Molecular Rearrangement of Pyrazino[2,3-c]quinolin-5(6H)-ones during Their Reaction with Isocyanic Acid
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2020/007
Tomas Bata University in Zlín
PubMed
35628291
PubMed Central
PMC9143794
DOI
10.3390/ijms23105481
PII: ijms23105481
Knihovny.cz E-zdroje
- Klíčová slova
- 1H-, 13C- and 15N-NMR, 3-(3-acylureido)-2,3-dihydro-1H-indol-2-ones, 4-alkylidene-1’H-spiro[imidazolidine-5,3’-indole]-2,2’-diones, biological activity, imidazo[1,5-c]quinazoline-3,5-diones, scXRD,
- MeSH
- kyanatany MeSH
- magnetická rezonanční spektroskopie * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isocyanic acid MeSH Prohlížeč
- kyanatany MeSH
New tetrahydropyrazino[2,3-c]quinolin-5(6H)-ones were prepared from 3-chloroquinoline-2,4(1H,3H)-diones and ethylene diamine. In their reaction with HNCO, an unprecedented molecular rearrangement produced new types of hydantoin derivatives. All prepared compounds were characterized on the basis of their 1H, 13C, and 15N NMR and ESI mass spectra and some were authenticated by X-ray analysis of single crystalline material. A proposed mechanism for rearrangement is discussed in this essay. The CDK and ABL inhibition activity as well as in vitro cytotoxicity of the prepared compounds was also tested.
Zobrazit více v PubMed
Erian A.W., Sherif S.M., Gaber H.M. The Chemistry of α-Haloketones and Their Utility in Heterocyclic Synthesis. Molecules. 2003;8:793–865. doi: 10.3390/81100793. DOI
Kafka S., Klásek A., Polis J., Košmrlj J. Syntheses of 3-Aminoquionoline-2,4(1H,3H)-diones. Heterocycles. 2002;57:1659–1682.
Klásek A., Kořistek K., Lyčka A., Holčapek M. Unprecendented reactivity of 3-amino-1H,3H-quionoline-2,4-diones with urea: An efficient synthesis of 2,6-dihydro-imidazo[1,5-c]quinazoline-3,5-diones. Tetrahedron. 2003;59:1283–1288. doi: 10.1016/S0040-4020(03)00028-0. DOI
Klásek A., Kořistek K., Lyčka A., Holčapek M. Reaction of 1-alkyl/aryl-3amino-1H,3H-quinoline-2,4-diones with urea. Synthetic route to novel 3-(3-acylureido)-2,3-dihydro-1H-indol-2-ones, 4-alkylidene-1’H-spiro[imidazolidine-5,3‘-indole]-2,2’-diones, and 3,3a-dihydro-5H-imidazo[4,5-c]quinoline-2,4-diones. Tetrahedron. 2003;59:5279–5288.
Klásek A., Lyčka A., Holčapek M., Hoza I. Reaction of 3-aminoquinoline-2,4-diones with nitrourea. Synthetic route to novel 3-ureidoqunoline-2,4-diones and imidazo[4,5-c]qunoline-2,4-diones. Tetrahedron. 2004;60:9953–9961. doi: 10.1016/j.tet.2004.07.106. DOI
Klásek A., Lyčka A., Holčapek M., Kovář M., Hoza I. Molecular Rearrangement of 1-Substituted 3-Aminoquinoline-2,4-diones and Their Reaction with Urea and Nitrourea. Synthesis and Transformations of Reaction Intermediates. J. Het. Chem. 2006;43:1251–1260. doi: 10.1002/jhet.5570430517. DOI
Klásek A., Lyčka A., Holčapek M., Hoza I. Reaction of 3-Aminoquinoline-2,4-diones with Isocyanates. Synthesis of Novel 3-(3’-Alkyl/arylureido)quinoline-2,4-diones and Their Cyclic Carbinolamide Isomers. J. Het. Chem. 2006;43:203–211. doi: 10.1002/jhet.5570430132. DOI
Klásek A., Lyčka A., Holčapek M. Molecular rearrangement of 1-substituted 9b-hydroxy-3,3a,5,9b-tetrahydro-1H-imidazo[4,5-c]quinoline-2,4-diones—An unexpected pathway to new indole and imidazolinone derivatives. Tetrahedron. 2007;63:7059–7069. doi: 10.1016/j.tet.2007.05.012. DOI
Prucková Z., Klásek A., Lyčka A., Mikšík I., Růžička A. Synthesis of 2-thioxoimidazolines via reaction of 1-unsubstituted 3-aminoquinoline-2,4-diones with isothiocyanates. Tetrahedron. 2009;65:9103–9115. doi: 10.1016/j.tet.2009.09.048. DOI
Klásek A., Mrkvička V., Lyčka A., Mikšík I., Růžička A. Reaction of 1-substituted 3-aminoquinoline-2,4-diones with isothiocyanates. An easy pathway to generate novel 2-thioxo-1’H-spiro[imidazoline-5,3’-indole]-2,2’-diones. Tetrahedron. 2009;65:4908–4916. doi: 10.1016/j.tet.2009.04.009. DOI
