Impressive Enrichment of Semiempirical Quantum Mechanics-Based Scoring Function: HSP90 Protein with 4541 Inhibitors and Decoys

. 2019 Nov 05 ; 20 (21) : 2759-2766. [epub] 20190911

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31460692

Grantová podpora
European Regional Development Fund - International
CZ.02.1.01/0.0/0.0/16_019/0000729 Project: 'Chemical Biology for Drugging Undruggable Targets - International

This paper describes the excellent performance of a newly developed scoring function (SF), based on the semiempirical QM (SQM) PM6-D3H4X method combined with the conductor-like screening implicit solvent model (COSMO). The SQM/COSMO, Amber/GB and nine widely used SFs have been evaluated in terms of ranking power on the HSP90 protein with 72 biologically active compounds and 4469 structurally similar decoys. Among conventional SFs, the highest early and overall enrichment measured by EF1 and AUC% obtained using single-scoring-function ranking has been found for Glide SP and Gold-ASP SFs, respectively (7, 75 % and 3, 76 %). The performance of other standard SFs has not been satisfactory, mostly even decreasing below random values. The SQM/COSMO SF, where P-L structures were optimised at the advanced Amber level, has resulted in a dramatic enrichment increase (47, 98 %), almost reaching the best possible receiver operator characteristic (ROC) curve. The best SQM frame thus inserts about seven times more active compounds into the selected dataset than the best standard SF.

Zobrazit více v PubMed

Z. Wang, H. Sun, X. Yao, D. Li, L. Xu, Y. Li, S. Tian, T. Hou, Phys. Chem. Chem. Phys. 2016, 18, 12964-12975.

H. Gohlke, M. Hendlich, G. Klebe, J. Mol. Biol. 2000, 295, 337-356.

K. Raha, K. M. Merz, J. Am. Chem. Soc. 2004, 4, 1020-1021.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 13, 3902-3909.

J. J. P. Stewart, J. Comput. Chem. 1991, 3, 320-341.

J. J. P. Stewart, J. Mol. Model. 2007, 12, 1173-1213.

J. J. P. Stewart, J. Mol. Model. 2013, 1, 1-32.

M. Kubillus, T. Kubař, M. Gaus, J. Řezáč, M. Elstner, J. Chem. Theory Comput. 2015, 11, 332-342.

J. Řezáč, P. Hobza, Chem. Rev. 2016, 116, 5038-5071.

J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2012, 8, 4285-4292.

J. J. P. Stewart, MOPAC 2016, Stewart Computational Chemistry, Colorado Springs, CO: 2016.

A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 0, 799-805.

J. Fanfrlík, A. K. Bronowska, J. Řezáč, O. Přenosil, J. Konvalinka, P. Ho, J. Phys. Chem. Btry B 2010, 114, 12666-12678.

M. Lepšík, J. Řezáč, M. Kolář, A. Pecina, P. Hobza, J. Fanfrlík, ChemPlusChem 2013, 78, 921-931.

M. Lepšík, J. Řezáč, M. Kolář, A. Pecina, P. Hobza, J. Fanfrlík, ChemPlusChem 2013, 78, 921-931.

A. Pecina, R. Meier, J. Ich Fanfrlí, M. Lepš, Í K. J. Řezá, P. Hobza, C. Baldauf, Chem. Commun. Chem. Commun 2016, 3312, 3312-3315.

H. Ajani, A. Pecina, S. M. Eyrilmez, J. Fanfrlík, S. Haldar, J. Řezáč, P. Hobza, M. Lepšík, ACS Omega 2017, 2, 4022-4029.

J. Řezáč, J. Chem. Theory Comput. 2017, 13, 4804-4817.

J. Řezáč, P. Hobza, J. Chem. Theory Comput. 2012, 8, 141-151.

J. Řezáč, K. E. Riley, P. Hobz, J. Chem. Theory Comput.Ion 2011, 7, 2427-2438.

A. Pecina, J. Brynda, L. Vrzal, R. Gnanasekaran, M. Hořejší, S. M. Eyrilmez, J. Řezáč, M. Lepšík, P. Řezáčová, P. Hobza, P. Majer, V. Veverka, J. Fanfrlík, ChemPhysChem 2018, 7, 873-879.

