scaffolding
Dotaz
Zobrazit nápovědu
Cílem práce bylo prozkoumat vztahy mezi mírou organizovaných aktivit dětí v předškolním věku, přesvědčením matky o přirozeném vývoji a kvalitou strategické pomoci (scaffolding) během společné hry s dítětem. Výzkumu se zúčastnilo 34 dvojic matek se svými dětmi ve věku od 52 do 83 měsíců (z toho 14 matek s vysokoškolským vzděláním). Data byla získána pozorováním společné hry se stavebnicí a pomocí dotazníků zjišťujících postoj matky k vývoji dítěte a míru organizovaných aktivit dětí. Bylo zjištěno, že u vysokoškolsky vzdělaných matek a matek s vyšším přesvědčením o přirozeném vývoji se objevuje méně nekvalitního scaffoldingu oproti matkám bez vysokoškolského vzdělání a s nižším přesvědčením o přirozeném vývoji. Ačkoli do organizovaných aktivit mimo mateřskou školu zapisují své děti více matky s VŠ vzděláním, docházka do těchto aktivit v rámci mateřské školy se u dětí matek s různým vzděláním neliší. Přestože matky s vysokoškolským vzděláním mohou nadměrně strukturovat volný čas dítěti skrze organizované aktivity, nebyla zjištěna souvislost této tendence na poskytování autonomie ve hře, a tedy na kvalitu scaffoldingu. Práce přináší nový pohled na problematiku intenzivního rodičovství a nadměrné strukturace času.
The purpose of this study was to find out and verify relationships between the amount of organized activities (OAs) of children in preschool age, mother's trust in organismic development and maternal scaffolding quality during mother-child play. Thirty-four pairs of mothers and their children aged 52–83 months participated in this study. The data was collected through a questionnaire and by observation of the game. Results revealed that higher educated mothers and mothers with higher trust in organismic development showed less poor-quality scaffolding during play in comparison to mothers without higher education and to mothers with lower trust in organismic development. Although higher educated mothers can excessively structure their children's leisure time through OAs, there did not appear any effect of this on the autonomy support during the play and therefore on the scaffolding quality. This study brings a new view to issues of intensive parenting and the excessive structuring of children's time.
- Klíčová slova
- scaffolding,
- MeSH
- hra a hračky psychologie MeSH
- lidé MeSH
- mateřské chování MeSH
- matky MeSH
- předškolní dítě MeSH
- rodičovství psychologie MeSH
- stupeň vzdělání MeSH
- výchova dítěte * psychologie MeSH
- výzkum MeSH
- vztahy mezi matkou a dítětem psychologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
Chondrální defekty jsou na kolenním kloubu poměrně častým nálezem a jejich terapie je obtížná. Dobrému hojení těchto defektů brání nízký hojivý potenciál hyalinní chrupavky. Metod chirurgického ošetření těchto defektů bylo popsáno mnoho. Na našem pracovišti používáme od roku 2008 kombinaci heterologních implantátů (scaffoldů) s abrazivními metodami. V roce 2008 jsme poprvé použili implantát Chondrotissue. Roku 2013 jsme následně publikovali dobré výsledky u 52 pacientů léčených touto metodou. V roce 2016 jsme poprvé implantovali implantát Biomatrix CRD – bifázický scaffold. Mezi lety 2016 a 2019 jsme tento implantát použili u 10 pacientů. Výsledky jsme hodnotili s minimálním odstupem šesti měsíců od operace. Jako hodnotící skórovací systém jsme používali Lysholmovo skóre. S výsledkem 91,2 dle Lysholma se jedná o pooperační výsledky hodnocené jako dobré. Ve srovnání s dříve hodnocenou skupinou ošetřenou implantátem Chondrotissue jsme po implantaci Biomatrix CRD dosahovali lepších výsledků.
Chondral defects of the knee are a fairly common phenomenon and their therapy is difficult. Their healing is prevented by a low healing potential of hyaline cartilage. Many methods of surgical treatment have been described for these defects. In our facility we have been using a combination of heterologous implants (scaffolds) and abrasive methods since 2008. In 2008, we used the Chondrotissue implant for the first time. We then published favourable outcomes in 52 patients treated using this method in 2013. In 2016, we implanted the Biomatrix CRD, a biphasic scaffold, for the first time. Between 2016 and 2019 we used this implant in 10 patients. We evaluated the results no sooner than after six months from the surgery. We used the Lysholm scoring scale on which we achieved a score of 91.2, i.e. good postsurgical results. In comparison to the previously evaluated Chondrotissue implant group, we achieved better results after implanting the Biomatrix CRD..
