Fecal Microbiome Changes and Specific Anti-Bacterial Response in Patients with IBD during Anti-TNF Therapy

. 2021 Nov 16 ; 10 (11) : . [epub] 20211116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34831411

Grantová podpora
grant number NV18-09-00493. Ministry of Health of the Czech Republic

Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract that have been linked to microbiome dysbiosis and immune system dysregulation. We investigated the longitudinal effect of anti-TNF therapy on gut microbiota composition and specific immune response to commensals in IBD patients. The study included 52 patients tracked over 38 weeks of therapy and 37 healthy controls (HC). To characterize the diversity and composition of the gut microbiota, we used amplicon sequencing of the V3V4 region of 16S rRNA for the bacterial community and of the ITS1 region for the fungal community. We measured total antibody levels as well as specific antibodies against assorted gut commensals by ELISA. We found diversity differences between HC, Crohn's disease, and ulcerative colitis patients. The bacterial community of patients with IBD was more similar to HC at the study endpoint, suggesting a beneficial shift in the microbiome in response to treatment. We identified factors such as disease severity, localization, and surgical intervention that significantly contribute to the observed changes in the gut bacteriome. Furthermore, we revealed increased IgM levels against specific gut commensals after anti-TNF treatment. In summary, this study, with its longitudinal design, brings insights into the course of anti-TNF therapy in patients with IBD and correlates the bacterial diversity with disease severity in patients with ulcerative colitis (UC).

Zobrazit více v PubMed

Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434. doi: 10.1038/nature06005. PubMed DOI

Bortlík M., Ďuricová D., Douda T., Konečný M., Koželuhová J., Novotný A., Zbořil V., Prokopová L., Kohout P., Stehlík J., et al. Doporučení pro podávání biologické léčby pacientům s idiopatickými střevními záněty: Čtvrté, aktualizované vydání. Gastroenterol. Hepatol. 2019;73:11–24. doi: 10.14735/amgh201911. DOI

Braegger C.P., Nicholls S., Murch S.H., Stephens S., MacDonald T.T. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet. 1992;339:89–91. doi: 10.1016/0140-6736(92)90999-J. PubMed DOI

Reimund J.M., Wittersheim C., Dumont S., Muller C.D., Kenney J.S., Baumann R., Poindron P., Duclos B. Increased production of tumour necrosis factor-α, interleukin-1β, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn’s disease. Gut. 1996;39:684–689. doi: 10.1136/gut.39.5.684. PubMed DOI PMC

Marini M., Bamias G., Rivera-Nieves J., Moskaluk C.A., Hoang S.B., Ross W.G., Pizarro T.T., Cominelli F. TNF-a neutralization ameliorates the severity of murine Crohn’s-like ileitis by abrogation of intestinal epithelial cell apoptosis. Proc. Natl. Acad. Sci. USA. 2003;100:8366–8371. doi: 10.1073/pnas.1432897100. PubMed DOI PMC

Schmitz H., Fromm M., Bentzel C.J., Scholz P., Detjen K., Mankertz J., Bode H., Epple H.J., Riecken E.O., Schulzke J.D. Tumor necrosis factor-alpha (TNFα) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell Sci. 1999;112:137–146. doi: 10.1242/jcs.112.1.137. PubMed DOI

Friedrich M., Pohin M., Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity. 2019;50:992–1006. doi: 10.1016/j.immuni.2019.03.017. PubMed DOI

Caruso R., Lo B.C., Núñez G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 2020;20:411–426. doi: 10.1038/s41577-019-0268-7. PubMed DOI

Aldars-García L., Chaparro M., Gisbert J.P. Systematic review: The gut microbiome and its potential clinical application in inflammatory bowel disease. Microorganisms. 2021;9:977. doi: 10.3390/microorganisms9050977. PubMed DOI PMC

Rajca S., Grondin V., Louis E., Vernier-Massouille G., Grimaud J.C., Bouhnik Y., Laharie D., Dupas J.L., Pillant H., Picon L., et al. Alterations in the intestinal microbiome (Dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm. Bowel Dis. 2014;20:978–986. doi: 10.1097/MIB.0000000000000036. PubMed DOI

Busquets D., Mas-de-Xaxars T., López-Siles M., Martínez-Medina M., Bahí A., Sàbat M., Louvriex R., Miquel-Cusachs J.O., Garcia-Gil J.L., Aldeguer X. Anti-tumour necrosis factor treatment with Adalimumab induces changes in the microbiota of Crohn’s disease. J. Crohn’s Colitis. 2015;9:899–906. doi: 10.1093/ecco-jcc/jjv119. PubMed DOI

Magnusson M.K., Strid H., Sapnara M., Lasson A., Bajor A., Ung K.A., Öhman L. Anti-TNF therapy response in patients with ulcerative colitis is associated with colonic antimicrobial peptide expression and microbiota composition. J. Crohn’s Colitis. 2016;10:943–952. doi: 10.1093/ecco-jcc/jjw051. PubMed DOI

Yilmaz B., Juillerat P., Øyås O., Ramon C., Bravo F.D., Franc Y., Fournier N., Michetti P., Mueller C., Geuking M., et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat. Med. 2019;25:323–336. doi: 10.1038/s41591-018-0308-z. PubMed DOI

Ribaldone D.G., Caviglia G.P., Abdulle A., Pellicano R., Ditto M.C., Morino M., Fusaro E., Saracco G.M., Bugianesi E., Astegiano M. Adalimumab therapy improves intestinal dysbiosis in Crohn’s disease. J. Clin. Med. 2019;8:1646. doi: 10.3390/jcm8101646. PubMed DOI PMC

Aden K., Rehman A., Waschina S., Pan W.H., Walker A., Lucio M., Nunez A.M., Bharti R., Zimmerman J., Bethge J., et al. Metabolic functions of gut microbes associate with efficacy of tumor necrosis factor antagonists in patients with inflammatory bowel diseases. Gastroenterology. 2019;157:1279–1292.e11. doi: 10.1053/j.gastro.2019.07.025. PubMed DOI

Kowalska-Duplaga K., Kapusta P., Gosiewski T., Sroka-Oleksiak A., Ludwig-Słomczyńska A.H., Wołkow P.P., Fyderek K. Changes in the intestinal microbiota are seen following treatment with Infliximab in children with Crohn’s disease. J. Clin. Med. 2020;9:687. doi: 10.3390/jcm9030687. PubMed DOI PMC

Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC

Raimondi S., Amaretti A., Gozzoli C., Simone M., Righini L., Candeliere F., Brun P., Ardizzoni A., Colombari B., Paulone S., et al. Longitudinal survey of fungi in the human gut: ITS profiling, phenotyping, and colonization. Front. Microbiol. 2019;10:1575. doi: 10.3389/fmicb.2019.01575. PubMed DOI PMC

Ott S.J., Kühbacher T., Musfeldt M., Rosenstiel P., Hellmig S., Rehman A., Drews O., Weichert W., Timmis K.N., Schreiber S. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand. J. Gastroenterol. 2008;43:831–841. doi: 10.1080/00365520801935434. PubMed DOI

Sokol H., Leducq V., Aschard H., Pham H.P., Jegou S., Landman C., Cohen D., Liguori G., Bourrier A., Nion-Larmurier I., et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66:1039–1048. doi: 10.1136/gutjnl-2015-310746. PubMed DOI PMC

Nash A.K., Auchtung T.A., Wong M.C., Smith D.P., Gesell J.R., Ross M.C., Stewart C.J., Metcalf G.A., Muzny D.M., Gibbs R.A., et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5:153. doi: 10.1186/s40168-017-0373-4. PubMed DOI PMC

Li Q., Wang C., Tang C., He Q., Li N., Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 2014;48:513–523. doi: 10.1097/MCG.0000000000000035. PubMed DOI PMC

Zwolinska-Wcislo M., Brzozowski T., Budak A., Kwiecien S., Sliwowski Z., Drozdowicz D., Trojanowska D., Rudnicka-Sosin L., Mach T., Konturek S.J., et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J. Physiol. Pharmacol. 2009;60:107–118. PubMed

Nishino K., Nishida A., Inoue R., Kawada Y., Ohno M., Sakai S., Inatomi O., Bamba S., Sugimoto M., Kawahara M., et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 2018;53:95–106. doi: 10.1007/s00535-017-1384-4. PubMed DOI

Pascal V., Pozuelo M., Borruel N., Casellas F., Campos D., Santiago A., Martinez X., Varela E., Sarrabayrouse G., Machiels K., et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–822. doi: 10.1136/gutjnl-2016-313235. PubMed DOI PMC

Torres J., Bonovas S., Doherty G., Kucharzik T., Gisbert J.P., Raine T., Adamina M., Armuzzi A., Bachmann O., Bager P., et al. ECCO guidelines on therapeutics in Crohn’s disease: Medical treatment. J. Crohn’s Colitis. 2020;14:4–22. doi: 10.1093/ecco-jcc/jjz180. PubMed DOI

Coufal S., Galanova N., Bajer L., Gajdarova Z., Schierova D., Jiraskova Zakostelska Z., Kostovcikova K., Jackova Z., Stehlikova Z., Drastich P., et al. Inflammatory bowel disease types differ in markers of inflammation, gut barrier and in specific anti-bacterial response. Cells. 2019;8:719. doi: 10.3390/cells8070719. PubMed DOI PMC

Harvey R.F., Bradshaw J.M. Index of Crohn’S disease activity. Lancet. 1980;1:514. doi: 10.1016/S0140-6736(80)92767-1. PubMed DOI

Schroeder K.W., Tremaine W.J., Ilstrup D.M. Coated oral 5-ASA for mildely to moderately active ulcerative colitis. N. Engl. J. Med. 1987;317:1625–1629. doi: 10.1056/NEJM198712243172603. PubMed DOI

Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC

Douglas G., Maffei V., Zaneveld J., Yurgel S., Brown J., Taylor C., Huttenhower C., Langille M.G.I. PICRUSt2: An improved and customizable approach for metagenome inference. bioRxiv. 2020 doi: 10.1101/672295. PubMed DOI PMC

Stehlikova Z., Tlaskal V., Galanova N., Roubalova R., Kreisinger J., Dvorak J., Prochazkova P., Kostovcikova K., Bartova J., Libanska M., et al. Oral microbiota composition and antimicrobial antibody response in patients with recurrent aphthous stomatitis. Microorganisms. 2019;7:636. doi: 10.3390/microorganisms7120636. PubMed DOI PMC

Zakostelska Z., Kverka M., Klimesova K., Rossmann P., Mrazek J., Kopecny J., Hornova M., Srutkova D., Hudcovic T., Ridl J., et al. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS ONE. 2011;6:e27961. doi: 10.1371/journal.pone.0027961. PubMed DOI PMC

Mandal S., Van Treuren W., White R.A., Eggesbø M., Knight R., Peddada S.D. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015;26:27663. doi: 10.3402/mehd.v26.27663. PubMed DOI PMC

Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439. doi: 10.1126/science.1237439. PubMed DOI PMC

Mehta R., Abu-Ali G., Drew D., Lloyd-Price J., Subramanian A., Lochhead P., Joshi A., Ivey K., Khalili H., Brown G., et al. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 2018;3:347–355. doi: 10.1038/s41564-017-0096-0. PubMed DOI PMC

Caporaso J.G., Lauber C.L., Costello E.K., Berg-Lyons D., Gonzalez A., Stombaugh J., Knights D., Gajer P., Ravel J., Fierer N., et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50. doi: 10.1186/gb-2011-12-5-r50. PubMed DOI PMC

Yun Y., Kim H.N., Kim S.E., Heo S.G., Chang Y., Ryu S., Shin H., Kim H.L. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17:151. doi: 10.1186/s12866-017-1052-0. PubMed DOI PMC

Ventin-Holmberg R., Eberl A., Saqib S., Korpela K., Virtanen S., Sipponen T., Salonen A., Saavalainen P., Nissilä E. Bacterial and fungal profiles as markers of infliximab drug response in inflammatory bowel disease. J. Crohn’s Colitis. 2021;15:1019–1031. doi: 10.1093/ecco-jcc/jjaa252. PubMed DOI

Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2015;14:20–32. doi: 10.1038/nrmicro3552. PubMed DOI PMC

Wirth U., Garzetti D., Jochum L.M., Spriewald S., Kühn F., Ilmer M., Lee S.M., Niess H., Bazhin A.V., Andrassy J., et al. Microbiome analysis from paired mucosal and fecal samples of a colorectal cancer biobank. Cancers. 2020;12:3702. doi: 10.3390/cancers12123702. PubMed DOI PMC

Osterman M.T., Lichtenstein G.R. Infliximab vs. Adalimumab for UC: Is there a difference? Clin. Gastroenterol. Hepatol. 2017;15:1197–1199. doi: 10.1016/j.cgh.2017.04.036. PubMed DOI

Thorlund K., Druyts E., Mills E.J., Fedorak R.N., Marshall J.K. Adalimumab versus infliximab for the treatment of moderate to severe ulcerative colitis in adult patients naïve to anti-TNF therapy: An indirect treatment comparison meta-analysis. J. Crohn’s Colitis. 2014;8:571–581. doi: 10.1016/j.crohns.2014.01.010. PubMed DOI

Doecke J.D., Hartnell F., Bampton P., Bell S., Mahy G., Grover Z., Lewindon P., Jones L.V., Sewell K., Krishnaprasad K., et al. Infliximab vs. adalimumab in Crohn’s disease: Results from 327 patients in an Australian and New Zealand observational cohort study. Aliment. Pharmacol. Ther. 2017;45:542–552. doi: 10.1111/apt.13880. PubMed DOI

Singh S., Heien H.C., Sangaralingham L.R., Schilz S.R., Kappelman M.D., Shah N.D., Loftus Jr. E. V Comparative effectiveness and safety of anti-tumor necrosis factor agents in biologic-naïve patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 2016;14:1120–1129. doi: 10.1016/j.cgh.2016.03.038. PubMed DOI PMC

Elvers K.T., Wilson V.J., Hammond A., Duncan L., Huntley A.L., Hay A.D., Werf E.T. van der Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: A systematic review. BMJ Open. 2020;10:e035677. doi: 10.1136/bmjopen-2019-035677. PubMed DOI PMC

Agnes A., Puccioni C., D’Ugo D., Gasbarrini A., Biondi A., Persiani R. The gut microbiota and colorectal surgery outcomes: Facts or hype? A narrative review. BMC Surg. 2021;21:83. doi: 10.1186/s12893-021-01087-5. PubMed DOI PMC

Sakurai T., Nishiyama H., Sakai K., De Velasco M.A., Nagai T., Komeda Y., Kashida H., Okada A., Kawai I., Nishio K., et al. Mucosal microbiota and gene expression are associated with long-term remission after discontinuation of adalimumab in ulcerative colitis. Sci. Rep. 2020;10:19186. doi: 10.1038/s41598-020-76175-2. PubMed DOI PMC

Sanchis-Artero L., Martínez-Blanch J.F., Manresa-Vera S., Cortés-Castell E., Valls-Gandia M., Iborra M., Paredes-Arquiola J.M., Boscá-Watts M., Huguet J.M., Gil-Borrás R., et al. Evaluation of changes in intestinal microbiota in Crohn’s disease patients after anti-TNF alpha treatment. Sci. Rep. 2021;11:10016. doi: 10.1038/s41598-021-88823-2. PubMed DOI PMC

Lloyd-Price J., Arze C., Ananthakrishnan A.N., Schirmer M., Avila-Pacheco J., Poon T.W., Andrews E., Ajami N.J., Bonham K.S., Brislawn C.J., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi: 10.1038/s41586-019-1237-9. PubMed DOI PMC

Hall A.B., Yassour M., Sauk J., Garner A., Jiang X., Arthur T., Lagoudas G.K., Vatanen T., Fornelos N., Wilson R., et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017;9:103. doi: 10.1186/s13073-017-0490-5. PubMed DOI PMC

Henke M.T., Kenny D.J., Cassilly C.D., Vlamakis H., Xavier R.J., Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA. 2019;116:12672–12677. doi: 10.1073/pnas.1904099116. PubMed DOI PMC

Liu S., Zhao W., Lan P., Mou X. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy. Protein Cell. 2021;12:331–345. doi: 10.1007/s13238-020-00745-3. PubMed DOI PMC

Sankarasubramanian J., Ahmad R., Avuthu N., Singh A.B., Guda C. Gut microbiota and metabolic specificity in ulcerative colitis and Crohn’s disease. Front. Med. 2020;7:606298. doi: 10.3389/fmed.2020.606298. PubMed DOI PMC

