Molecular Rearrangement of Pyrazino[2,3-c]quinolin-5(6H)-ones during Their Reaction with Isocyanic Acid

. 2022 May 13 ; 23 (10) : . [epub] 20220513

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35628291

Grantová podpora
IGA/FT/2020/007 Tomas Bata University in Zlín

New tetrahydropyrazino[2,3-c]quinolin-5(6H)-ones were prepared from 3-chloroquinoline-2,4(1H,3H)-diones and ethylene diamine. In their reaction with HNCO, an unprecedented molecular rearrangement produced new types of hydantoin derivatives. All prepared compounds were characterized on the basis of their 1H, 13C, and 15N NMR and ESI mass spectra and some were authenticated by X-ray analysis of single crystalline material. A proposed mechanism for rearrangement is discussed in this essay. The CDK and ABL inhibition activity as well as in vitro cytotoxicity of the prepared compounds was also tested.

Zobrazit více v PubMed

Erian A.W., Sherif S.M., Gaber H.M. The Chemistry of α-Haloketones and Their Utility in Heterocyclic Synthesis. Molecules. 2003;8:793–865. doi: 10.3390/81100793. DOI

Kafka S., Klásek A., Polis J., Košmrlj J. Syntheses of 3-Aminoquionoline-2,4(1H,3H)-diones. Heterocycles. 2002;57:1659–1682.

Klásek A., Kořistek K., Lyčka A., Holčapek M. Unprecendented reactivity of 3-amino-1H,3H-quionoline-2,4-diones with urea: An efficient synthesis of 2,6-dihydro-imidazo[1,5-c]quinazoline-3,5-diones. Tetrahedron. 2003;59:1283–1288. doi: 10.1016/S0040-4020(03)00028-0. DOI

Klásek A., Kořistek K., Lyčka A., Holčapek M. Reaction of 1-alkyl/aryl-3amino-1H,3H-quinoline-2,4-diones with urea. Synthetic route to novel 3-(3-acylureido)-2,3-dihydro-1H-indol-2-ones, 4-alkylidene-1’H-spiro[imidazolidine-5,3‘-indole]-2,2’-diones, and 3,3a-dihydro-5H-imidazo[4,5-c]quinoline-2,4-diones. Tetrahedron. 2003;59:5279–5288.

Klásek A., Lyčka A., Holčapek M., Hoza I. Reaction of 3-aminoquinoline-2,4-diones with nitrourea. Synthetic route to novel 3-ureidoqunoline-2,4-diones and imidazo[4,5-c]qunoline-2,4-diones. Tetrahedron. 2004;60:9953–9961. doi: 10.1016/j.tet.2004.07.106. DOI

Klásek A., Lyčka A., Holčapek M., Kovář M., Hoza I. Molecular Rearrangement of 1-Substituted 3-Aminoquinoline-2,4-diones and Their Reaction with Urea and Nitrourea. Synthesis and Transformations of Reaction Intermediates. J. Het. Chem. 2006;43:1251–1260. doi: 10.1002/jhet.5570430517. DOI

Klásek A., Lyčka A., Holčapek M., Hoza I. Reaction of 3-Aminoquinoline-2,4-diones with Isocyanates. Synthesis of Novel 3-(3’-Alkyl/arylureido)quinoline-2,4-diones and Their Cyclic Carbinolamide Isomers. J. Het. Chem. 2006;43:203–211. doi: 10.1002/jhet.5570430132. DOI

Klásek A., Lyčka A., Holčapek M. Molecular rearrangement of 1-substituted 9b-hydroxy-3,3a,5,9b-tetrahydro-1H-imidazo[4,5-c]quinoline-2,4-diones—An unexpected pathway to new indole and imidazolinone derivatives. Tetrahedron. 2007;63:7059–7069. doi: 10.1016/j.tet.2007.05.012. DOI

Prucková Z., Klásek A., Lyčka A., Mikšík I., Růžička A. Synthesis of 2-thioxoimidazolines via reaction of 1-unsubstituted 3-aminoquinoline-2,4-diones with isothiocyanates. Tetrahedron. 2009;65:9103–9115. doi: 10.1016/j.tet.2009.09.048. DOI

Klásek A., Mrkvička V., Lyčka A., Mikšík I., Růžička A. Reaction of 1-substituted 3-aminoquinoline-2,4-diones with isothiocyanates. An easy pathway to generate novel 2-thioxo-1’H-spiro[imidazoline-5,3’-indole]-2,2’-diones. Tetrahedron. 2009;65:4908–4916. doi: 10.1016/j.tet.2009.04.009. DOI

Klásek A., Lyčka A., Mikšík I., Růžička A. Reaction of 3-phenyl-3-aminoquinoline-2,4-diones with isothiocyanates. Facile access to novel spiro-linked 2-thioxoimidazolidine-oxindoles and imidazoline-2-thiones. Tetrahedron. 2010;66:2015–2025. doi: 10.1016/j.tet.2010.01.041. DOI

Mrkvička V., Lyčka A., Rudolf O., Klásek A. Reaction of 3-aminoquinoline-2,4-diones with isothiocyanic acid—An easy pathway to thioxo derivatives of imidazo[1,5-c]quinazolin-5-ones and imidazo[4,5-c]quinolin-4-ones. Tetrahedron. 2010;66:8441–8445. doi: 10.1016/j.tet.2010.08.056. DOI

Mrkvička V., Rudolf O., Lyčka A., Klásek A. Reaction of 1-substituted 3-aminoquinolinediones with isocyanic and isothiocyanic acid. Tetrahedron. 2011;67:2407–2413. doi: 10.1016/j.tet.2011.02.002. DOI

Klásek A., Rudolf O., Rouchal M., Lyčka A. Reaction of 3-Hydroxyquinoline-2,4-diones with Inorganic Thiocyanates in the Presence of Ammonium or Alkylammonium Ions: The Unexpected Replacement of a Hydroxy Group by an Amino Group. Helv. Chim. Acta. 2015;98:318–335. doi: 10.1002/hlca.201400189. DOI

Klásek A., Lyčka A., Rouchal M., Bartošík R. Reaction of 1-substituted 3-(2-hydroxyethylamino)quinoline-2,4(1H,3H)-diones with isothiocyanic acid. Chem. Heterocycl. Comp. 2020;56:566–571. doi: 10.1007/s10593-020-02701-9. DOI

Laschober R., Stadlbauer W. Synthesis of 3-heptyl- and 3-nonyl-2,4-(1H,3H)-quinolinediones. [(accessed on 12 April 2022)];Liebigs Ann. Chem. 1990 :1083–1086. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/jlac.1990199001195. DOI

Podesva C., Vagi K., Solomon C. Synthesis and chemistry of 1-methyl-3-imino-4-hydroxy-4-phenyl-6-chloro-1,2,3,4-tetrahydroquinoline-2-one. Can. J. Chem. 1968;46:2263–2269. doi: 10.1139/v68-368. DOI

Elshaier Y.A.M.M., Aly A.A., El-Aziz M.A., Fathy H.M., Brown A.B., Ramadan M. A review on the synthesis of heteroannulated quionolones and their biological activities. Mol. Divers. 2021 doi: 10.1007/s11030-021-10332-1. PubMed DOI

Shin Y.S., Song S.J., Kang S.U., Hwang H.S., Choi J.W., Lee B.H., Jung Y.-S., Kim C.-H. A novel synthetic compound, 3-amino-3-(4-fluoro-phenyl)-1H-qunoline-2,4-dione, inhibits cisplatin-induced hearing loss by the suppression of reactive oxygen species: In vitro and in vivo study. Neuroscience. 2013;232:1–12. doi: 10.1016/j.neuroscience.2012.12.008. PubMed DOI

Cifuentes-Pagano M.E., Meijles D.N., Pagano P.J. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr. Pharm. Design. 2015;21:6032–6035. PubMed PMC

Mittal R., Debs L.H., Nguyen D., Patel A.P., Grati M., Mittal J., Yan D., Eshraghi A.A., Liu X.Z. Signaling in the Auditory System: Impications in Hair Cell Regeneration and Hearing Function. J. Cell. Physiol. 2017;232:2710–2721. doi: 10.1002/jcp.25695. PubMed DOI

Saito N., Hatakeda K., Ito S., Asano T., Toda T. Formation of Bis(2-oxazolidinone) Derivatives by Reaction of 2-Methoxy-3,3-dimethyl-2-phenyloxirane or α-bromoisobutyrophenone with Carbon Dioxide and Aliphatic α,ω-Diamines. Bull. Chem. Soc. Jpn. 1986;59:1629–1631. doi: 10.1246/bcsj.59.1629. DOI

Klásek A., Lyčka A., Rouchal M. Completely dissimilar: The reactivity of 1-unsubstituted 3-chloroquinoline-2,4-diones with ethylene diamine and ethanolamine to form new molecular rearrangements. Arkivoc. 2020;vi:209–219. doi: 10.24820/ark.5550190.p011.053. DOI

Kumar V. Designed Synthesis of Diversely Substituted Hydantoins and Hydantoin-Based Hybrid Molecules: A Personal Account. Synlett. 2021;32:1897–1910. doi: 10.1055/a-1480-6474. DOI

Kalník M., Gabko P., Bella M., Koóš M. The Bucherer-Bergs Multicomponent Synthesis of Hydantoins–Excellence in Simplicity. Molecules. 2021;26:4024. doi: 10.3390/molecules26134024. PubMed DOI PMC

Roy A., Sarkar T., Datta S., Maiti A., Chakrabarti M., Mondal T., Mondal C., Banerjee A., Roy S., Mukherjee S., et al. Structure-based discovery of (S)-2-amino-6-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1‘,5‘:1,6]pyrido[3,4-b]indole-1,3-(2H)-dione as low nanomolar, orally bioavailable autotaxin inhibitor. Chem. Biol. Drug Des. 2022;99:496–503. doi: 10.1111/cbdd.14017. PubMed DOI

