Impressive Enrichment of Semiempirical Quantum Mechanics-Based Scoring Function: HSP90 Protein with 4541 Inhibitors and Decoys
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
European Regional Development Fund - International
CZ.02.1.01/0.0/0.0/16_019/0000729
Project: 'Chemical Biology for Drugging Undruggable Targets - International
PubMed
31460692
DOI
10.1002/cphc.201900628
Knihovny.cz E-zdroje
- Klíčová slova
- docking, enrichment, non-covalent interactions, semiempirical quantum mechanics-based scoring function, virtual screening,
- MeSH
- kvantová teorie * MeSH
- ligandy MeSH
- molekulární modely MeSH
- proteiny tepelného šoku HSP90 antagonisté a inhibitory metabolismus MeSH
- ROC křivka MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- proteiny tepelného šoku HSP90 MeSH
This paper describes the excellent performance of a newly developed scoring function (SF), based on the semiempirical QM (SQM) PM6-D3H4X method combined with the conductor-like screening implicit solvent model (COSMO). The SQM/COSMO, Amber/GB and nine widely used SFs have been evaluated in terms of ranking power on the HSP90 protein with 72 biologically active compounds and 4469 structurally similar decoys. Among conventional SFs, the highest early and overall enrichment measured by EF1 and AUC% obtained using single-scoring-function ranking has been found for Glide SP and Gold-ASP SFs, respectively (7, 75 % and 3, 76 %). The performance of other standard SFs has not been satisfactory, mostly even decreasing below random values. The SQM/COSMO SF, where P-L structures were optimised at the advanced Amber level, has resulted in a dramatic enrichment increase (47, 98 %), almost reaching the best possible receiver operator characteristic (ROC) curve. The best SQM frame thus inserts about seven times more active compounds into the selected dataset than the best standard SF.
Zobrazit více v PubMed
Z. Wang, H. Sun, X. Yao, D. Li, L. Xu, Y. Li, S. Tian, T. Hou, Phys. Chem. Chem. Phys. 2016, 18, 12964-12975.
H. Gohlke, M. Hendlich, G. Klebe, J. Mol. Biol. 2000, 295, 337-356.
K. Raha, K. M. Merz, J. Am. Chem. Soc. 2004, 4, 1020-1021.
M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 13, 3902-3909.
J. J. P. Stewart, J. Comput. Chem. 1991, 3, 320-341.
J. J. P. Stewart, J. Mol. Model. 2007, 12, 1173-1213.
J. J. P. Stewart, J. Mol. Model. 2013, 1, 1-32.
M. Kubillus, T. Kubař, M. Gaus, J. Řezáč, M. Elstner, J. Chem. Theory Comput. 2015, 11, 332-342.
J. Řezáč, P. Hobza, Chem. Rev. 2016, 116, 5038-5071.
J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2012, 8, 4285-4292.
J. J. P. Stewart, MOPAC 2016, Stewart Computational Chemistry, Colorado Springs, CO: 2016.
A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 0, 799-805.
J. Fanfrlík, A. K. Bronowska, J. Řezáč, O. Přenosil, J. Konvalinka, P. Ho, J. Phys. Chem. Btry B 2010, 114, 12666-12678.
M. Lepšík, J. Řezáč, M. Kolář, A. Pecina, P. Hobza, J. Fanfrlík, ChemPlusChem 2013, 78, 921-931.
M. Lepšík, J. Řezáč, M. Kolář, A. Pecina, P. Hobza, J. Fanfrlík, ChemPlusChem 2013, 78, 921-931.
A. Pecina, R. Meier, J. Ich Fanfrlí, M. Lepš, Í K. J. Řezá, P. Hobza, C. Baldauf, Chem. Commun. Chem. Commun 2016, 3312, 3312-3315.
H. Ajani, A. Pecina, S. M. Eyrilmez, J. Fanfrlík, S. Haldar, J. Řezáč, P. Hobza, M. Lepšík, ACS Omega 2017, 2, 4022-4029.
J. Řezáč, J. Chem. Theory Comput. 2017, 13, 4804-4817.
J. Řezáč, P. Hobza, J. Chem. Theory Comput. 2012, 8, 141-151.
J. Řezáč, K. E. Riley, P. Hobz, J. Chem. Theory Comput.Ion 2011, 7, 2427-2438.
A. Pecina, J. Brynda, L. Vrzal, R. Gnanasekaran, M. Hořejší, S. M. Eyrilmez, J. Řezáč, M. Lepšík, P. Řezáčová, P. Hobza, P. Majer, V. Veverka, J. Fanfrlík, ChemPhysChem 2018, 7, 873-879.
