Non-Nucleotide RNA-Dependent RNA Polymerase Inhibitor That Blocks SARS-CoV-2 Replication
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
NU20-05-00472
Ministerstvo Zdravotnictví Ceské Republiky
RVO: 61388963
Akademie Věd České Republiky
LTAUSA18016
Ministerstvo Školství, Mládeže a Tělovýchovy
NA
Gilead Sciences
PubMed
34452451
PubMed Central
PMC8402726
DOI
10.3390/v13081585
PII: v13081585
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, RNA-dependent RNA polymerase, SAR-CoV-2, antiviral agents, non-nucleotide inhibitor,
- MeSH
- adenosinmonofosfát analogy a deriváty farmakologie MeSH
- alanin analogy a deriváty farmakologie MeSH
- antivirové látky farmakologie MeSH
- benzothiazoly farmakologie MeSH
- buněčné linie MeSH
- inhibitory enzymů farmakologie MeSH
- koronavirová RNA-replikasa antagonisté a inhibitory MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- pyridony farmakologie MeSH
- replikace viru účinky léků MeSH
- SARS-CoV-2 účinky léků enzymologie fyziologie MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosinmonofosfát MeSH
- alanin MeSH
- antivirové látky MeSH
- benzothiazoly MeSH
- HeE1-2Tyr MeSH Prohlížeč
- inhibitory enzymů MeSH
- koronavirová RNA-replikasa MeSH
- NSP12 protein, SARS-CoV-2 MeSH Prohlížeč
- pyridony MeSH
- remdesivir MeSH Prohlížeč
SARS-CoV-2 has caused an extensive pandemic of COVID-19 all around the world. Key viral enzymes are suitable molecular targets for the development of new antivirals against SARS-CoV-2 which could represent potential treatments of the corresponding disease. With respect to its essential role in the replication of viral RNA, RNA-dependent RNA polymerase (RdRp) is one of the prime targets. HeE1-2Tyr and related derivatives were originally discovered as inhibitors of the RdRp of flaviviruses. Here, we present that these pyridobenzothiazole derivatives also significantly inhibit SARS-CoV-2 RdRp, as demonstrated using both polymerase- and cell-based antiviral assays.
Zobrazit více v PubMed
Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9. PubMed DOI PMC
De Wit J.J., Cook J.K.A. Spotlight on avian coronaviruses. Avian Pathol. 2020;49:313–316. doi: 10.1080/03079457.2020.1761010. PubMed DOI
Monchatre-Leroy E., Boue F., Boucher J.M., Renault C., Moutou F., Gouilh M.A., Umhang G. Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits, and Hedgehogs. Viruses. 2017;9:364. doi: 10.3390/v9120364. PubMed DOI PMC
Chen Y., Liu Q.Y., Guo D.Y. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020;92:418–423. doi: 10.1002/jmv.25681. PubMed DOI PMC
De Wit E., Van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. PubMed DOI PMC
Zumla A., Chan J.F.W., Azhar E.I., Hui D.S.C., Yuen K.-Y. Coronaviruses—Drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016;15:327–347. doi: 10.1038/nrd.2015.37. PubMed DOI PMC
Gorbalenya A.E., Baker S.C., Baric R.S., De Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z. PubMed DOI PMC
Lu L., Zhong W.Y., Bian Z.W., Li Z.M., Zhang K., Liang B.X., Zhong Y.Z., Hu M.J., Lin L., Liu J., et al. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: A systematic review and meta-analysis. J. Infect. 2020;81:E18–E25. doi: 10.1016/j.jinf.2020.07.002. PubMed DOI PMC
Finelli L., Gupta V., Petigara T., Yu K., Bauer K.A., Puzniak L.A. Mortality Among US Patients Hospitalized With SARS-CoV-2 Infection in 2020. JAMA Netw. Open. 2021;4:e216556. doi: 10.1001/jamanetworkopen.2021.6556. PubMed DOI PMC
Tumban E. Lead SARS-CoV-2 Candidate Vaccines: Expectations from Phase III Trials and Recommendations Post-Vaccine Approval. Viruses. 2021;13:54. doi: 10.3390/v13010054. PubMed DOI PMC
Wu D., Koganti R., Lambe U.P., Yadavalli T., Nandi S.S., Shukla D. Vaccines and Therapies in Development for SARS-CoV-2 Infections. J. Clin. Med. 2020;9:1885. doi: 10.3390/jcm9061885. PubMed DOI PMC
Pedersen O.S., Pedersen E.B. Non-nucleoside reverse transcriptase inhibitors: The NNRTI boom. Antivir. Chem. Chemother. 1999;10:285–314. doi: 10.1177/095632029901000601. PubMed DOI
Dayal V., Kumar A., Jha S.K., Sharan A., Kumar U., Shahi S.K. Viral Hepatitis ( plus Antiviral Therapy) Combination therapy of lamivudine and adefovir in patients of HBeAg positive chronic hepatitis B. J. Gastroenterol. Hepatol. 2013;28:419.
