Fecal Microbiome Changes and Specific Anti-Bacterial Response in Patients with IBD during Anti-TNF Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
grant number NV18-09-00493.
Ministry of Health of the Czech Republic
PubMed
34831411
PubMed Central
PMC8617723
DOI
10.3390/cells10113188
PII: cells10113188
Knihovny.cz E-zdroje
- Klíčová slova
- biological therapy, inflammatory bowel disease, microbiome, mycobiome, tumor necrosis factor-α,
- MeSH
- biodiverzita MeSH
- dospělí MeSH
- feces mikrobiologie MeSH
- houby genetika MeSH
- idiopatické střevní záněty krev farmakoterapie mikrobiologie chirurgie MeSH
- inhibitory TNF terapeutické užití MeSH
- interleukin-17 metabolismus MeSH
- leukocyty mononukleární metabolismus MeSH
- lidé MeSH
- metagenomika MeSH
- protilátky krev MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * genetika MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory TNF MeSH
- interleukin-17 MeSH
- protilátky MeSH
- RNA ribozomální 16S MeSH
Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract that have been linked to microbiome dysbiosis and immune system dysregulation. We investigated the longitudinal effect of anti-TNF therapy on gut microbiota composition and specific immune response to commensals in IBD patients. The study included 52 patients tracked over 38 weeks of therapy and 37 healthy controls (HC). To characterize the diversity and composition of the gut microbiota, we used amplicon sequencing of the V3V4 region of 16S rRNA for the bacterial community and of the ITS1 region for the fungal community. We measured total antibody levels as well as specific antibodies against assorted gut commensals by ELISA. We found diversity differences between HC, Crohn's disease, and ulcerative colitis patients. The bacterial community of patients with IBD was more similar to HC at the study endpoint, suggesting a beneficial shift in the microbiome in response to treatment. We identified factors such as disease severity, localization, and surgical intervention that significantly contribute to the observed changes in the gut bacteriome. Furthermore, we revealed increased IgM levels against specific gut commensals after anti-TNF treatment. In summary, this study, with its longitudinal design, brings insights into the course of anti-TNF therapy in patients with IBD and correlates the bacterial diversity with disease severity in patients with ulcerative colitis (UC).
IBD Clinical and Research Centre ISCARE a s 190 00 Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434. doi: 10.1038/nature06005. PubMed DOI
Bortlík M., Ďuricová D., Douda T., Konečný M., Koželuhová J., Novotný A., Zbořil V., Prokopová L., Kohout P., Stehlík J., et al. Doporučení pro podávání biologické léčby pacientům s idiopatickými střevními záněty: Čtvrté, aktualizované vydání. Gastroenterol. Hepatol. 2019;73:11–24. doi: 10.14735/amgh201911. DOI
Braegger C.P., Nicholls S., Murch S.H., Stephens S., MacDonald T.T. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet. 1992;339:89–91. doi: 10.1016/0140-6736(92)90999-J. PubMed DOI
Reimund J.M., Wittersheim C., Dumont S., Muller C.D., Kenney J.S., Baumann R., Poindron P., Duclos B. Increased production of tumour necrosis factor-α, interleukin-1β, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn’s disease. Gut. 1996;39:684–689. doi: 10.1136/gut.39.5.684. PubMed DOI PMC
Marini M., Bamias G., Rivera-Nieves J., Moskaluk C.A., Hoang S.B., Ross W.G., Pizarro T.T., Cominelli F. TNF-a neutralization ameliorates the severity of murine Crohn’s-like ileitis by abrogation of intestinal epithelial cell apoptosis. Proc. Natl. Acad. Sci. USA. 2003;100:8366–8371. doi: 10.1073/pnas.1432897100. PubMed DOI PMC
