Oral Microbiota Composition and Antimicrobial Antibody Response in Patients with Recurrent Aphthous Stomatitis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-29336A
Ministry of Health of the Czech Republic
GAUK 1366217
Grant Agency of Charles University
GAUK 908217
Grant Agency of Charles University
PubMed
31805744
PubMed Central
PMC6955784
DOI
10.3390/microorganisms7120636
PII: microorganisms7120636
Knihovny.cz E-zdroje
- Klíčová slova
- microbiome, mycobiome, oral mucosa,
- Publikační typ
- časopisecké články MeSH
Recurrent aphthous stomatitis (RAS) is the most common disease of the oral mucosa, and it has been recently associated with bacterial and fungal dysbiosis. To study this link further, we investigated microbial shifts during RAS manifestation at an ulcer site, in its surroundings, and at an unaffected site, compared with healed mucosa in RAS patients and healthy controls. We sampled microbes from five distinct sites in the oral cavity. The one site with the most pronounced differences in microbial alpha and beta diversity between RAS patients and healthy controls was the lower labial mucosa. Detailed analysis of this particular oral site revealed strict association of the genus Selenomonas with healed mucosa of RAS patients, whereas the class Clostridia and genera Lachnoanaerobaculum, Cardiobacterium, Leptotrichia, and Fusobacterium were associated with the presence of an active ulcer. Furthermore, active ulcers were dominated by Malassezia, which were negatively correlated with Streptococcus and Haemophilus and positively correlated with Porphyromonas species. In addition, RAS patients showed increased serum levels of IgG against Mogibacterium timidum compared with healthy controls. Our study demonstrates that the composition of bacteria and fungi colonizing healthy oral mucosa is changed in active RAS ulcers, and that this alteration persists to some extent even after the ulcer is healed.
1st Faculty of Medicine Charles University 121 08 Prague Czech Republic
Clinic of Dentistry Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Clinic of Dentistry St Anne's Faculty Hospital 656 91 Brno Czech Republic
Department of Zoology Faculty of Science Charles University 128 00 Prague Czech Republic
Faculty of Science Charles University 128 00 Prague Czech Republic
Institute of Animal Physiology and Genetics of the CAS v v i 142 20 Prague Czech Republic
Institute of Experimental Medicine of the CAS v v i 142 20 Prague Czech Republic
Institute of Microbiology of the CAS v v i 142 20 Prague Czech Republic
Zobrazit více v PubMed
Porter S.R., Scully C., Pedersen A. Recurrent aphthous stomatitis. Crit. Rev. Oral Biol. Med. 1998;9:306–321. doi: 10.1177/10454411980090030401. PubMed DOI
Scully C., Porter S. Oral mucosal disease: Recurrent aphthous stomatitis. Br. J. Oral Maxillofac. Surg. 2008;46:198–206. doi: 10.1016/j.bjoms.2007.07.201. PubMed DOI
Edgar N.R., Saleh D., Miller R.A. Recurrent aphthous stomatitis: A review. J. Clin. Aesthet. Derm. 2017;10:26–36. PubMed PMC
Akintoye S.O., Greenberg M.S. Recurrent aphthous stomatitis. Dent. Clin. N. Am. 2014;58:281–297. doi: 10.1016/j.cden.2013.12.002. PubMed DOI PMC
Chavan M., Jain H., Diwan N., Khedkar S., Shete A., Durkar S. Recurrent aphthous stomatitis: A review. J. Oral Pathol. Med. 2012;41:577–583. doi: 10.1111/j.1600-0714.2012.01134.x. PubMed DOI