A. Sawai, S. Chandarlapaty, H. Greulich, M. Gonen, Q. Ye, C. L. Arteaga, W. Sellers, N. Rosen, D. B. Solit, Cancer Res. 2008, 68, 589-596.

C. E. Stebbins, A. A. Russo, C. Schneider, N. Rosen, F. U. Hartl, N. P. Pavletich, Cell 1997, 89, 239-250.

M. M. Mysinger, M. Carchia, J. J. Irwin, B. K. Shoichet, J. Med. Chem. 2012, 55, 6582-6594.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26, 1668-1688.

O. Gutten, D. Bím, J. Řezáč, L. Rulíšek, J. Chem. Inf. Model. 2018, 58, 48-60.

J. Řezáč, J. Comput. Chem. 2016, 37, 1230-1237.

A. Nicholls, J. Comput.-Aided Mol. Des. 2008, 22, 239-255.

H. Fan, J. J. Irwin, B. M. Webb, G. Klebe, B. K. Shoichet, A. Sali, J. Chem. Inf. Model. 2009, 11, 2512-2527.

H. Chen, P. D. Lyne, F. Giordanetto, T. Lovell, J. Li, J. Chem. Inf. Model. 2005, 1,401-415.

N. Huang, B. K. Shoichet, J. J. Irwin, J. Med. Chem. 2006, 23, 6789-6801.

R. D. Clark, D. J. Webster-Clark, J. Comput.-Aided Mol. Des. 2008, 3-4, 141-146.

S. M. Vogel, M. R. Bauer, F. M. Boeckler, J. Chem. Inf. Model. 2011, 10, 2650-2665.

O. Korb, T. Ten Brink, F. R. D. V. P. Raj, M. Keil, T. E. Exner, J. Comput.-Aided Mol. Des. 2012, 2,185-197.

E. A. Wiley, G. Deslongchamps, Computing and Visualization in Science 2009, 1, 1-7.

Chemical Computing Group ULC, Molecular Operating Environment (MOE), Montreal, Quebec, Canada 2018.

E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. Chem. Theory Comput. 2016, 12, 281-296.

J. C. Shelley, A. Cholleti, L. L. Frye, J. R. Greenwood, M. R. Timlin, M. Uchimaya, J. Comput.-Aided Mol. Des. 2007, 21, 681-691.

Schrödinger, Schrödinger Release 2018-2 2018.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235-42.

L. Wright, X. Barril, B. Dymock, L. Sheridan, A. Surgenor, M. Beswick, M. Drysdale, A. Collier, A. Massey, N. Davies, Chem. Biol. 2004, 11, 775.

K. Haider, D. J. Huggins, J. Chem. Inf. Model. 2013, 53, 2571-2586.

J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, A. Onufriev, J. Chem. Theory Comput. 2006, 1, 156-169.

R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, P. S. Shenkin, J. Med. Chem. 2004, 7, 1739-1749

G. M. Morris, D. S. Goodsell, M. E. Pique, R. Huey, S. Forli, W. E. Hart, S. Halliday, R. Belew, A. J. Olson, J. Comput. Chem. 2009, 16, 2785-2791.

O. Trott, A. J. Olson, J. Comput. Chem. 2009, 31, 455-461.

D. R. Koes, M. P. Baumgartner, C. J. Camacho, J. Chem. Inf. Model. 2013, 53, 1893-1904.

J. W. M. Nissink, C. Murray, M. Hartshorn, M. L. Verdonk, J. C. Cole, R. Taylor, Proteins Struct. Funct. Genet. 2002, 49, 457-471.

G. Jones, P. Willett, R. C. Glen, A. R. Leach, R. Taylor, J. Mol. Biol. 1997, 267, 727-748.

G. Jones, P. Willett, R. C. Glen, J. Mol. Biol. 1995, 1, 43-53.

W. T. M. Mooij, M. L. Verdonk, Proteins Struct. Funct. Bioinf. 2005, 61, 272-287.

O. Korb, T. Stützle, T. E. Exner, J. Chem. Inf. Model. 2009, 1, 84-96.

A. M. Wollacott, K. M. Merz, J. Chem. Theory Comput. 2006, 4,1070-1077.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926-935.

A. Jakalian, D. B. Jack, C. I. Bayly, J. Comput. Chem. 2002, 23, 1623-1641.

J. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graphics Modell. 2006, 25, 247-260.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...