Das D., Pandya M. Recent Advancement of Direct-acting Antiviral Agents (DAAs) in Hepatitis C Therapy. Mini-Rev. Med. Chem. 2018;18:584–596. doi: 10.2174/1389557517666170913111930. PubMed DOI
Vicenti I., Zazzi M., Saladini F. SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19. Expert Opin. Ther. Pat. 2021;31:325–337. doi: 10.1080/13543776.2021.1880568. PubMed DOI PMC
Perry J.K., Appleby T.C., Bilello J.P., Feng J.Y., Schmitz U., Campbell E.A. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. bioRxiv. 2021 doi: 10.1101/2021.06.08.447516. PubMed DOI PMC
Hillen H.S., Kokic G., Farnung L., Dienemann C., Tegunov D., Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature. 2020;584:154–156. doi: 10.1038/s41586-020-2368-8. PubMed DOI
Pruijssers A.J., George A.S., Schafer A., Leist S.R., Gralinksi L.E., Dinnon K.H., Yount B.L., Agostini M.L., Stevens L.J., Chappell J.D., et al. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 2020;32:107940. doi: 10.1016/j.celrep.2020.107940. PubMed DOI PMC
Yin W.C., Luan X.D., Li Z.H., Zhou Z.W., Wang Q.X., Gao M.Q., Wang X.X., Zhou F.L., Shi J.J., You E.R., et al. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nat. Struct. Mol. Biol. 2021;28:319–325. doi: 10.1038/s41594-021-00570-0. PubMed DOI
Li Q., Yi D., Lei X., Zhao J., Zhang Y., Cui X., Xiao X., Jiao T., Dong X., Zhao X., et al. Corilagin inhibits SARS-CoV-2 replication by targeting viral RNA-dependent RNA polymerase. Acta Pharm. Sin. B. 2021;11:1555–1567. doi: 10.1016/j.apsb.2021.02.011. PubMed DOI PMC
Jin Y.H., Min J.S., Jeon S., Lee J., Kim S., Park T., Park D., Jang M.S., Park C.M., Song J.H., et al. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine. 2021;86:153440. doi: 10.1016/j.phymed.2020.153440. PubMed DOI PMC
Agrawal N., Goyal A. Potential Candidates against COVID-19 Targeting RNA-Dependent RNA Polymerase: A Comprehensive Review. Curr. Pharm. Biotechnol. 2021 doi: 10.2174/1389201022666210421102513. PubMed DOI
Tarantino D., Cannalire R., Mastrangelo E., Croci R., Querat G., Barreca M.L., Bolognesi M., Manfroni G., Cecchetti V., Milani M. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antivir. Res. 2016;134:226–235. doi: 10.1016/j.antiviral.2016.09.007. PubMed DOI
Cannalire R., Tarantino D., Piorkowski G., Carletti T., Massari S., Felicetti T., Barreca M.L., Sabatini S., Tabarrini O., Marcello A., et al. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antivir. Res. 2019;167:6–12. doi: 10.1016/j.antiviral.2019.03.004. PubMed DOI
Cannalire R., Chan K.W.K., Burali M.S., Gwee C.P., Wang S., Astolfi A., Massari S., Sabatini S., Tabarrini O., Mastrangelo E., et al. Pyridobenzothiazolones Exert Potent Anti-Dengue Activity by Hampering Multiple Functions of NS5 Polymerase. ACS Med. Chem. Lett. 2020;11:773–782. doi: 10.1021/acsmedchemlett.9b00619. PubMed DOI PMC
Felicetti T., Burali M.S., Gwee C.P., Chan K.W.K., Alonso S., Massari S., Sabatini S., Tabarrini O., Barreca M.L., Cecchetti V., et al. Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. Eur. J. Med. Chem. 2021;210:112992. doi: 10.1016/j.ejmech.2020.112992. PubMed DOI
Konkolova E., Dejmek M., Hrebabecky H., Sala M., Boserle J., Nencka R., Boura E. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antivir. Res. 2020;182:104899. doi: 10.1016/j.antiviral.2020.104899. PubMed DOI PMC
De Madrid A.T., Porterfield J.S. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 1969;40:113–121. PubMed PMC
Eyer L., Valdes J.J., Gil V.A., Nencka R., Hrebabecky H., Sala M., Salat J., Cerny J., Palus M., De Clercq E., et al. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus. Antimicrob. Agents Chemother. 2015;59:5483–5493. doi: 10.1128/AAC.00807-15. PubMed DOI PMC
Novel analogues of a nonnucleoside SARS-CoV-2 RdRp inhibitor as potential antivirotics
A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases