Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32979285
DOI
10.1111/febs.15574
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3 proteins, Alzheimer’s disease, NMR spectroscopy, Tau protein, analytical ultracentrifugation, protein-protein interactions,
- MeSH
- Alzheimerova nemoc genetika metabolismus patologie MeSH
- exoribonukleasy chemie genetika metabolismus MeSH
- fosforylace MeSH
- konformace proteinů MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- multimerizace proteinu * MeSH
- mutace MeSH
- povrchová plasmonová rezonance MeSH
- proteinkinasy závislé na cyklickém AMP metabolismus MeSH
- proteiny 14-3-3 chemie genetika metabolismus MeSH
- proteiny tau chemie genetika metabolismus MeSH
- serin chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- exoribonukleasy MeSH
- proteinkinasy závislé na cyklickém AMP MeSH
- proteiny 14-3-3 MeSH
- proteiny tau MeSH
- serin MeSH
- SFN protein, human MeSH Prohlížeč
Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.
Zobrazit více v PubMed
Medina M (2018) An overview on the clinical development of Tau-based therapeutics. Int J Mol Sci 19, 1160-1173.
Sigurdsson EM (2018) Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J Alzheimers Dis 64, S555-S565.
Cummings J, Lee G, Ritter A & Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 4, 195-214.
Makin S (2018) The amyloid hypothesis on trial. Nature 559, S4-S7.
Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R et al. (2019) A walk through tau therapeutic strategies. Acta Neuropathol Commun 7, 22.
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A & Singh SK (2019) Protein-protein interactions and aggregation inhibitors in Alzheimer’s disease. Curr Top Med Chem 19, 501-533.
Milroy L-G, Bartel M, Henen MA, Leysen S, Adriaans JMC, Brunsveld L, Landrieu I & Ottmann C (2015) Stabilizer-guided inhibition of protein-protein interactions. Angew Chem Int Ed Engl 54, 15720-15724.
Andrei SA, Meijer FA, Neves JF, Brunsveld L, Landrieu I, Ottmann C & Milroy L-G (2018) Inhibition of 14-3-3/Tau by hybrid small-molecule peptides operating via two different binding modes. ACS Chem Neurosci 9, 2639-2654.
Cleveland DW, Hwo SY & Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116, 207-225.
Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F & Landrieu I (2019) Role of Tau as a microtubule associated protein: structural and functional aspects. Front Aging Neurosci 11, 204-217.
Guo T, Noble W & Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133, 665-704.
Buée L, Bussière T, Buée-Scherrer V, Delacourte A & Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33, 95-130.
Sotiropoulos I, Galas M-C, Silva JM, Skoulakis E, Wegmann S, Maina MB, Blum D, Sayas CL, Mandelkow E-M, Mandelkow E et al. (2017) Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun 5, 91.
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin M-L, Yardin C & Terro F (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12, 289-309.
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM & Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83, 4913-4917.
Brion JP, Flament-Durand J & Dustin P (1986) Alzheimer’s disease and tau proteins. Lancet 2, 1098.
Teich AF & Arancio O (2012) Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J 446, 165-177.
Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J, Becker JA, Cosio DMO, Farrell M, Quiroz YT, Mormino EC et al. (2019) Association of amyloid and Tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 76, 915-924.
Lindwall G & Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259, 5301-5305.
Despres C, Byrne C, Qi H, Cantrelle F-X, Huvent I, Chambraud B, Baulieu E-E, Jacquot Y, Landrieu I, Lippens G et al. (2017) Identification of the Tau phosphorylation pattern that drives its aggregation. Proc Natl Acad Sci USA 114, 9080-9085.
Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, Nyenya F, Anderton BH & Hanger DP (2013) Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 34, 2146-2157.
Fu H, Subramanian RR & Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40, 617-647.
Obsil T & Obsilova V (2011) Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol 22, 663-672.
Sluchanko NN (2018) Association of multiple phosphorylated proteins with the 14-3-3 regulatory hubs: problems and perspectives. J Mol Biol 430, 20-26.
Morrison DK (2009) The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19, 16-23.
Masters SC & Fu H (2001) 14-3-3 proteins mediate an essential anti-apoptotic signal. J Biol Chem 276, 45193-45200.
Vousden KH & Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137, 413-431.
Kaplan A, Ottmann C & Fournier AE (2017) 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharmacol Res 125, 114-121.
Steinacker P, Aitken A & Otto M (2011) 14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol 22, 696-704.
Gu Q, Cuevas E, Raymick J, Kanungo J & Sarkar S (2020) Downregulation of 14-3-3 proteins in Alzheimer’s disease. Mol Neurobiol 57, 32-40.