Klásek A., Lyčka A., Mikšík I., Růžička A. Reaction of 3-phenyl-3-aminoquinoline-2,4-diones with isothiocyanates. Facile access to novel spiro-linked 2-thioxoimidazolidine-oxindoles and imidazoline-2-thiones. Tetrahedron. 2010;66:2015–2025. doi: 10.1016/j.tet.2010.01.041. DOI
Mrkvička V., Lyčka A., Rudolf O., Klásek A. Reaction of 3-aminoquinoline-2,4-diones with isothiocyanic acid—An easy pathway to thioxo derivatives of imidazo[1,5-c]quinazolin-5-ones and imidazo[4,5-c]quinolin-4-ones. Tetrahedron. 2010;66:8441–8445. doi: 10.1016/j.tet.2010.08.056. DOI
Mrkvička V., Rudolf O., Lyčka A., Klásek A. Reaction of 1-substituted 3-aminoquinolinediones with isocyanic and isothiocyanic acid. Tetrahedron. 2011;67:2407–2413. doi: 10.1016/j.tet.2011.02.002. DOI
Klásek A., Rudolf O., Rouchal M., Lyčka A. Reaction of 3-Hydroxyquinoline-2,4-diones with Inorganic Thiocyanates in the Presence of Ammonium or Alkylammonium Ions: The Unexpected Replacement of a Hydroxy Group by an Amino Group. Helv. Chim. Acta. 2015;98:318–335. doi: 10.1002/hlca.201400189. DOI
Klásek A., Lyčka A., Rouchal M., Bartošík R. Reaction of 1-substituted 3-(2-hydroxyethylamino)quinoline-2,4(1H,3H)-diones with isothiocyanic acid. Chem. Heterocycl. Comp. 2020;56:566–571. doi: 10.1007/s10593-020-02701-9. DOI
Laschober R., Stadlbauer W. Synthesis of 3-heptyl- and 3-nonyl-2,4-(1H,3H)-quinolinediones. [(accessed on 12 April 2022)];Liebigs Ann. Chem. 1990 :1083–1086. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/jlac.1990199001195. DOI
Podesva C., Vagi K., Solomon C. Synthesis and chemistry of 1-methyl-3-imino-4-hydroxy-4-phenyl-6-chloro-1,2,3,4-tetrahydroquinoline-2-one. Can. J. Chem. 1968;46:2263–2269. doi: 10.1139/v68-368. DOI
Elshaier Y.A.M.M., Aly A.A., El-Aziz M.A., Fathy H.M., Brown A.B., Ramadan M. A review on the synthesis of heteroannulated quionolones and their biological activities. Mol. Divers. 2021 doi: 10.1007/s11030-021-10332-1. PubMed DOI
Shin Y.S., Song S.J., Kang S.U., Hwang H.S., Choi J.W., Lee B.H., Jung Y.-S., Kim C.-H. A novel synthetic compound, 3-amino-3-(4-fluoro-phenyl)-1H-qunoline-2,4-dione, inhibits cisplatin-induced hearing loss by the suppression of reactive oxygen species: In vitro and in vivo study. Neuroscience. 2013;232:1–12. doi: 10.1016/j.neuroscience.2012.12.008. PubMed DOI
Cifuentes-Pagano M.E., Meijles D.N., Pagano P.J. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr. Pharm. Design. 2015;21:6032–6035. PubMed PMC
Mittal R., Debs L.H., Nguyen D., Patel A.P., Grati M., Mittal J., Yan D., Eshraghi A.A., Liu X.Z. Signaling in the Auditory System: Impications in Hair Cell Regeneration and Hearing Function. J. Cell. Physiol. 2017;232:2710–2721. doi: 10.1002/jcp.25695. PubMed DOI
Saito N., Hatakeda K., Ito S., Asano T., Toda T. Formation of Bis(2-oxazolidinone) Derivatives by Reaction of 2-Methoxy-3,3-dimethyl-2-phenyloxirane or α-bromoisobutyrophenone with Carbon Dioxide and Aliphatic α,ω-Diamines. Bull. Chem. Soc. Jpn. 1986;59:1629–1631. doi: 10.1246/bcsj.59.1629. DOI
Klásek A., Lyčka A., Rouchal M. Completely dissimilar: The reactivity of 1-unsubstituted 3-chloroquinoline-2,4-diones with ethylene diamine and ethanolamine to form new molecular rearrangements. Arkivoc. 2020;vi:209–219. doi: 10.24820/ark.5550190.p011.053. DOI
Kumar V. Designed Synthesis of Diversely Substituted Hydantoins and Hydantoin-Based Hybrid Molecules: A Personal Account. Synlett. 2021;32:1897–1910. doi: 10.1055/a-1480-6474. DOI
Kalník M., Gabko P., Bella M., Koóš M. The Bucherer-Bergs Multicomponent Synthesis of Hydantoins–Excellence in Simplicity. Molecules. 2021;26:4024. doi: 10.3390/molecules26134024. PubMed DOI PMC