- MeSH
- artroplastiky kloubů metody MeSH
- artróza kolenních kloubů prevence a kontrola MeSH
- chondrocyty transplantace MeSH
- dospělí MeSH
- kloubní chrupavka růst a vývoj účinky léků MeSH
- kolagen aplikace a dávkování terapeutické užití MeSH
- kyselina hyaluronová terapeutické užití MeSH
- kyselina polyglykolová terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemoci chrupavky klasifikace terapie MeSH
- stupeň závažnosti nemoci MeSH
- tkáňové podpůrné struktury * MeSH
- vstřebatelné implantáty * MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- klinické zkoušky MeSH
The RLTPR cytosolic protein, also known as CARMIL2, is essential for CD28 co-stimulation in mice, but its importance in human T cells and mode of action remain elusive. Here, using affinity purification followed by mass spectrometry analysis, we showed that RLTPR acts as a scaffold, bridging CD28 to the CARD11/CARMA1 cytosolic adaptor and to the NF-κB signaling pathway, and identified proteins not found before within the CD28 signaling pathway. We further demonstrated that RLTPR is essential for CD28 co-stimulation in human T cells and that its noncanonical pleckstrin-homology domain, leucine-rich repeat domain, and proline-rich region were mandatory for that task. Although RLTPR is thought to function as an actin-uncapping protein, this property was dispensable for CD28 co-stimulation in both mouse and human. Our findings suggest that the scaffolding role of RLTPR predominates during CD28 co-stimulation and underpins the similar function of RLTPR in human and mouse T cells. Along that line, the lack of functional RLTPR molecules impeded the differentiation toward Th1 and Th17 fates of both human and mouse CD4(+) T cells. RLTPR was also expressed in both human and mouse B cells. In the mouse, RLTPR did not play, however, any detectable role in BCR-mediated signaling and T cell-independent B cell responses.
- MeSH
- aminokyselinové motivy MeSH
- antigeny CD28 metabolismus MeSH
- biologické modely MeSH
- buňky NK metabolismus MeSH
- dendritické buňky metabolismus MeSH
- endocytóza MeSH
- genový targeting MeSH
- HEK293 buňky MeSH
- Jurkat buňky MeSH
- lidé MeSH
- lymfocyty metabolismus MeSH
- mapování interakce mezi proteiny MeSH
- mikrofilamentové proteiny chemie metabolismus MeSH
- multimerizace proteinu MeSH
- mutace genetika MeSH
- myeloidní buňky metabolismus MeSH
- myši MeSH
- proteinové domény MeSH
- proteomika MeSH
- regulační T-lymfocyty metabolismus MeSH
- signální transdukce MeSH
- T-lymfocyty metabolismus MeSH
- thymocyty metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Seriously compromised function of some organs can only be restored by transplantation. Due to the shortage of human donors, the need to find another source of organs is of primary importance. Decellularized scaffolds of non-human origin are being studied as highly potential biomaterials for tissue engineering. Their biological nature and thus the ability to provide a naturally-derived environment for human cells to adhere and grow highlights their great advantage in comparison to synthetic scaffolds. Nevertheless, since every biomaterial implanted in the body generates immune reaction, studying the interaction of the scaffold with the surrounding tissues is necessary. This review aims to summarize current knowledge on the immunogenicity of semi-xenografts involved in transplantation. Moreover, positive aspects of the interaction between xenogeneic scaffold and human cells are discussed, focusing on specific roles of proteins associated with extracellular matrix in cell adhesion and signalling.
In this study, a reproducible method of fabricating hierarchically 3D porous scaffolds with high porosity and pore interconnectivity is reported. The method is based on in-situ foaming of a dispersion of diisocyanate, polyol, water and hydroxyapatite (HA) to form a hard foamed HA/polyurethane composite which after heat treatment provided a bi-phase calcium phosphate scaffold. This technique, combining the advantages of polymer sponge and direct foaming methods, provides a better control over the macrostructure of the scaffold. A modification of the multi-scaled porous macrostructure of scaffolds produced by changing the ratio of input reactants and by sintering temperature was studied. The pore morphology, size, and distribution were characterized using a scanning electron microscope and mercury porosimetry. The pores were open and interconnected with multi-scale (from several nanometres to millimetres) sizes convenient for using in tissue engineering applications. The bioactivity was confirmed by growing an apatite layer on the surfaces after immersion in simulated body fluid. The material was biocompatible, as shown by using normal human adipose tissue-derived stem cells (ASC). When seeded onto the scaffolds, the ASC adhered and remained healthy while maintaining their typical morphology.
Today, numerous studies have focused on the design of novel scaffolds for tissue engineering and regenerative medicine applications; however, several challenges still exist in terms of biocompatibility/cytocompatibility, degradability, cell attachment/proliferation, nutrient diffusion, large-scale production, and clinical translation studies. Greener and safer technologies can help to produce scaffolds with the benefits of cost-effectiveness, high biocompatibility, and biorenewability/sustainability, reducing their toxicity and possible side effects. However, some challenges persist regarding their degradability, purity, having enough porosity, and possible immunogenicity. In this context, naturally derived cellulose-based scaffolds with high biocompatibility, ease of production, availability, sustainability/renewability, and environmentally benign attributes can be applied for designing scaffolds. These cellulose-based scaffolds have shown unique mechanical properties, improved cell attachment/proliferation, multifunctionality, and enhanced biocompatibility/cytocompatibility, which make them promising candidates for tissue engineering applications. Herein, the salient developments pertaining to cellulose-based scaffolds for neural, bone, cardiovascular, and skin tissue engineering are deliberated, focusing on the challenges and opportunities.