Layfield R, Fergusson J, Aitken A, Lowe J, Landon M & Mayer RJ (1996) Neurofibrillary tangles of Alzheimer’s disease brains contain 14-3-3 proteins. Neurosci Lett 209, 57-60.
Umahara T, Uchihara T, Tsuchiya K, Nakamura A, Iwamoto T, Ikeda K & Takasaki M (2004) 14-3-3 proteins and zeta isoform containing neurofibrillary tangles in patients with Alzheimer’s disease. Acta Neuropathol 108, 279-286.
Qureshi HY, Li T, MacDonald R, Cho CM, Leclerc N & Paudel HK (2013) Interaction of 14-3-3ζ with microtubule-associated protein Tau within Alzheimer’s disease neurofibrillary tangles. Biochemistry 52, 6445-6455.
Umahara T, Uchihara T, Tsuchiya K, Nakamura A, Ikeda K, Iwamoto T & Takasaki M (2004) Immunolocalization of 14-3-3 isoforms in brains with Pick body disease. Neurosci Lett 371, 215-219.
Sluchanko NN & Gusev NB (2011) Probable participation of 14-3-3 in tau protein oligomerization and aggregation. J Alzheimers Dis 27, 467-476.
Sadik G, Tanaka T, Kato K, Yanagi K, Kudo T & Takeda M (2009) Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3ζ protein. Biochem Biophys Res Commun 383, 37-41.
Sadik G, Tanaka T, Kato K, Yamamori H, Nessa BN, Morihara T & Takeda M (2009) Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J Neurochem 108, 33-43.
Hernández F, Cuadros R & Avila J (2004) Zeta 14-3-3 protein favours the formation of human tau fibrillar polymers. Neurosci Lett 357, 143-146.
Hashiguchi M, Sobue K & Paudel HK (2000) 14-3-3ζ is an effector of Tau protein phosphorylation. J Biol Chem 275, 25247-25254.
Agarwal-Mawal A, Qureshi HY, Cafferty PW, Yuan Z, Han D, Lin R & Paudel HK (2003) 14-3-3 connects glycogen synthase kinase-3 to Tau within a brain microtubule-associated Tau phosphorylation complex. J Biol Chem 278, 12722-12728.
Papanikolopoulou K, Grammenoudi S, Samiotaki M & Skoulakis EMC (2018) Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Hum Mol Genet 27, 2244-2261.
Yuan Z, Agarwal-Mawal A & Paudel HK (2004) 14-3-3 binds to and mediates phosphorylation of microtubule-associated tau protein by Ser9-phosphorylated glycogen synthase kinase 3beta in the brain. J Biol Chem 279, 26105-26114.
Li T & Paudel HK (2006) Glycogen synthase kinase 3beta phosphorylates Alzheimer’s disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry 45, 3125-3133.
Li T & Paudel HK (2007) 14-3-3zeta facilitates GSK3beta-catalyzed tau phosphorylation in HEK-293 cells by a mechanism that requires phosphorylation of GSK3beta on Ser9. Neurosci Lett 414, 203-208.
Qureshi HY, Han D, MacDonald R & Paudel HK (2013) Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons. PLoS One 8, e84615.
Joo Y, Schumacher B, Landrieu I, Bartel M, Smet-Nocca C, Jang A, Choi HS, Jeon NL, Chang K-A, Kim H-S et al. (2015) Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. FASEB J 29, 4133-4144.
Sluchanko NN, Seit-Nebi AS & Gusev NB (2009) Phosphorylation of more than one site is required for tight interaction of human tau protein with 14-3-3ζ. FEBS Lett 583, 2739-2742.
Landrieu I, Lacosse L, Leroy A, Wieruszeski J-M, Trivelli X, Sillen A, Sibille N, Schwalbe H, Saxena K, Langer T et al. (2006) NMR analysis of a Tau phosphorylation pattern. J Am Chem Soc 128, 3575-3583.
Scott CW, Spreen RC, Herman JL, Chow FP, Davison MD, Young J & Caputo CB (1993) Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly. J Biol Chem 268, 1166-1173.
Tugaeva KV, Tsvetkov PO & Sluchanko NN (2017) Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. PLoS One 12, e0178933.
Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V & Obsil T (2017) Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc Natl Acad Sci USA 114, E9811-E9820.
Obsil T, Ghirlando R, Klein DC, Ganguly S & Dyda F (2001) Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105, 257-267.
Ottmann C, Marco S, Jaspert N, Marcon C, Schauer N, Weyand M, Vandermeeren C, Duby G, Boutry M, Wittinghofer A et al. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol Cell 25, 427-440.
Psenakova K, Petrvalska O, Kylarova S, Lentini Santo D, Kalabova D, Herman P, Obsilova V & Obsil T (2018) 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochim Biophys Acta Gen Subj 1862, 1612-1625.
Sluchanko NN, Beelen S, Kulikova AA, Weeks SD, Antson AA, Gusev NB & Strelkov SV (2017) Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure 25, 305-316.
Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S et al. (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332-335.
Neves JF, Landrieu I, Merzougui H, Boll E, Hanoulle X & Cantrelle F-X (2019) Backbone chemical shift assignments of human 14-3-3σ. Biomol NMR Assign 13, 103-107.
Sluchanko NN, Sudnitsyna MV, Seit-Nebi AS, Antson AA & Gusev NB (2011) Properties of the monomeric form of human 14-3-3ζ protein and its interaction with Tau and HspB6. Biochemistry 50, 9797-9808.
Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ & Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45, 2283-2293.
Sluchanko NN, Seit-Nebi AS & Gusev NB (2009) Effect of phosphorylation on interaction of human tau protein with 14-3-3zeta. Biochem Biophys Res Commun 379, 990-994.
Obsilova V, Herman P, Vecer J, Sulc M, Teisinger J & Obsil T (2004) 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J Biol Chem 279, 4531-4540.
Silhan J, Obsilova V, Vecer J, Herman P, Sulc M, Teisinger J & Obsil T (2004) 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J Biol Chem 279, 49113-49119.
Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, Herman P, Obsilova V & Obsil T (2016) Structural insight into the 14-3-3 protein-dependent inhibition of protein kinase ASK1 (apoptosis signal-regulating kinase 1). J Biol Chem 291, 20753-20765.
Kalabova D, Filandr F, Alblova M, Petrvalska O, Horvath M, Man P, Obsil T & Obsilova V (2020) 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J 287, 3494-3510.
Veisova D, Rezabkova L, Stepanek M, Novotna P, Herman P, Vecer J, Obsil T & Obsilova V (2010) The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry 49, 3853-3861.
Yano M, Nakamuta S, Wu X, Okumura Y & Kido H (2006) A novel function of 14-3-3 protein: 14-3-3zeta is a heat-shock-related molecular chaperone that dissolves thermal-aggregated proteins. Mol Biol Cell 17, 4769-4779.
Williams DM, Ecroyd H, Goodwin KL, Dai H, Fu H, Woodcock JM, Zhang L & Carver JA (2011) NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ. Biochem J 437, 493-503.
Xu Z, Graham K, Foote M, Liang F, Rizkallah R, Hurt M, Wang Y, Wu Y & Zhou Y (2013) 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 126, 4173-4186.
Jia B, Wu Y & Zhou Y (2014) 14-3-3 and aggresome formation: implications in neurodegenerative diseases. Prion 8, 173-177.
Sluchanko NN & Gusev NB (2017) Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J 284, 1279-1295.
Goedert M, Spillantini MG, Jakes R, Rutherford D & Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519-526.
Danis C, Despres C, Bessa LM, Malki I, Merzougui H, Huvent I, Qi H, Lippens G, Cantrelle F-X, Schneider R et al. (2016) Nuclear magnetic resonance spectroscopy for the identification of multiple phosphorylations of intrinsically disordered proteins. J Vis Exp 118, e55001.
Qi H, Despres C, Prabakaran S, Cantrelle F-X, Chambraud B, Gunawardena J, Lippens G, Smet-Nocca C & Landrieu I (2017) The study of posttranslational modifications of Tau protein by nuclear magnetic resonance spectroscopy: phosphorylation of Tau protein by ERK2 recombinant kinase and rat brain extract, and acetylation by recombinant creb-binding protein. Methods Mol Biol 1523, 179-213.
Kosek D, Kylarova S, Psenakova K, Rezabkova L, Herman P, Vecer J, Obsilova V & Obsil T (2014) Biophysical and structural characterization of the thioredoxin-binding domain of protein kinase ASK1 and Its interaction with reduced thioredoxin. J Biol Chem 289, 24463-24474.
Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 1606-1619.
Dam J, Velikovsky CA, Mariuzza RA, Urbanke C & Schuck P (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys J 89, 619-634.
Brautigam CA (2015) Chapter five: calculations and publication-quality illustrations for analytical ultracentrifugation data. In Methods in Enzymology (Cole JL, ed.), pp. 109-133. Elsevier, Amsterdam.
Structural insights into the functional roles of 14-3-3 proteins