Schmitz H., Fromm M., Bentzel C.J., Scholz P., Detjen K., Mankertz J., Bode H., Epple H.J., Riecken E.O., Schulzke J.D. Tumor necrosis factor-alpha (TNFα) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell Sci. 1999;112:137–146. doi: 10.1242/jcs.112.1.137. PubMed DOI
Friedrich M., Pohin M., Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity. 2019;50:992–1006. doi: 10.1016/j.immuni.2019.03.017. PubMed DOI
Caruso R., Lo B.C., Núñez G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 2020;20:411–426. doi: 10.1038/s41577-019-0268-7. PubMed DOI
Aldars-García L., Chaparro M., Gisbert J.P. Systematic review: The gut microbiome and its potential clinical application in inflammatory bowel disease. Microorganisms. 2021;9:977. doi: 10.3390/microorganisms9050977. PubMed DOI PMC
Rajca S., Grondin V., Louis E., Vernier-Massouille G., Grimaud J.C., Bouhnik Y., Laharie D., Dupas J.L., Pillant H., Picon L., et al. Alterations in the intestinal microbiome (Dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm. Bowel Dis. 2014;20:978–986. doi: 10.1097/MIB.0000000000000036. PubMed DOI
Busquets D., Mas-de-Xaxars T., López-Siles M., Martínez-Medina M., Bahí A., Sàbat M., Louvriex R., Miquel-Cusachs J.O., Garcia-Gil J.L., Aldeguer X. Anti-tumour necrosis factor treatment with Adalimumab induces changes in the microbiota of Crohn’s disease. J. Crohn’s Colitis. 2015;9:899–906. doi: 10.1093/ecco-jcc/jjv119. PubMed DOI
Magnusson M.K., Strid H., Sapnara M., Lasson A., Bajor A., Ung K.A., Öhman L. Anti-TNF therapy response in patients with ulcerative colitis is associated with colonic antimicrobial peptide expression and microbiota composition. J. Crohn’s Colitis. 2016;10:943–952. doi: 10.1093/ecco-jcc/jjw051. PubMed DOI
Yilmaz B., Juillerat P., Øyås O., Ramon C., Bravo F.D., Franc Y., Fournier N., Michetti P., Mueller C., Geuking M., et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat. Med. 2019;25:323–336. doi: 10.1038/s41591-018-0308-z. PubMed DOI
Ribaldone D.G., Caviglia G.P., Abdulle A., Pellicano R., Ditto M.C., Morino M., Fusaro E., Saracco G.M., Bugianesi E., Astegiano M. Adalimumab therapy improves intestinal dysbiosis in Crohn’s disease. J. Clin. Med. 2019;8:1646. doi: 10.3390/jcm8101646. PubMed DOI PMC
Aden K., Rehman A., Waschina S., Pan W.H., Walker A., Lucio M., Nunez A.M., Bharti R., Zimmerman J., Bethge J., et al. Metabolic functions of gut microbes associate with efficacy of tumor necrosis factor antagonists in patients with inflammatory bowel diseases. Gastroenterology. 2019;157:1279–1292.e11. doi: 10.1053/j.gastro.2019.07.025. PubMed DOI
Kowalska-Duplaga K., Kapusta P., Gosiewski T., Sroka-Oleksiak A., Ludwig-Słomczyńska A.H., Wołkow P.P., Fyderek K. Changes in the intestinal microbiota are seen following treatment with Infliximab in children with Crohn’s disease. J. Clin. Med. 2020;9:687. doi: 10.3390/jcm9030687. PubMed DOI PMC
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Raimondi S., Amaretti A., Gozzoli C., Simone M., Righini L., Candeliere F., Brun P., Ardizzoni A., Colombari B., Paulone S., et al. Longitudinal survey of fungi in the human gut: ITS profiling, phenotyping, and colonization. Front. Microbiol. 2019;10:1575. doi: 10.3389/fmicb.2019.01575. PubMed DOI PMC
Ott S.J., Kühbacher T., Musfeldt M., Rosenstiel P., Hellmig S., Rehman A., Drews O., Weichert W., Timmis K.N., Schreiber S. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand. J. Gastroenterol. 2008;43:831–841. doi: 10.1080/00365520801935434. PubMed DOI
Sokol H., Leducq V., Aschard H., Pham H.P., Jegou S., Landman C., Cohen D., Liguori G., Bourrier A., Nion-Larmurier I., et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66:1039–1048. doi: 10.1136/gutjnl-2015-310746. PubMed DOI PMC
Nash A.K., Auchtung T.A., Wong M.C., Smith D.P., Gesell J.R., Ross M.C., Stewart C.J., Metcalf G.A., Muzny D.M., Gibbs R.A., et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5:153. doi: 10.1186/s40168-017-0373-4. PubMed DOI PMC
Li Q., Wang C., Tang C., He Q., Li N., Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 2014;48:513–523. doi: 10.1097/MCG.0000000000000035. PubMed DOI PMC
Zwolinska-Wcislo M., Brzozowski T., Budak A., Kwiecien S., Sliwowski Z., Drozdowicz D., Trojanowska D., Rudnicka-Sosin L., Mach T., Konturek S.J., et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J. Physiol. Pharmacol. 2009;60:107–118. PubMed
Nishino K., Nishida A., Inoue R., Kawada Y., Ohno M., Sakai S., Inatomi O., Bamba S., Sugimoto M., Kawahara M., et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 2018;53:95–106. doi: 10.1007/s00535-017-1384-4. PubMed DOI
Pascal V., Pozuelo M., Borruel N., Casellas F., Campos D., Santiago A., Martinez X., Varela E., Sarrabayrouse G., Machiels K., et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–822. doi: 10.1136/gutjnl-2016-313235. PubMed DOI PMC
Torres J., Bonovas S., Doherty G., Kucharzik T., Gisbert J.P., Raine T., Adamina M., Armuzzi A., Bachmann O., Bager P., et al. ECCO guidelines on therapeutics in Crohn’s disease: Medical treatment. J. Crohn’s Colitis. 2020;14:4–22. doi: 10.1093/ecco-jcc/jjz180. PubMed DOI
Coufal S., Galanova N., Bajer L., Gajdarova Z., Schierova D., Jiraskova Zakostelska Z., Kostovcikova K., Jackova Z., Stehlikova Z., Drastich P., et al. Inflammatory bowel disease types differ in markers of inflammation, gut barrier and in specific anti-bacterial response. Cells. 2019;8:719. doi: 10.3390/cells8070719. PubMed DOI PMC
Harvey R.F., Bradshaw J.M. Index of Crohn’S disease activity. Lancet. 1980;1:514. doi: 10.1016/S0140-6736(80)92767-1. PubMed DOI
Schroeder K.W., Tremaine W.J., Ilstrup D.M. Coated oral 5-ASA for mildely to moderately active ulcerative colitis. N. Engl. J. Med. 1987;317:1625–1629. doi: 10.1056/NEJM198712243172603. PubMed DOI
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Douglas G., Maffei V., Zaneveld J., Yurgel S., Brown J., Taylor C., Huttenhower C., Langille M.G.I. PICRUSt2: An improved and customizable approach for metagenome inference. bioRxiv. 2020 doi: 10.1101/672295. PubMed DOI PMC
Stehlikova Z., Tlaskal V., Galanova N., Roubalova R., Kreisinger J., Dvorak J., Prochazkova P., Kostovcikova K., Bartova J., Libanska M., et al. Oral microbiota composition and antimicrobial antibody response in patients with recurrent aphthous stomatitis. Microorganisms. 2019;7:636. doi: 10.3390/microorganisms7120636. PubMed DOI PMC
Zakostelska Z., Kverka M., Klimesova K., Rossmann P., Mrazek J., Kopecny J., Hornova M., Srutkova D., Hudcovic T., Ridl J., et al. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS ONE. 2011;6:e27961. doi: 10.1371/journal.pone.0027961. PubMed DOI PMC
Mandal S., Van Treuren W., White R.A., Eggesbø M., Knight R., Peddada S.D. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015;26:27663. doi: 10.3402/mehd.v26.27663. PubMed DOI PMC
Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439. doi: 10.1126/science.1237439. PubMed DOI PMC
Mehta R., Abu-Ali G., Drew D., Lloyd-Price J., Subramanian A., Lochhead P., Joshi A., Ivey K., Khalili H., Brown G., et al. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 2018;3:347–355. doi: 10.1038/s41564-017-0096-0. PubMed DOI PMC
Caporaso J.G., Lauber C.L., Costello E.K., Berg-Lyons D., Gonzalez A., Stombaugh J., Knights D., Gajer P., Ravel J., Fierer N., et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50. doi: 10.1186/gb-2011-12-5-r50. PubMed DOI PMC