A. Sawai, S. Chandarlapaty, H. Greulich, M. Gonen, Q. Ye, C. L. Arteaga, W. Sellers, N. Rosen, D. B. Solit, Cancer Res. 2008, 68, 589-596.
C. E. Stebbins, A. A. Russo, C. Schneider, N. Rosen, F. U. Hartl, N. P. Pavletich, Cell 1997, 89, 239-250.
M. M. Mysinger, M. Carchia, J. J. Irwin, B. K. Shoichet, J. Med. Chem. 2012, 55, 6582-6594.
D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26, 1668-1688.
O. Gutten, D. Bím, J. Řezáč, L. Rulíšek, J. Chem. Inf. Model. 2018, 58, 48-60.
J. Řezáč, J. Comput. Chem. 2016, 37, 1230-1237.
A. Nicholls, J. Comput.-Aided Mol. Des. 2008, 22, 239-255.
H. Fan, J. J. Irwin, B. M. Webb, G. Klebe, B. K. Shoichet, A. Sali, J. Chem. Inf. Model. 2009, 11, 2512-2527.
H. Chen, P. D. Lyne, F. Giordanetto, T. Lovell, J. Li, J. Chem. Inf. Model. 2005, 1,401-415.
N. Huang, B. K. Shoichet, J. J. Irwin, J. Med. Chem. 2006, 23, 6789-6801.
R. D. Clark, D. J. Webster-Clark, J. Comput.-Aided Mol. Des. 2008, 3-4, 141-146.
S. M. Vogel, M. R. Bauer, F. M. Boeckler, J. Chem. Inf. Model. 2011, 10, 2650-2665.
O. Korb, T. Ten Brink, F. R. D. V. P. Raj, M. Keil, T. E. Exner, J. Comput.-Aided Mol. Des. 2012, 2,185-197.
E. A. Wiley, G. Deslongchamps, Computing and Visualization in Science 2009, 1, 1-7.
Chemical Computing Group ULC, Molecular Operating Environment (MOE), Montreal, Quebec, Canada 2018.
E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. Chem. Theory Comput. 2016, 12, 281-296.
J. C. Shelley, A. Cholleti, L. L. Frye, J. R. Greenwood, M. R. Timlin, M. Uchimaya, J. Comput.-Aided Mol. Des. 2007, 21, 681-691.
Schrödinger, Schrödinger Release 2018-2 2018.
H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235-42.
L. Wright, X. Barril, B. Dymock, L. Sheridan, A. Surgenor, M. Beswick, M. Drysdale, A. Collier, A. Massey, N. Davies, Chem. Biol. 2004, 11, 775.
K. Haider, D. J. Huggins, J. Chem. Inf. Model. 2013, 53, 2571-2586.
J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, A. Onufriev, J. Chem. Theory Comput. 2006, 1, 156-169.
R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, P. S. Shenkin, J. Med. Chem. 2004, 7, 1739-1749
G. M. Morris, D. S. Goodsell, M. E. Pique, R. Huey, S. Forli, W. E. Hart, S. Halliday, R. Belew, A. J. Olson, J. Comput. Chem. 2009, 16, 2785-2791.
O. Trott, A. J. Olson, J. Comput. Chem. 2009, 31, 455-461.
D. R. Koes, M. P. Baumgartner, C. J. Camacho, J. Chem. Inf. Model. 2013, 53, 1893-1904.
J. W. M. Nissink, C. Murray, M. Hartshorn, M. L. Verdonk, J. C. Cole, R. Taylor, Proteins Struct. Funct. Genet. 2002, 49, 457-471.
G. Jones, P. Willett, R. C. Glen, A. R. Leach, R. Taylor, J. Mol. Biol. 1997, 267, 727-748.
G. Jones, P. Willett, R. C. Glen, J. Mol. Biol. 1995, 1, 43-53.
W. T. M. Mooij, M. L. Verdonk, Proteins Struct. Funct. Bioinf. 2005, 61, 272-287.
O. Korb, T. Stützle, T. E. Exner, J. Chem. Inf. Model. 2009, 1, 84-96.
A. M. Wollacott, K. M. Merz, J. Chem. Theory Comput. 2006, 4,1070-1077.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926-935.
A. Jakalian, D. B. Jack, C. I. Bayly, J. Comput. Chem. 2002, 23, 1623-1641.
J. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graphics Modell. 2006, 25, 247-260.