A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases

. 2022 Mar 15 ; 27 (6) : . [epub] 20220315

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35335258

Grantová podpora
21-25280S Czech Science Foundation

Positive-sense single-stranded RNA (+RNA) viruses have proven to be important pathogens that are able to threaten and deeply damage modern societies, as illustrated by the ongoing COVID-19 pandemic. Therefore, compounds active against most or many +RNA viruses are urgently needed. Here, we present PR673, a helquat-like compound that is able to inhibit the replication of SARS-CoV-2 and tick-borne encephalitis virus in cell culture. Using in vitro polymerase assays, we demonstrate that PR673 inhibits RNA synthesis by viral RNA-dependent RNA polymerases (RdRps). Our results illustrate that the development of broad-spectrum non-nucleoside inhibitors of RdRps is feasible.

Zobrazit více v PubMed

Moureau G., Cook S., Lemey P., Nougairede A., Forrester N.L., Khasnatinov M., Charrel R.N., Firth A.E., Gould E.A., de Lamballerie X. New Insights into Flavivirus Evolution, Taxonomy and Biogeographic History, Extended by Analysis of Canonical and Alternative Coding Sequences. PLoS ONE. 2015;10:e0117849. PubMed PMC

Simmonds P., Becher P., Bukh J., Gould E.A., Meyers G., Monath T., Muerhoff S., Pletnev A., Rico-Hesse R., Smith D.B., et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017;98:2–3. doi: 10.1099/jgv.0.000672. PubMed DOI PMC

Abdelaziz O.S., Waffa Z. Neuropathogenic human coronaviruses: A review. Rev. Med. Virol. 2020;30:e2118. doi: 10.1002/rmv.2118. PubMed DOI PMC

Shchelkanov M.Y., Popova A.Y., Dedkov V.G., Akimkin V.G., Maleev V.V. History of Investigation and Current Classification of Coronaviruses (Nidovirales: Coronaviridae) Russ. J. Infect. Immun. 2020;10:221–246. doi: 10.15789/2220-7619-HOI-1412. DOI

Pierson T.C., Diamond M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020;5:796–812. doi: 10.1038/s41564-020-0714-0. PubMed DOI PMC

Graham R.L., Donaldson E.F., Baric R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013;11:836–848. doi: 10.1038/nrmicro3143. PubMed DOI PMC

de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. PubMed DOI PMC

Paixao E.S., Barreto F., Teixeira Mda G., Costa Mda C., Rodrigues L.C. History, Epidemiology, and Clinical Manifestations of Zika: A Systematic Review. Am. J. Public Health. 2016;106:606–612. doi: 10.2105/AJPH.2016.303112. PubMed DOI PMC

Rubin D., Chan-Tack K., Farley J., Sherwat A. FDA Approval of Remdesivir—A Step in the Right Direction. N. Engl. J. Med. 2020;383:2598–2600. doi: 10.1056/NEJMp2032369. PubMed DOI

Fischer W., Eron J.J., Holman W., Cohen M.S., Fang L., Szewczyk L.J., Sheahan T.P., Baric R., Mollan K.R., Wolfe C.R., et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv. 2021 doi: 10.1101/2021.06.17.21258639. DOI

Owen D.R., Allerton C.M.N., Anderson A.S., Aschenbrenner L., Avery M., Berritt S., Boras B., Cardin R.D., Carlo A., Coffman K.J., et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374:1586–1593. doi: 10.1126/science.abl4784. PubMed DOI

Li P.F., Wang Y.N., Lavrijsen M., Lamers M.M., de Vries A.C., Rottier R.J., Bruno M.J., Peppelenbosch M.P., Haagmans B.L., Pan Q.W. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022;32:322–324. doi: 10.1038/s41422-022-00618-w. PubMed DOI PMC

Frazier M.N., Dillard L.B., Krahn J.M., Perera L., Williams J.G., Wilson I.M., Stewart Z.D., Pillon M.C., Deterding L.J., Borgnia M.J., et al. Characterization of SARS2 Nsp15 nuclease activity reveals it’s mad about U. Nucleic Acids Res. 2021;49:10136–10149. doi: 10.1093/nar/gkab719. PubMed DOI PMC