Yun Y., Kim H.N., Kim S.E., Heo S.G., Chang Y., Ryu S., Shin H., Kim H.L. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17:151. doi: 10.1186/s12866-017-1052-0. PubMed DOI PMC
Ventin-Holmberg R., Eberl A., Saqib S., Korpela K., Virtanen S., Sipponen T., Salonen A., Saavalainen P., Nissilä E. Bacterial and fungal profiles as markers of infliximab drug response in inflammatory bowel disease. J. Crohn’s Colitis. 2021;15:1019–1031. doi: 10.1093/ecco-jcc/jjaa252. PubMed DOI
Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2015;14:20–32. doi: 10.1038/nrmicro3552. PubMed DOI PMC
Wirth U., Garzetti D., Jochum L.M., Spriewald S., Kühn F., Ilmer M., Lee S.M., Niess H., Bazhin A.V., Andrassy J., et al. Microbiome analysis from paired mucosal and fecal samples of a colorectal cancer biobank. Cancers. 2020;12:3702. doi: 10.3390/cancers12123702. PubMed DOI PMC
Osterman M.T., Lichtenstein G.R. Infliximab vs. Adalimumab for UC: Is there a difference? Clin. Gastroenterol. Hepatol. 2017;15:1197–1199. doi: 10.1016/j.cgh.2017.04.036. PubMed DOI
Thorlund K., Druyts E., Mills E.J., Fedorak R.N., Marshall J.K. Adalimumab versus infliximab for the treatment of moderate to severe ulcerative colitis in adult patients naïve to anti-TNF therapy: An indirect treatment comparison meta-analysis. J. Crohn’s Colitis. 2014;8:571–581. doi: 10.1016/j.crohns.2014.01.010. PubMed DOI
Doecke J.D., Hartnell F., Bampton P., Bell S., Mahy G., Grover Z., Lewindon P., Jones L.V., Sewell K., Krishnaprasad K., et al. Infliximab vs. adalimumab in Crohn’s disease: Results from 327 patients in an Australian and New Zealand observational cohort study. Aliment. Pharmacol. Ther. 2017;45:542–552. doi: 10.1111/apt.13880. PubMed DOI
Singh S., Heien H.C., Sangaralingham L.R., Schilz S.R., Kappelman M.D., Shah N.D., Loftus Jr. E. V Comparative effectiveness and safety of anti-tumor necrosis factor agents in biologic-naïve patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 2016;14:1120–1129. doi: 10.1016/j.cgh.2016.03.038. PubMed DOI PMC
Elvers K.T., Wilson V.J., Hammond A., Duncan L., Huntley A.L., Hay A.D., Werf E.T. van der Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: A systematic review. BMJ Open. 2020;10:e035677. doi: 10.1136/bmjopen-2019-035677. PubMed DOI PMC
Agnes A., Puccioni C., D’Ugo D., Gasbarrini A., Biondi A., Persiani R. The gut microbiota and colorectal surgery outcomes: Facts or hype? A narrative review. BMC Surg. 2021;21:83. doi: 10.1186/s12893-021-01087-5. PubMed DOI PMC
Sakurai T., Nishiyama H., Sakai K., De Velasco M.A., Nagai T., Komeda Y., Kashida H., Okada A., Kawai I., Nishio K., et al. Mucosal microbiota and gene expression are associated with long-term remission after discontinuation of adalimumab in ulcerative colitis. Sci. Rep. 2020;10:19186. doi: 10.1038/s41598-020-76175-2. PubMed DOI PMC
Sanchis-Artero L., Martínez-Blanch J.F., Manresa-Vera S., Cortés-Castell E., Valls-Gandia M., Iborra M., Paredes-Arquiola J.M., Boscá-Watts M., Huguet J.M., Gil-Borrás R., et al. Evaluation of changes in intestinal microbiota in Crohn’s disease patients after anti-TNF alpha treatment. Sci. Rep. 2021;11:10016. doi: 10.1038/s41598-021-88823-2. PubMed DOI PMC
Lloyd-Price J., Arze C., Ananthakrishnan A.N., Schirmer M., Avila-Pacheco J., Poon T.W., Andrews E., Ajami N.J., Bonham K.S., Brislawn C.J., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi: 10.1038/s41586-019-1237-9. PubMed DOI PMC
Hall A.B., Yassour M., Sauk J., Garner A., Jiang X., Arthur T., Lagoudas G.K., Vatanen T., Fornelos N., Wilson R., et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017;9:103. doi: 10.1186/s13073-017-0490-5. PubMed DOI PMC
Henke M.T., Kenny D.J., Cassilly C.D., Vlamakis H., Xavier R.J., Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA. 2019;116:12672–12677. doi: 10.1073/pnas.1904099116. PubMed DOI PMC