Tissue engineering (TE) and regenerative medicine are progressively developed areas due to many novel tissue replacements and implementation strategies. Increasing knowledge involving the fabrication of biomaterials with advanced physicochemical and biological characteristics, successful isolation and preparation of stem cells, incorporation of growth and differentiation factors, and biomimetic environments gives us a unique opportunity to develop various types of scaffolds for TE. The current strategies for soft tissue reconstitution or regeneration highlight the importance of novel regenerative therapies in cases of significant soft tissue loss and in cases of congenital defects, disease, trauma and ageing. Various types of biomaterials and scaffolds have been tested for soft tissue regeneration. The synthetic types of materials have gained great attention due to high versatility, tunability and easy functionalization for better biocompatibility. This article reviews the current materials that are usually the most used for the fabrication of scaffolds for soft TE; in addition, the types of scaffolds together with examples of their applications for the regenerative purposes of soft tissue, as well as their major physicochemical characteristics regarding the increased applicability of these materials in medicine, are reviewed.
- MeSH
- biokompatibilní materiály aplikace a dávkování metabolismus MeSH
- lidé MeSH
- polymery aplikace a dávkování metabolismus MeSH
- poranění měkkých tkání farmakoterapie metabolismus MeSH
- stárnutí účinky léků fyziologie MeSH
- tkáňové inženýrství metody trendy MeSH
- tkáňové podpůrné struktury * trendy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Lately, the need for three-dimensional (3D) cell culture has been recognized in order to closely mimic the organization of native tissues. Thus, 3D scaffolds started to be employed to facilitate the 3D cell organization and enable the artificial tissue formation for the emerging tissue engineering applications. 3D scaffolds can be prepared by various techniques, each with certain advantages and disadvantages. Decellularization is an easy method based on removal of cells from native tissue sample, yielding extracellular matrix (ECM) scaffold with preserved architecture and bioactivity. This chapter provides a detailed protocol for decellularization of pig lung and also some basic assays for evaluation of its effectivity, such as determination of DNA content and histological verification of the selected ECM components. Such decellularized scaffold can subsequently be used for various tissue engineering applications, for example, for recellularization with cells of interest, for natural ECM hydrogel preparation, or as a bioink for 3D bioprinting.
- MeSH
- extracelulární matrix MeSH
- hydrogely MeSH
- plíce * MeSH
- prasata MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nanofibrous materials present unique properties favorable in many biomedicine and industrial applications. In this research we evaluated biodegradation, tissue response and general toxicity of nanofibrous poly(lactic acid) (PLA) and polycaprolactone (PCL) scaffolds produced by conventional method of electrospinning and using NanoMatrix3D® (NM3D® ) technology. Mass density, scanning electron microscopy and in vitro degradation (static and dynamic) were used for material characterization, and subcutaneous, intramuscular and intraperitoneal implantation - for in vivo tests. Biochemical blood analysis and histology were used to assess toxicity and tissue response. Pore size and fiber diameter did not differ in conventional and NM3D® PLA and PCL materials, but mass density was significantly lower in NM3D® ones. Scaffolds made by conventional method showed toxic effect during the in-vivo tests due to residual concentration of chloroform that released with material degradation. NM3D® method allowed cleaning scaffolds from residual solutions that made them nontoxic and biocompatible. Subcutaneous, intramuscular and intraperitoneal implantation of PCL and PLA NM3D® electrospun nanofibrous scaffolds showed their appropriate cell conductive properties, tissue and vessels formation in all sites. Thus, NM3D® PCL and PLA nanofibrous electrospun scaffolds can be used in the field of tissue engineering, surgery, wound healing, drug delivery, and so forth, due to their unique properties, nontoxicity and biocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2200-2212, 2018.
Heat-treated polyacrylonitrile (HT-PAN), also referred to as black orlon (BO), is a promising carbon-based material used for applications in tissue engineering and regenerative medicine. To the best of our knowledge, no such complex bone morphology-mimicking three-dimensional (3D) BO structure has been reported to date. We report that BO can be easily made into 3D cryogel scaffolds with porous structures, using succinonitrile as a porogen. The cryogels possess a porous morphology, similar to bone tissue. The prepared scaffolds showed strong osteoconductive activity, providing excellent support for the adhesion, proliferation, and mitochondrial activity of human bone-derived cells. This effect was more apparent in scaffolds prepared from a matrix with a higher content of PAN (i.e., 10% rather than 5%). The scaffolds with 10% of PAN also showed enhanced mechanical properties, as revealed by higher compressive modulus and higher compressive strength. Therefore, these scaffolds have a robust potential for use in bone tissue engineering.
- MeSH
- akrylové pryskyřice chemie MeSH
- kosti a kostní tkáň MeSH
- lidé MeSH
- pevnost v tlaku MeSH
- poréznost MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury MeSH
- vysoká teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH