194. PubMed DOI PMC

Lombard Vincent, Golaconda Ramulu Hemalatha, Drula Elodie, Coutinho Pedro M., Henrissat Bernard. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research. 2013;42(D1):D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC

Talhaoui I, et al. Identification of key functional residues in the active site of human β1,4-galactosyltransferase 7: a major enzyme in the glycosaminoglycan synthesis pathway. J. Biol. Chem. 2010;285:37342–37358. doi: 10.1074/jbc.M110.151951. PubMed DOI PMC

Coates BS, Sumerford DV, Hellmich RL, Lewis LC. A beta-1,3-galactosyltransferase and brainiac/bre5 homolog expressed in the midgut did not contribute to a Cry1Ab toxin resistance trait in Ostrinia nubilalis. Insect. Biochem. Mol. Biol. 2007;37:346–355. doi: 10.1016/j.ibmb.2006.12.008. PubMed DOI

Kaczmarek R, et al. Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase. Glycoconj. J. 2016;33:963–973. doi: 10.1007/s10719-016-9716-9. PubMed DOI PMC

Kaczmarek R, et al. Human Gb3/CD77 synthase reveals specificity toward two or four different acceptors depending on amino acid at position 211, creating P(k), P1 and NOR blood group antigens. Biochem. Biophys. Res. Commun. 2016;470:168–174. doi: 10.1016/j.bbrc.2016.01.017. PubMed DOI

Zhang Y, Wang PG, Brew K. Specificity and Mechanism of Metal Ion Activation in UDP-galactose:β Galactoside-α-1,3-galactosyltransferase. J. Biol. Chem. 2001;276:11567–11574. doi: 10.1074/jbc.M006530200. PubMed DOI

Galili U, LaTemple DC, Radic MZ. A sensitive assay for measuring alpha-Gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation. 1998;65:1129–1132. doi: 10.1097/00007890-199804270-00020. PubMed DOI

de la Fuente J, Kocan KM, Almazán C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends. Parasitol. 2007;23:427–433. doi: 10.1016/j.pt.2007.07.002. PubMed DOI

Ayllón N, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS. Genet. 2015;11:e1005120. doi: 10.1371/journal.pgen.1005120. PubMed DOI PMC

Villar M, et al. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells. Mol. Cell. Proteomics. 2015;14:3154–3172. doi: 10.1074/mcp.M115.051938. PubMed DOI PMC

Cabezas-Cruz A, et al. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics. 2016;11:303–319. doi: 10.1080/15592294.2016.1163460. PubMed DOI PMC

Cabezas-Cruz A, Alberdi P, Valdés JJ, Villar M, de la Fuente J. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Front. Cell. Infect. Microbiol. 2017;7:23. doi: 10.3389/fcimb.2017.00023. PubMed DOI PMC

Cabezas-Cruz A, Alberdi P, Valdés JJ, Villar M, de la Fuente J. Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum. Front. Biosciences. 2017;22:1830–1844. doi: 10.2741/4574. PubMed DOI

Platts-Mills TA, Schuyler AJ, Hoyt AE, Commins SP. Delayed Anaphylaxis Involving IgE to Galactose-alpha-1,3-galactose. Curr. Allergy. Asthma. Rep. 2015;15:12. doi: 10.1007/s11882-015-0512-6. PubMed DOI PMC

Hamsten C, et al. Identification of galactose-α-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy. 2013;68:549–552. doi: 10.1111/all.12128. PubMed DOI

Chinuki Y, Ishiwata K, Yamaji K, Takahashi H, Morita E. Haemaphysalis longicornis tick bites are a possible cause of red meat allergy in Japan. Allergy. 2016;71:421–425. doi: 10.1111/all.12804. PubMed DOI

Steinke JW, Platts-Mills TA, Commins SP. The alpha-gal story: lessons learned from connecting the dots. J. Allergy. Clin. Immunol. 2015;135:589–596. doi: 10.1016/j.jaci.2014.12.1947. PubMed DOI PMC

Duffy MS, Morris HR, Dell A, Appleton JA, Haslam SM. Protein glycosylation in Parelaphostrongylus tenuis–first description of the Galalpha1-3Gal sequence in a nematode. Glycobiology. 2006;16:854–862. doi: 10.1093/glycob/cwl001. PubMed DOI

Brown SJ, Galli SJ, Gleich GJ, Askenase PW. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in guinea pigs. J. Immunol. 1982;129:790–796. PubMed

Wada T, et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J. Clin. Invest. 2010;120:2867–2875. doi: 10.1172/JCI42680. PubMed DOI PMC

Nakahigashi K, Otsuka A, Tomari K, Miyachi Y, Kabashima K. Evaluation of basophil infiltration into the skin lesions of tick bites. Case. Rep. Dermatol. 2013;5:48–51. doi: 10.1159/000348650. PubMed DOI PMC

Mizumoto Shuji, Kosho Tomoki, Yamada Shuhei, Sugahara Kazuyuki. Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders. Pharmaceuticals. 2017;10(4):34. doi: 10.3390/ph10020034. PubMed DOI PMC

Alberdi P, et al. Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death. Ticks. Tick. Borne. Dis. 2015;6:758–767. doi: 10.1016/j.ttbdis.2015.07.001. PubMed DOI

Seidman D, et al. Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog. 2015;11:e1004669. doi: 10.1371/journal.ppat.1004669. PubMed DOI PMC

Gulia-Nuss M, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507. doi: 10.1038/ncomms10507. PubMed DOI PMC

Finn RD, et al. Pfam: the protein families database. Nucleic. Acids. Res. 2014;42:D222–230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC

Marchler-Bauer A, et al. CDD: NCBI’s conserved domain database. Nucleic. Acids. Res. 2015;43:D222–226. doi: 10.1093/nar/gku1221. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Madden TL, Tatusov RL, Zhang J. Applications of network BLAST server. Methods. Enzymol. 1996;266:131–141. doi: 10.1016/S0076-6879(96)66011-X. PubMed DOI

Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic. Acids. Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Berman HM, et al. The Protein Data Bank. Nucleic. Acids. Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic. Acids. Res. 2004;32:W526–31. doi: 10.1093/nar/gkh468. PubMed DOI PMC

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40. doi: 10.1186/1471-2105-9-40. PubMed DOI PMC

Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI

Katoh K, Standley D. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends. Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI

Bell-Sakyi L. Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J Comp Pathol. 2004;130:285–293. doi: 10.1016/j.jcpa.2003.12.002. PubMed DOI

de la Fuente J, et al. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell. Microbiol. 2005;7:549–559. doi: 10.1111/j.1462-5822.2004.00485.x. PubMed DOI

Merino M, et al. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31:5889–5896. doi: 10.1016/j.vaccine.2013.09.037. PubMed DOI

Moreno-Cid JA, et al. Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine. 2013;31:1187–1196. doi: 10.1016/j.vaccine.2012.12.073. PubMed DOI

Ayllón N, et al. Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect. Immun. 2013;81:2415–2425. doi: 10.1128/IAI.00194-13. PubMed DOI PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. PMCID: PMC55695 (2001). PubMed PMC

Koci J, Simo L, Park Y. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 2013;50:79–84. doi: 10.1603/ME12034. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Allergic reactions to tick saliva components in zebrafish model

. 2023 Jul 19 ; 16 (1) : 242. [epub] 20230719

Tick Bites Induce Anti-α-Gal Antibodies in Dogs

. 2019 Sep 15 ; 7 (3) : . [epub] 20190915

Environmental and Molecular Drivers of the α-Gal Syndrome

. 2019 ; 10 () : 1210. [epub] 20190531

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...