Liu S., Zhao W., Lan P., Mou X. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy. Protein Cell. 2021;12:331–345. doi: 10.1007/s13238-020-00745-3. PubMed DOI PMC
Sankarasubramanian J., Ahmad R., Avuthu N., Singh A.B., Guda C. Gut microbiota and metabolic specificity in ulcerative colitis and Crohn’s disease. Front. Med. 2020;7:606298. doi: 10.3389/fmed.2020.606298. PubMed DOI PMC
Wang Y., Gao X., Ghozlane A., Hu H., Li X., Xiao Y., Li D., Yu G., Zhang T. Characteristics of faecal microbiota in paediatric Crohn’s disease and their dynamic changes during infliximab therapy. J. Crohn’s Colitis. 2018;12:337–346. doi: 10.1093/ecco-jcc/jjx153. PubMed DOI
Baxter N.T., Schmidt A.W., Venkataraman A., Kim K.S., Waldron C., Schmidt T.M. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566-18. doi: 10.1128/mBio.02566-18. PubMed DOI PMC
Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082. PubMed DOI PMC
Russo E., Giudici F., Fiorindi C., Ficari F., Scaringi S., Amedei A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 2019;10:2754. doi: 10.3389/fimmu.2019.02754. PubMed DOI PMC
Venegas D.P., De La Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J., Faber K.N., Hermoso M.A. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277. PubMed DOI PMC
Jayawardena D., Dudeja P.K. Micronutrient deficiency in inflammatory bowel diseases: Cause or effect? Cell. Mol. Gastroenterol. Hepatol. 2020;9:707–708. doi: 10.1016/j.jcmgh.2019.12.009. PubMed DOI PMC
Skupsky J., Sabui S., Hwang M., Nakasaki M., Cahalan M.D., Said H.M. Biotin supplementation ameliorates murine colitis by preventing NF-κB activation. Cell. Mol. Gastroenterol. Hepatol. 2020;9:557–567. doi: 10.1016/j.jcmgh.2019.11.011. PubMed DOI PMC
Skupsky J., Sabui S., Nakasaki M., Chen J., Cahalan M., Said H. P130 biotin supplementation ameliorates murine colitis by maintaining intestinal mucosal integrity. Gastroenterology. 2019;156:S90. doi: 10.1053/j.gastro.2019.01.209. DOI
Singh V., Yeoh B.S., Xiao X., Kumar M., Bachman M., Borregaard N., Joe B., Vijay-Kumar M. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. Coli survival in the inflamed gut. Nat. Commun. 2015;6:7113. doi: 10.1038/ncomms8113. PubMed DOI PMC
Rai A.K., Mitchell A.M. Enterobacterial common antigen: Synthesis and function of an enigmatic molecule. mBio. 2020;11:e01914-20. doi: 10.1128/mBio.01914-20. PubMed DOI PMC
Bull D.M., Ignaczak T.F. Enterobacterial common antigen-inducedlymphocyte reactivity in inflammatory bowel disease. Gastroenterology. 1973;64:43–50. doi: 10.1016/S0016-5085(73)80090-3. PubMed DOI
Makala H.P., Mayer H. Enterobacterial common antigen. Bacteriol. Rev. 1976;40:591–632. doi: 10.1128/br.40.3.591-632.1976. PubMed DOI PMC
Auchtung T.A., Fofanova T.Y., Stewart C.J., Nash A.K., Wong M.C., Gesell J.R., Auchtung J.M., Ajami N.J., Petrosino J.F. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere. 2018;3:e00092-18. doi: 10.1128/mSphere.00092-18. PubMed DOI PMC
Hoffmann C., Dollive S., Grunberg S., Chen J., Li H., Wu G.D., Lewis J.D., Bushman F.D. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS ONE. 2013;8:e0066019. doi: 10.1371/journal.pone.0066019. PubMed DOI PMC
Huseyin C.E., O’Toole P.W., Cotter P.D., Scanlan P.D. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 2017;41:479–511. doi: 10.1093/femsre/fuw047. PubMed DOI
Kakoullis L., Pantzaris N.D., Platanaki C., Lagadinou M., Papachristodoulou E., Velissaris D. The use of IgM-enriched immunoglobulin in adult patients with sepsis. J. Crit. Care. 2018;47:30–35. doi: 10.1016/j.jcrc.2018.06.005. PubMed DOI