Liang X., Li X., Zhao Z., Nie Z., Yao Z., Ren W., Yang X., Hou X., Fang H. Design, synthesis and biological evaluation of hydantoin derivatives as Mcl-1 selective inhibitors. Bioorganic Chem. 2022;121:105643. doi: 10.1016/j.bioorg.2022.105643. PubMed DOI

Cho S., Kim S.-H., Shin D. Recent applications of hydantoin and thiohydantoin in medicinal chemistry. Eur. J. Med. Chem. 2019;164:517–545. doi: 10.1016/j.ejmech.2018.12.066. PubMed DOI

Machado L., Spengler G., Evaristo M., Handzlik J., Molnár J., Viveiros M., Kiec-Kononowicz K., Amaral L. Biological Activity of Twenty-three Hydantoin Derivatives on Intrinsic Efflux Pump System of Salmonella enterica serovar Enteritidis NCTC 13349. In Vivo. 2011;25:769–772. PubMed

Konnert L., Lamaty F., Martinez J., Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem. Rev. 2017;117:13757–13809. doi: 10.1021/acs.chemrev.7b00067. PubMed DOI

Calestani G., Leardini R., McNab H., Nanni D., Zanardi G. Thermal decomposition of tert-butyl o-(phenoxy)- and o-(anilino)-phenyliminoxyperacetates. J. Chem. Soc. Perkin Trans. 1. 1998:1813–1824. doi: 10.1039/a800868j. DOI

Mahajan M.P., Sondhi S.M., Ralhan N.K. Studies in Heterocyclics. VI. Synthesis of Thiazolo-Benzo-Triazepines. Bull. Chem. Soc. Jpn. 1976;49:2609–2610. doi: 10.1246/bcsj.49.2609. DOI

Anil S.M., Shobith R., Kiran K.R., Swaroop T.R., Mallesha N., Sadashiva M.P. Facile synthesis of 1,4-benzodiazepine-2,5-diones and quinazolinones from amino acids as anti-tubercular agents. New. J. Chem. 2019;43:182–187. doi: 10.1039/C8NJ04936J. DOI

Beutner G.L., Hsiao Y., Razler T., Simmons E.M., Wertjes W. Nickel-Catalyzed Synthesis of Quinazolinediones. Org. Lett. 2017;19:1052–1055. doi: 10.1021/acs.orglett.7b00052. PubMed DOI

Nyquist R.A., Fiedler S.L. Infrared study of five- and six-membered type cyclic imides. Vib. Spectrosc. 1995;8:365–386. doi: 10.1016/0924-2031(94)00051-H. DOI

Ösz E., Szilágyi L., Marton J. Structural analysis of hydantoins and 2-thiohydantoins in solution using 13C, 1H NMR coupling constants. J. Mol. Struct. 1998;442:267–274. doi: 10.1016/S0022-2860(97)00357-8. DOI

Allen F.H., Kennard O., Watson D.G. Tables of Bond Lenghts determined by X-ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. [(accessed on 12 April 2022)];J. Chem. Soc.-Perkin Trans. 2. 1987 :S1–S19. Available online: https://pubs.rsc.org/en/content/articlelanding/1987/p2/p298700000s1.

Allen F.H., Watson D.G., Brammer L., Orpen A.G., Taylor R. Typical interatomic distances: Organic compounds. Int. Tables Crystallogr. 2006;C:790–811.

Raj R., Mehra V., Gut J., Rosenthal P.J., Wicht K.J., Egan T.J., Hopper M., Wrischnik L., Kirkwood M.L., Kumar V. Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. Eur. J. Med. Chem. 2014;84:425–432. doi: 10.1016/j.ejmech.2014.07.048. PubMed DOI

Matada B.S., Pattanashettar R., Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021;32:115973. doi: 10.1016/j.bmc.2020.115973. PubMed DOI

Sheldrick G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Gucký T., Jorda R., Zatloukal M., Bazgier V., Berka K., Řezníčková E., Béres T., Strnad M., Kryštof V. A Novel Series of Highly Potent 2,6,9-Trisubstituted Purine Cyclin-Dependent Kinase Inhibitors. J. Med. Chem. 2013;56:6234–6247. doi: 10.1021/jm4006884. PubMed DOI

Jorda R., Havlíček L., McNae I.W., Walkinshaw M.D., Voller J., Šturc A., Navrátilová J., Kuzma M., Mistrík M., Bártek J., et al. Pyrazolo[4,3-d]pyrimidine Bioisostere of Roscovitine: Evaluation of a Novel Selective Inhibitor of Cyclin-Dependent Kinases with Antiproliferative Activity. J. Med. Chem. 2011;54:2980–2993. doi: 10.1021/jm200064p. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...