Bankvall M., Sjoberg F., Gale G., Wold A., Jontell M., Ostman S. The oral microbiota of patients with recurrent aphthous stomatitis. J. Oral Microbiol. 2014;6:25739. doi: 10.3402/jom.v6.25739. PubMed DOI PMC
Kim Y.J., Choi Y.S., Baek K.J., Yoon S.H., Park H.K., Choi Y. Mucosal and salivary microbiota associated with recurrent aphthous stomatitis. BMC Microbiol. 2016;16:57. doi: 10.1186/s12866-016-0673-z. PubMed DOI PMC
Adler I., Muino A., Aguas S., Harada L., Diaz M., Lence A., Labbrozzi M., Muino J.M., Elsner B., Avagnina A., et al. Helicobacter pylori and oral pathology: Relationship with the gastric infection. World J. Gastroenterol. 2014;20:9922–9935. doi: 10.3748/wjg.v20.i29.9922. PubMed DOI PMC
Mansour-Ghanaei F., Asmar M., Bagherzadeh A.H., Ekbataninezhad S. Helicobacter pylori infection in oral lesions of patients with recurrent aphthous stomatitis. Med. Sci. Monit. 2005;11:576–579. PubMed
Tas D.A., Yakar T., Sakalli H., Serin E. Impact of Helicobacter pylori on the clinical course of recurrent aphthous stomatitis. J. Oral Pathol. Med. 2013;42:89–94. doi: 10.1111/j.1600-0714.2012.01197.x. PubMed DOI
Hasan A., Childerstone A., Pervin K., Shinnick T., Mizushima Y., Van der Zee R., Vaughan R., Lehner T. Recognition of a unique peptide epitope of the mycobacterial and human heat shock protein 65-60 antigen by T cells of patients with recurrent oral ulcers. Clin. Exp. Immunol. 1995;99:392–397. doi: 10.1111/j.1365-2249.1995.tb05563.x. PubMed DOI PMC
Gadekar N.B., Hosmani J.V., Bhat K.G., Kotrashetti V.S., Nayak R.S., Babji D.V., Pattanshetty S.M., Joshi V.M., Bansode R.A. Detection of antibodies against Aggregatibacter actinomycetemcomitans in serum and saliva through ELISA in periodontally healthy individuals and individuals with chronic periodontitis. Microb. Pathog. 2018;125:438–442. doi: 10.1016/j.micpath.2018.10.007. PubMed DOI
Ship J.A., Chavez E.M., Doerr P.A., Henson B.S., Sarmadi M. Recurrent aphthous stomatitis. Quintessence Int. 2000;31:95–112. doi: 10.1016/S1079-2104(96)80403-3. PubMed DOI
Consortium T.H.M.P. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC
Souza M.N., Ortiz S.O., Mello M.M., Oliveira Fde M., Severo L.C., Goebel C.S. Comparison between four usual methods of identification of Candida species. Rev. Inst. Med. Trop. Sao Paulo. 2015;57:281–287. doi: 10.1590/S0036-46652015000400002. PubMed DOI PMC
Zakostelska Z., Kverka M., Klimesova K., Rossmann P., Mrazek J., Kopecny J., Hornova M., Srutkova D., Hudcovic T., Ridl J., et al. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS ONE. 2011;6:e27961. doi: 10.1371/journal.pone.0027961. PubMed DOI PMC
Vetrovsky T., Baldrian P., Morais D., Berger B. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018 doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Aronesty E. Comparison of sequencing utility programs. Open Bioinform. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI
Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., Wit P.D., Sánchez-García M., Ebersberger I., Sousa F.D., et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI
Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996. doi: 10.1038/nmeth.2604. PubMed DOI
Kõljalg U., Nilsson R.H., Abarenkov K., Tedersoo L., Taylor A.F., Bahram M., Bates S.T., Bruns T.D., Bengtsson-Palme J., Callaghan T.M., et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013;22:5271–5277. doi: 10.1111/mec.12481. PubMed DOI