Newman J.A., Douangamath A., Yadzani S., Yosaatmadja Y., Aimon A., Brandao-Neto J., Dunnett L., Gorrie-stone T., Skyner R., Fearon D., et al. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat. Commun. 2021;12:4848. doi: 10.1038/s41467-021-25166-6. PubMed DOI PMC

Cihlova B., Huskova A., Boserle J., Nencka R., Boura E., Silhan J. High-Throughput Fluorescent Assay for Inhibitor Screening of Proteases from RNA Viruses. Molecules. 2021;26:3792. doi: 10.3390/molecules26133792. PubMed DOI PMC

Nencka R., Silhan J., Klima M., Otava T., Kocek H., Krafcikova P., Boura E. Coronaviral RNA-methyltransferases: Function, structure and inhibition. Nucleic Acids Res. 2022;50:635–650. doi: 10.1093/nar/gkab1279. PubMed DOI PMC

Konkolova E., Klima M., Nencka R., Boura E. Structural analysis of the putative SARS-CoV-2 primase complex. J. Struct. Biol. 2020;211:107548. doi: 10.1016/j.jsb.2020.107548. PubMed DOI PMC

Otava T., Sala M., Li F., Fanfrlik J., Devkota K., Perveen S., Chau I., Pakarian P., Hobza P., Vedadi M., et al. The Structure-Based Design of SARS-CoV-2 nsp14 Methyltransferase Ligands Yields Nanomolar Inhibitors. ACS Infect. Dis. 2021;7:2214–2220. doi: 10.1021/acsinfecdis.1c00131. PubMed DOI

Devkota K., Schapira M., Perveen S., Khalili Yazdi A., Li F., Chau I., Ghiabi P., Hajian T., Loppnau P., Bolotokova A., et al. Probing the SAM Binding Site of SARS-CoV-2 Nsp14 In Vitro Using SAM Competitive Inhibitors Guides Developing Selective Bisubstrate Inhibitors. SLAS Discov. 2021;26:1200–1211. doi: 10.1177/24725552211026261. PubMed DOI PMC

Perveen S., Khalili Yazdi A., Devkota K., Li F., Ghiabi P., Hajian T., Loppnau P., Bolotokova A., Vedadi M. A High-Throughput RNA Displacement Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex toward Developing Therapeutics for COVID-19. SLAS Discov. 2021;26:620–627. doi: 10.1177/2472555220985040. PubMed DOI PMC

Dejmek M., Konkolova E., Eyer L., Strakova P., Svoboda P., Sala M., Krejcova K., Ruzek D., Boura E., Nencka R. Non-Nucleotide RNA-Dependent RNA Polymerase Inhibitor That Blocks SARS-CoV-2 Replication. Viruses. 2021;13:1585. doi: 10.3390/v13081585. PubMed DOI PMC

Eggleton J.S., Nagalli S. Highly Active Antiretroviral Therapy (HAART) StatPearls; Treasure Island, FL, USA: 2022. PubMed

Tykvart J., Navratil V., Kugler M., Sacha P., Schimer J., Hlavackova A., Tenora L., Zemanova J., Dejmek M., Kral V., et al. Identification of Novel Carbonic Anhydrase IX Inhibitors Using High-Throughput Screening of Pooled Compound Libraries by DNA-Linked Inhibitor Antibody Assay (DIANA) SLAS Discov. 2020;25:1026–1037. doi: 10.1177/2472555220918836. PubMed DOI

Eyer L., Smidkova M., Nencka R., Neca J., Kastl T., Palus M., De Clercq E., Ruzek D. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antivir. Res. 2016;133:119–129. doi: 10.1016/j.antiviral.2016.07.018. PubMed DOI

Eyer L., Valdes J.J., Gil V.A., Nencka R., Hrebabecky H., Sala M., Salat J., Cerny J., Palus M., De Clercq E., et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob. Agents Chemother. 2015;59:5483–5493. doi: 10.1128/AAC.00807-15. PubMed DOI PMC

Kozuch O., Mayer V. Pig kidney epithelial (PS) cells: A perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol. 1975;19:498. PubMed

Zeng J., Weissmann F., Bertolin A.P., Posse V., Canal B., Ulferts R., Wu M., Harvey R., Hussain S., Milligan J.C., et al. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Biochem. J. 2021;478:2405–2423. doi: 10.1042/BCJ20210201. PubMed DOI PMC

Perez-Lemus G.R., Menendez C.A., Alvarado W., Bylehn F., de Pablo J.J. Toward wide-spectrum antivirals against coronaviruses: Molecular characterization of SARS-CoV-2 NSP13 helicase inhibitors. Sci. Adv. 2022;8:eabj4526. doi: 10.1126/sciadv.abj4526. PubMed DOI PMC

Rona G., Zeke A., Miwatani-Minter B., de Vries M., Kaur R., Schinlever A., Garcia S.F., Goldberg H.V., Wang H., Hinds T.R., et al. The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Cell Death Differ. 2022;29:285–292. doi: 10.1038/s41418-021-00900-1. PubMed DOI PMC

Canal B., Fujisawa R., McClure A.W., Deegan T.D., Wu M., Ulferts R., Weissmann F., Drury L.S., Bertolin A.P., Zeng J.K., et al. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochem. J. 2021;478:2465–2479. doi: 10.1042/BCJ20210199. PubMed DOI PMC

Khalili Yazdi A., Li F., Devkota K., Perveen S., Ghiabi P., Hajian T., Bolotokova A., Vedadi M. A High-Throughput Radioactivity-Based Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex. SLAS Discov. 2021;26:757–765. doi: 10.1177/24725552211008863. PubMed DOI PMC

Warren T.K., Jordan R., Lo M.K., Ray A.S., Mackman R.L., Soloveva V., Siegel D., Perron M., Bannister R., Hui H.C., et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–385. doi: 10.1038/nature17180. PubMed DOI PMC

Gordon C.J., Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020;295:4773–4779. doi: 10.1074/jbc.AC120.013056. PubMed DOI PMC

Gordon C.J., Tchesnokov E.P., Woolner E., Perry J.K., Feng J.Y., Porter D.P., Gotte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020;295:6785–6797. doi: 10.1074/jbc.RA120.013679. PubMed DOI PMC

Konkolova E., Dejmek M., Hrebabecky H., Sala M., Boserle J., Nencka R., Boura E. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antivir. Res. 2020;182:104899. doi: 10.1016/j.antiviral.2020.104899. PubMed DOI PMC

Anderson J.P., Daifuku R., Loeb L.A. Viral error catastrophe by mutagenic nucleosides. Annu. Rev. Microbiol. 2004;58:183–205. doi: 10.1146/annurev.micro.58.030603.123649. PubMed DOI

Seley-Radtke K.L., Yates M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antivir. Res. 2018;154:66–86. doi: 10.1016/j.antiviral.2018.04.004. PubMed DOI PMC

Eastman R.T., Roth J.S., Brimacombe K.R., Simeonov A., Shen M., Patnaik S., Hall M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Central Sci. 2020;6:672–683. doi: 10.1021/acscentsci.0c00489. PubMed DOI PMC

De Clercq E., Neyts J. The Handbook of Experimental Pharmacology. Springer; Berlin/Heidelberg, Germany: 2009. Antiviral agents acting as DNA or RNA chain terminators; pp. 53–84. PubMed

Menendez-Arias L., Andino R. Viral polymerases. Virus Res. 2017;234:1–3. doi: 10.1016/j.virusres.2017.02.003. PubMed DOI PMC

Dubankova A., Boura E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antivir. Res. 2019;169:104536. doi: 10.1016/j.antiviral.2019.104536. PubMed DOI

Dubankova A., Humpolickova J., Klima M., Boura E. Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D (pol) Sci. Rep. 2017;7:17309. doi: 10.1038/s41598-017-17621-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...