Daien C.I., Gailhac S., Mura T., Combe B., Hahne M., Morel J. High levels of memory B cells are associated with response to a first tumor necrosis factor inhibitor in patients with rheumatoid arthritis in a longitudinal prospective study. Arthritis Res. Ther. 2014;16:R95. doi: 10.1186/ar4543. PubMed DOI PMC
Timmermans W.M.C., Van Laar J.A.M., Van Der Houwen T.B., Kamphuis L.S.J., Bartol S.J.W., Lam K.H., Ouwendijk R.J., Sparrow M.P., Gibson P.R., Van Hagen P.M., et al. B-cell dysregulation in Crohn’s disease is partially restored with infliximab therapy. PLoS ONE. 2016;11:e0160103. doi: 10.1371/journal.pone.0160103. PubMed DOI PMC
Tabaqchali S., O’Donoghue D.P., Bettelheim K.A. Escherichia coli antibodies in patients with inflammatory bowel disease. Gut. 1978;19:108–113. doi: 10.1136/gut.19.2.108. PubMed DOI PMC
Lopez-Siles M., Duncan S.H., Garcia-Gil L.J., Martinez-Medina M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME J. 2017;11:841–852. doi: 10.1038/ismej.2016.176. PubMed DOI PMC
Alexander K.L., Zhao Q., Reif M., Rosenberg A.F., Mannon P.J., Duck L.W., Elson C.O. Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology. 2021;161:522–535.e6. doi: 10.1053/j.gastro.2021.03.064. PubMed DOI PMC
Palm N.W., De Zoete M.R., Cullen T.W., Barry N.A., Stefanowski J., Hao L., Degnan P.H., Hu J., Peter I., Zhang W., et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–1010. doi: 10.1016/j.cell.2014.08.006. PubMed DOI PMC
Zeng M.Y., Cisalpino D., Varadarajan S., Hellman J., Warren H.S., Cascalho M., Inohara N., Núñez G. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity. 2016;44:647–658. doi: 10.1016/j.immuni.2016.02.006. PubMed DOI PMC
Dubé P.E., Punit S., Brent Polk D. Redeeming an old foe: Protective as well as pathophysiological roles for tumor necrosis factor in inflammatory bowel disease. Am. J. Physiol.-Gastrointest. Liver Physiol. 2015;308:G161–G170. doi: 10.1152/ajpgi.00142.2014. PubMed DOI PMC
Gálvez J. Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014;2014:928461. doi: 10.1155/2014/928461. PubMed DOI PMC
Kojouharoff G., Hans W., Obermeler F., Männel D.N., Andus T., Schölmerich J., Gross V., Falk W. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin. Exp. Immunol. 1997;107:353–358. doi: 10.1111/j.1365-2249.1997.291-ce1184.x. PubMed DOI PMC
Noti M., Corazza N., Mueller C., Berger B., Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J. Exp. Med. 2010;207:1057–1066. doi: 10.1084/jem.20090849. PubMed DOI PMC
Hueber W., Sands B.E., Lewitzky S., Vandemeulebroecke M., Reinisch W., Higgins P.D.R., Wehkamp J., Feagan B.G., Yao M.D., Karczewski M., et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial Correspondence. Gut. 2012;61:1693–1700. doi: 10.1136/gutjnl-2011-301668. PubMed DOI PMC
Vernero M., Astegiano M., Ribaldone D.G. New onset of inflammatory bowel disease in three patients undergoing IL-17A inhibitor secukinumab: A case series. Am. J. Gastroenterol. 2019;114:179–180. doi: 10.1038/s41395-018-0422-z. PubMed DOI
Walters H.M., Pan N., Lehman T.J.A., Adams A., Kalliolias G.D., Zhu Y.S., Santiago F., Nguyen J., Sitaras L., Cunningham-Rundles S., et al. The impact of disease activity and tumour necrosis factor-α inhibitor therapy on cytokine levels in juvenile idiopathic arthritis. Clin. Exp. Immunol. 2016;184:308–317. doi: 10.1111/cei.12782. PubMed DOI PMC
Sahin A., Calhan T., Cengiz M., Kahraman R., Aydin K., Ozdil K., Korachi M., Sokmen H.M. Serum interleukin 17 levels in patients with Crohn’s disease: Real life data. Dis. Markers. 2014;2014:690853. doi: 10.1155/2014/690853. PubMed DOI PMC
Kumar P., Monin L., Castillo P., Elsegeiny W., Horne W., Eddens T., Vikram A., Good M., Schoenborn A.A., Bibby K., et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity. 2016;44:659–671. doi: 10.1016/j.immuni.2016.02.007. PubMed DOI PMC