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Wade W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013;69:137–143. doi: 10.1016/j.phrs.2012.11.006. PubMed DOI
Hijazi K., Lowe T., Meharg C., Berry S.H., Foley J., Hold G.L. Mucosal microbiome in patients with recurrent aphthous stomatitis. J. Dent. Res. 2015;94:87S–94S. doi: 10.1177/0022034514565458. PubMed DOI PMC
Costalonga M., Herzberg M.C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 2014;162:22–38. doi: 10.1016/j.imlet.2014.08.017. PubMed DOI PMC
Riggio M.P., Lennon A., Ghodratnama F., Wray D. Lack of association between Streptococcus oralis and recurrent aphthous stomatitis. J. Oral Pathol. Med. 2000;29:26–32. doi: 10.1034/j.1600-0714.2000.290105.x. PubMed DOI
Wang X., Du L., You J., King J.B., Cichewicz R.H. Fungal biofilm inhibitors from a human oral microbiome-derived bacterium. Org. Biomol. Chem. 2012;10:2044–2050. doi: 10.1039/c2ob06856g. PubMed DOI
Morales D.K., Grahl N., Okegbe C., Dietrich L.E., Jacobs N.J., Hogan D.A. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio. 2013;4:e00526-12. doi: 10.1128/mBio.00526-12. PubMed DOI PMC
Aas J.A., Paster B.J., Stokes L.N., Olsen I., Dewhirst F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005;43:5721–5732. doi: 10.1128/JCM.43.11.5721-5732.2005. PubMed DOI PMC
Hall M.W., Singh N., Ng K.F., Lam D.K., Goldberg M.B., Tenenbaum H.C., Neufeld J.D., Beiko R.G., Senadheera D.B. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. NPJ Biofilms Microbiomes. 2017;3:2. doi: 10.1038/s41522-016-0011-0. PubMed DOI PMC
Haffajee A.D., Socransky S.S. Microbial etiological agents of destructive periodontal diseases. Periodontol. 2000. 1994;5:78–111. doi: 10.1111/j.1600-0757.1994.tb00020.x. PubMed DOI
Chenicheri S., Usha R., Ramachandran R., Thomas V., Wood A. Insight into Oral Biofilm: Primary, Secondary and Residual Caries and Phyto-Challenged Solutions. Open Dent. J. 2017;11:312–333. doi: 10.2174/1874210601711010312. PubMed DOI PMC
Klimesova K., Jiraskova Zakostelska Z., Tlaskalova-Hogenova H. Oral bacterial and fungal microbiome impacts colorectal carcinogenesis. Front. Microbiol. 2018;9:774. doi: 10.3389/fmicb.2018.00774. PubMed DOI PMC
Dupuy A.K., David M.S., Li L., Heider T.N., Peterson J.D., Montano E.A., Dongari-Bagtzoglou A., Diaz P.I., Strausbaugh L.D. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: Discovery of Malassezia as a prominent commensal. PLoS ONE. 2014;9:e90899. doi: 10.1371/journal.pone.0090899. PubMed DOI PMC
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome. Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Hiruma M., Cho O., Kurakado S., Sugita T., Ikeda S. Genotype analyses of human commensal scalp fungi, Malassezia globosa, and Malassezia restricta on the scalps of patients with dandruff and healthy subjects. Mycopathologia. 2014;177:263–269. doi: 10.1007/s11046-014-9748-2. PubMed DOI
Tajima M., Sugita T., Nishikawa A., Tsuboi R. Molecular analysis of Malassezia microflora in seborrheic dermatitis patients: Comparison with other diseases and healthy subjects. J. Investig. Dermatol. 2008;128:345–351. doi: 10.1038/sj.jid.5701017. PubMed DOI
Saxena R., Mittal P., Clavaud C., Dhakan D.B., Hegde P., Veeranagaiah M.M., Saha S., Souverain L., Roy N., Breton L., et al. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health. Front. Cell. Infect. Microbiol. 2018;8:346. doi: 10.3389/fcimb.2018.00346. PubMed DOI PMC
Tett A., Pasolli E., Farina S., Truong D.T., Asnicar F., Zolfo M., Beghini F., Armanini F., Jousson O., De Sanctis V., et al. Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes. 2017;3:14. doi: 10.1038/s41522-017-0022-5. PubMed DOI PMC
Stehlikova Z., Kostovcik M., Kostovcikova K., Kverka M., Juzlova K., Rob F., Hercogova J., Bohac P., Pinto Y., Uzan A., et al. Dysbiosis of skin microbiota in psoriatic Patients: Co-occurrence of fungal and bacterial communities. Front. Microbiol. 2019;10:438. doi: 10.3389/fmicb.2019.00438. PubMed DOI PMC
Ghannoum M.A., Jurevic R.J., Mukherjee P.K., Cui F., Sikaroodi M., Naqvi A., Gillevet P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6:e1000713. doi: 10.1371/journal.ppat.1000713. PubMed DOI PMC
Adedeji A.R., Adeniyi D.O. Comparative fungal profile of tea leaves from highland and lowland in Nigeria. Afr. J. Agric. Res. 2014;10:1531–1535. doi: 10.5897/AJAR2014.8965. DOI
McGovern R.J., Horita H., Stiles C.M., Seijo T.E. Host range of Itersonilia perplexans and management of itersonilia petal blight of china aster. Plant Health Prog. 2006 doi: 10.1094/PHP-2006-1018-02-RS. DOI
Bubici G. First report of Itersonilia perplexans on Anethum graveolens in Italy. J. Plant Pathol. 2015;97:221. doi: 10.4454/JPP.V97I1.052. DOI
Zuza-Alves D.L., Silva-Rocha W.P., Chaves G.M. An Update on Candida tropicalis based on basic and clinical approaches. Front. Microbiol. 2017;8:1927. doi: 10.3389/fmicb.2017.01927. PubMed DOI PMC
Albandar J.M., DeNardin A.M., Adesanya M.R., Diehl S.R., Winn D.M. Associations between serum antibody levels to periodontal pathogens and early-onset periodontitis. J. Periodontol. 2001;72:1463–1469. doi: 10.1902/jop.2001.72.11.1463. PubMed DOI
Bartova J., Krejsa O., Sirova M., Tlaskalova H., Prochazkova J., Duskova J. Local antibodies and cytokine responses in crevicular fluid of patients with juvenile periodontitis. Adv. Exp. Med. Biol. 1995;371B:1109–1112. PubMed
Moore W.E., Holdeman L.V., Cato E.P., Smibert R.M., Burmeister J.A., Palcanis K.G., Ranney R.R. Comparative bacteriology of juvenile periodontitis. Infect Immun. 1985;48:507–519. PubMed PMC
Stoitsova S., Ivanova R., Dimova I. Lectin-binding epitopes at the surface of Escherichia coli K-12: Examination by electron microscopy, with special reference to the presence of a colanic acid-like polymer. J. Basic Microbiol. 2004;44:296–304. doi: 10.1002/jobm.200410350. PubMed DOI
Colmer-Hamood J.A., Dzvova N., Kruczek C., Hamood A.N. In vitro analysis of pseudomonas aeruginosa virulence using conditions that mimic the environment at specific infection sites. Prog. Mol. Biol. Transl. Sci. 2016;142:151–191. doi: 10.1016/bs.pmbts.2016.05.003. PubMed DOI
Eberl G. The microbiota, a necessary element of immunity. CR Biol. 2018;341:281–283. doi: 10.1016/j.crvi.2018.03.003. PubMed DOI
Xu D., Liao C., Zhang B., Tolbert W.D., He W., Dai Z., Zhang W., Yuan W., Pazgier M., Liu J., et al. Human enteric alpha-defensin 5 promotes shigella infection by enhancing bacterial adhesion and invasion. Immunity. 2018;48:1233–1244.e6. doi: 10.1016/j.immuni.2018.04.014. PubMed DOI PMC
Porat R., Clark B.D., Wolff S.M., Dinarello C.A. Enhancement of growth of virulent strains of Escherichia coli by interleukin-1. Science. 1991;254:430–432. doi: 10.1126/science.1833820. PubMed DOI
The Human Mycobiome: Colonization, Composition and the Role in Health and Disease