Wang Y., Gao X., Ghozlane A., Hu H., Li X., Xiao Y., Li D., Yu G., Zhang T. Characteristics of faecal microbiota in paediatric Crohn’s disease and their dynamic changes during infliximab therapy. J. Crohn’s Colitis. 2018;12:337–346. doi: 10.1093/ecco-jcc/jjx153. PubMed DOI

Baxter N.T., Schmidt A.W., Venkataraman A., Kim K.S., Waldron C., Schmidt T.M. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566-18. doi: 10.1128/mBio.02566-18. PubMed DOI PMC

Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082. PubMed DOI PMC

Russo E., Giudici F., Fiorindi C., Ficari F., Scaringi S., Amedei A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 2019;10:2754. doi: 10.3389/fimmu.2019.02754. PubMed DOI PMC

Venegas D.P., De La Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J., Faber K.N., Hermoso M.A. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277. PubMed DOI PMC

Jayawardena D., Dudeja P.K. Micronutrient deficiency in inflammatory bowel diseases: Cause or effect? Cell. Mol. Gastroenterol. Hepatol. 2020;9:707–708. doi: 10.1016/j.jcmgh.2019.12.009. PubMed DOI PMC

Skupsky J., Sabui S., Hwang M., Nakasaki M., Cahalan M.D., Said H.M. Biotin supplementation ameliorates murine colitis by preventing NF-κB activation. Cell. Mol. Gastroenterol. Hepatol. 2020;9:557–567. doi: 10.1016/j.jcmgh.2019.11.011. PubMed DOI PMC

Skupsky J., Sabui S., Nakasaki M., Chen J., Cahalan M., Said H. P130 biotin supplementation ameliorates murine colitis by maintaining intestinal mucosal integrity. Gastroenterology. 2019;156:S90. doi: 10.1053/j.gastro.2019.01.209. DOI

Singh V., Yeoh B.S., Xiao X., Kumar M., Bachman M., Borregaard N., Joe B., Vijay-Kumar M. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. Coli survival in the inflamed gut. Nat. Commun. 2015;6:7113. doi: 10.1038/ncomms8113. PubMed DOI PMC

Rai A.K., Mitchell A.M. Enterobacterial common antigen: Synthesis and function of an enigmatic molecule. mBio. 2020;11:e01914-20. doi: 10.1128/mBio.01914-20. PubMed DOI PMC

Bull D.M., Ignaczak T.F. Enterobacterial common antigen-inducedlymphocyte reactivity in inflammatory bowel disease. Gastroenterology. 1973;64:43–50. doi: 10.1016/S0016-5085(73)80090-3. PubMed DOI

Makala H.P., Mayer H. Enterobacterial common antigen. Bacteriol. Rev. 1976;40:591–632. doi: 10.1128/br.40.3.591-632.1976. PubMed DOI PMC

Auchtung T.A., Fofanova T.Y., Stewart C.J., Nash A.K., Wong M.C., Gesell J.R., Auchtung J.M., Ajami N.J., Petrosino J.F. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere. 2018;3:e00092-18. doi: 10.1128/mSphere.00092-18. PubMed DOI PMC

Hoffmann C., Dollive S., Grunberg S., Chen J., Li H., Wu G.D., Lewis J.D., Bushman F.D. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS ONE. 2013;8:e0066019. doi: 10.1371/journal.pone.0066019. PubMed DOI PMC

Huseyin C.E., O’Toole P.W., Cotter P.D., Scanlan P.D. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 2017;41:479–511. doi: 10.1093/femsre/fuw047. PubMed DOI

Kakoullis L., Pantzaris N.D., Platanaki C., Lagadinou M., Papachristodoulou E., Velissaris D. The use of IgM-enriched immunoglobulin in adult patients with sepsis. J. Crit. Care. 2018;47:30–35. doi: 10.1016/j.jcrc.2018.06.005. PubMed DOI

Daien C.I., Gailhac S., Mura T., Combe B., Hahne M., Morel J. High levels of memory B cells are associated with response to a first tumor necrosis factor inhibitor in patients with rheumatoid arthritis in a longitudinal prospective study. Arthritis Res. Ther. 2014;16:R95. doi: 10.1186/ar4543. PubMed DOI PMC