Roy A., Sarkar T., Datta S., Maiti A., Chakrabarti M., Mondal T., Mondal C., Banerjee A., Roy S., Mukherjee S., et al. Structure-based discovery of (S)-2-amino-6-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1‘,5‘:1,6]pyrido[3,4-b]indole-1,3-(2H)-dione as low nanomolar, orally bioavailable autotaxin inhibitor. Chem. Biol. Drug Des. 2022;99:496–503. doi: 10.1111/cbdd.14017. PubMed DOI
Liang X., Li X., Zhao Z., Nie Z., Yao Z., Ren W., Yang X., Hou X., Fang H. Design, synthesis and biological evaluation of hydantoin derivatives as Mcl-1 selective inhibitors. Bioorganic Chem. 2022;121:105643. doi: 10.1016/j.bioorg.2022.105643. PubMed DOI
Cho S., Kim S.-H., Shin D. Recent applications of hydantoin and thiohydantoin in medicinal chemistry. Eur. J. Med. Chem. 2019;164:517–545. doi: 10.1016/j.ejmech.2018.12.066. PubMed DOI
Machado L., Spengler G., Evaristo M., Handzlik J., Molnár J., Viveiros M., Kiec-Kononowicz K., Amaral L. Biological Activity of Twenty-three Hydantoin Derivatives on Intrinsic Efflux Pump System of Salmonella enterica serovar Enteritidis NCTC 13349. In Vivo. 2011;25:769–772. PubMed
Konnert L., Lamaty F., Martinez J., Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem. Rev. 2017;117:13757–13809. doi: 10.1021/acs.chemrev.7b00067. PubMed DOI
Calestani G., Leardini R., McNab H., Nanni D., Zanardi G. Thermal decomposition of tert-butyl o-(phenoxy)- and o-(anilino)-phenyliminoxyperacetates. J. Chem. Soc. Perkin Trans. 1. 1998:1813–1824. doi: 10.1039/a800868j. DOI
Mahajan M.P., Sondhi S.M., Ralhan N.K. Studies in Heterocyclics. VI. Synthesis of Thiazolo-Benzo-Triazepines. Bull. Chem. Soc. Jpn. 1976;49:2609–2610. doi: 10.1246/bcsj.49.2609. DOI
Anil S.M., Shobith R., Kiran K.R., Swaroop T.R., Mallesha N., Sadashiva M.P. Facile synthesis of 1,4-benzodiazepine-2,5-diones and quinazolinones from amino acids as anti-tubercular agents. New. J. Chem. 2019;43:182–187. doi: 10.1039/C8NJ04936J. DOI
Beutner G.L., Hsiao Y., Razler T., Simmons E.M., Wertjes W. Nickel-Catalyzed Synthesis of Quinazolinediones. Org. Lett. 2017;19:1052–1055. doi: 10.1021/acs.orglett.7b00052. PubMed DOI
Nyquist R.A., Fiedler S.L. Infrared study of five- and six-membered type cyclic imides. Vib. Spectrosc. 1995;8:365–386. doi: 10.1016/0924-2031(94)00051-H. DOI
Ösz E., Szilágyi L., Marton J. Structural analysis of hydantoins and 2-thiohydantoins in solution using 13C, 1H NMR coupling constants. J. Mol. Struct. 1998;442:267–274. doi: 10.1016/S0022-2860(97)00357-8. DOI
Allen F.H., Kennard O., Watson D.G. Tables of Bond Lenghts determined by X-ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. [(accessed on 12 April 2022)];J. Chem. Soc.-Perkin Trans. 2. 1987 :S1–S19. Available online: https://pubs.rsc.org/en/content/articlelanding/1987/p2/p298700000s1.
Allen F.H., Watson D.G., Brammer L., Orpen A.G., Taylor R. Typical interatomic distances: Organic compounds. Int. Tables Crystallogr. 2006;C:790–811.
Raj R., Mehra V., Gut J., Rosenthal P.J., Wicht K.J., Egan T.J., Hopper M., Wrischnik L., Kirkwood M.L., Kumar V. Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. Eur. J. Med. Chem. 2014;84:425–432. doi: 10.1016/j.ejmech.2014.07.048. PubMed DOI
Matada B.S., Pattanashettar R., Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021;32:115973. doi: 10.1016/j.bmc.2020.115973. PubMed DOI
Sheldrick G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Gucký T., Jorda R., Zatloukal M., Bazgier V., Berka K., Řezníčková E., Béres T., Strnad M., Kryštof V. A Novel Series of Highly Potent 2,6,9-Trisubstituted Purine Cyclin-Dependent Kinase Inhibitors. J. Med. Chem. 2013;56:6234–6247. doi: 10.1021/jm4006884. PubMed DOI
Jorda R., Havlíček L., McNae I.W., Walkinshaw M.D., Voller J., Šturc A., Navrátilová J., Kuzma M., Mistrík M., Bártek J., et al. Pyrazolo[4,3-d]pyrimidine Bioisostere of Roscovitine: Evaluation of a Novel Selective Inhibitor of Cyclin-Dependent Kinases with Antiproliferative Activity. J. Med. Chem. 2011;54:2980–2993. doi: 10.1021/jm200064p. PubMed DOI