Timmermans W.M.C., Van Laar J.A.M., Van Der Houwen T.B., Kamphuis L.S.J., Bartol S.J.W., Lam K.H., Ouwendijk R.J., Sparrow M.P., Gibson P.R., Van Hagen P.M., et al. B-cell dysregulation in Crohn’s disease is partially restored with infliximab therapy. PLoS ONE. 2016;11:e0160103. doi: 10.1371/journal.pone.0160103. PubMed DOI PMC

Tabaqchali S., O’Donoghue D.P., Bettelheim K.A. Escherichia coli antibodies in patients with inflammatory bowel disease. Gut. 1978;19:108–113. doi: 10.1136/gut.19.2.108. PubMed DOI PMC

Lopez-Siles M., Duncan S.H., Garcia-Gil L.J., Martinez-Medina M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME J. 2017;11:841–852. doi: 10.1038/ismej.2016.176. PubMed DOI PMC

Alexander K.L., Zhao Q., Reif M., Rosenberg A.F., Mannon P.J., Duck L.W., Elson C.O. Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology. 2021;161:522–535.e6. doi: 10.1053/j.gastro.2021.03.064. PubMed DOI PMC

Palm N.W., De Zoete M.R., Cullen T.W., Barry N.A., Stefanowski J., Hao L., Degnan P.H., Hu J., Peter I., Zhang W., et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–1010. doi: 10.1016/j.cell.2014.08.006. PubMed DOI PMC

Zeng M.Y., Cisalpino D., Varadarajan S., Hellman J., Warren H.S., Cascalho M., Inohara N., Núñez G. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity. 2016;44:647–658. doi: 10.1016/j.immuni.2016.02.006. PubMed DOI PMC

Dubé P.E., Punit S., Brent Polk D. Redeeming an old foe: Protective as well as pathophysiological roles for tumor necrosis factor in inflammatory bowel disease. Am. J. Physiol.-Gastrointest. Liver Physiol. 2015;308:G161–G170. doi: 10.1152/ajpgi.00142.2014. PubMed DOI PMC

Gálvez J. Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014;2014:928461. doi: 10.1155/2014/928461. PubMed DOI PMC

Kojouharoff G., Hans W., Obermeler F., Männel D.N., Andus T., Schölmerich J., Gross V., Falk W. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin. Exp. Immunol. 1997;107:353–358. doi: 10.1111/j.1365-2249.1997.291-ce1184.x. PubMed DOI PMC

Noti M., Corazza N., Mueller C., Berger B., Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J. Exp. Med. 2010;207:1057–1066. doi: 10.1084/jem.20090849. PubMed DOI PMC

Hueber W., Sands B.E., Lewitzky S., Vandemeulebroecke M., Reinisch W., Higgins P.D.R., Wehkamp J., Feagan B.G., Yao M.D., Karczewski M., et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial Correspondence. Gut. 2012;61:1693–1700. doi: 10.1136/gutjnl-2011-301668. PubMed DOI PMC

Vernero M., Astegiano M., Ribaldone D.G. New onset of inflammatory bowel disease in three patients undergoing IL-17A inhibitor secukinumab: A case series. Am. J. Gastroenterol. 2019;114:179–180. doi: 10.1038/s41395-018-0422-z. PubMed DOI

Walters H.M., Pan N., Lehman T.J.A., Adams A., Kalliolias G.D., Zhu Y.S., Santiago F., Nguyen J., Sitaras L., Cunningham-Rundles S., et al. The impact of disease activity and tumour necrosis factor-α inhibitor therapy on cytokine levels in juvenile idiopathic arthritis. Clin. Exp. Immunol. 2016;184:308–317. doi: 10.1111/cei.12782. PubMed DOI PMC

Sahin A., Calhan T., Cengiz M., Kahraman R., Aydin K., Ozdil K., Korachi M., Sokmen H.M. Serum interleukin 17 levels in patients with Crohn’s disease: Real life data. Dis. Markers. 2014;2014:690853. doi: 10.1155/2014/690853. PubMed DOI PMC

Kumar P., Monin L., Castillo P., Elsegeiny W., Horne W., Eddens T., Vikram A., Good M., Schoenborn A.A., Bibby K., et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity. 2016;44:659–671. doi: 10.1016/j.immuni.2016.02.007. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...