Oral, not gut microbiota diversity, reflects the inflammation and neoplasia in patients with uveitis and vitreoretinal lymphoma
Status In-Process Language English Country Germany Media electronic
Document type Journal Article
Grant support
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
NU20-03-00253
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40839044
DOI
10.1186/s12348-025-00517-2
PII: 10.1186/s12348-025-00517-2
Knihovny.cz E-resources
- Keywords
- Microbiome, Microbiota, Sequencing, Uveitis, Vitreoretinal lymphoma,
- Publication type
- Journal Article MeSH
PURPOSE: Dysregulation of the microbiota on different mucosal surfaces is associated with both immune-mediated and malignant diseases. Nevertheless, the involvement of different microbial communities is still poorly characterized. The aim of our study was to compare oral and gut microbiota composition between patients with uveitis, vitreoretinal lymphoma (VRL), and controls. METHODS: This study was designed as a prospective observational study. The inclusion criteria were treatment-naïve patients with immune-mediated uveitis or newly diagnosed VRL. The buccal swab and faecal samples were collected and bacterial 16S ribosomal RNA gene sequencing was used to identify the oral and gut microbiota. RESULTS: We enrolled 18 patients with uveitis, median age 39 years, 16 patients with VRL, median age 67.5 years, and 16 controls, median age 63 years. In the oral microbiota, the patients suffering from uveitis showed significant enrichment of genera Pseudomonas (p < 0.0001 and p < 0.0001), and Diaphorobacter (p = 0.007 and 0.013) and reduction of Streptococcus (p < 0.0001 and p < 0.0001) when compared to patients with VRL and control subjects, respectively. In addition, these patients had also significantly higher relative abundance of the genus Enhydrobacter (p = 0.029) and lower abundance of the genera Gemella (p = 0.002), Neisseria (p = 0.008), and Prevotella (p = 0.011) when compared to patients with VRL. We found only minor changes in the gut microbiota. CONCLUSION: Our study, as the first one, highlighted significant differences in the composition of oral microbiota among patients with uveitis, VRL, and control subjects.
See more in PubMed
Buttó LF, Schaubeck M, Haller D (2015) Mechanisms of Microbe-Host interaction in crohn’s disease: dysbiosis vs. Pathobiont selection. Front Immunol 6. https://doi.org/10.3389/fimmu.2015.00555
Sokol H, Seksik P, Furet JP et al (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15:1183–1189. https://doi.org/10.1002/ibd.20903 PubMed DOI
Bajer L, Kverka M, Kostovcik M et al (2017) Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol 23:4548. https://doi.org/10.3748/wjg.v23.i25.4548 PubMed DOI PMC
Bunyavanich S, Berin MC (2019) Food allergy and the microbiome: current Understandings and future directions. J Allergy Clin Immunol 144:1468–1477. https://doi.org/10.1016/j.jaci.2019.10.019 PubMed DOI PMC
Mölzer C, Heissigerova J, Wilson HM et al (2021). Immune privilege: the Microbiome and uveitis. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.608377
Cullin N, Azevedo Antunes C, Straussman R et al (2021) Microbiome and cancer. Cancer Cell 39:1317–1341. https://doi.org/10.1016/j.ccell.2021.08.006 PubMed DOI
London NJS, Rathinam SR, Cunningham ET (2010) The epidemiology of uveitis in developing countries. Int Ophthalmol Clin 50:1–17. https://doi.org/10.1097/IIO.0b013e3181d2cc6b PubMed DOI
Rothova A, Buitenhuis HJ, Meenken C et al (1992) Uveitis and systemic disease. Br J Ophthalmol 76:137–141. https://doi.org/10.1136/bjo.76.3.137 PubMed DOI PMC
Prete M, Dammacco R, Fatone MC, Racanelli V (2016) Autoimmune uveitis: clinical, pathogenetic, and therapeutic features. Clin Exp Med 16:125–136. https://doi.org/10.1007/s10238-015-0345-6 PubMed DOI
Soussain C, Malaise D, Cassoux N (2021) Primary vitreoretinal lymphoma: a diagnostic and management challenge. Blood 138:1519–1534. https://doi.org/10.1182/blood.2020008235 PubMed DOI
Farrall AL, Smith JR (2020) Eye involvement in primary central nervous system lymphoma. Surv Ophthalmol 65:548–561. https://doi.org/10.1016/j.survophthal.2020.02.001 PubMed DOI
Alaggio R, Amador C, Anagnostopoulos I et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36:1720–1748. https://doi.org/10.1038/s41375-022-01620-2 PubMed DOI PMC
Horai R, Zárate-Bladés CR, Dillenburg-Pilla P et al (2015) Microbiota-Dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43:343–353. https://doi.org/10.1016/j.immuni.2015.07.014 PubMed DOI PMC
Heissigerova J, Seidler Stangova P, Klimova A et al (2016) The microbiota determines susceptibility to experimental autoimmune uveoretinitis. J Immunol Res 2016:1–11. https://doi.org/10.1155/2016/5065703 DOI
Seidler Štangová P, Dusek O, Klimova A et al (2019) Metronidazole attenuates the intensity of inflammation in experimental autoimmune uveitis. Folia Biol (Praha) 65:265–274. https://doi.org/10.14712/fb2019065050265 PubMed DOI
Nakamura YK, Metea C, Karstens L et al (2016) Gut microbial alterations associated with protection from autoimmune uveitis. Invest Opthalmology Visual Sci 57:3747. https://doi.org/10.1167/iovs.16-19733 DOI
Kim J, Choi S, Kim Y et al (2017) Clinical effect of IRT-5 probiotics on immune modulation of autoimmunity or alloimmunity in the eye. Nutrients 9:1166. https://doi.org/10.3390/nu9111166 PubMed DOI PMC
Dusek O, Fajstova A, Klimova A et al (2020) Severity of experimental autoimmune uveitis is reduced by pretreatment with live probiotic Escherichia coli Nissle 1917. Cells 10:23. https://doi.org/10.3390/cells10010023 PubMed DOI PMC
Rosenbaum JT, Asquith M (2018) The Microbiome and HLA-B27-associated acute anterior uveitis. Nat Rev Rheumatol 14:704–713. https://doi.org/10.1038/s41584-018-0097-2 PubMed DOI PMC
Parthasarathy R, Santiago F, McCluskey P et al (2023) The Microbiome in HLA-B27-associated disease: implications for acute anterior uveitis and recommendations for future studies. Trends Microbiol 31:142–158. https://doi.org/10.1016/j.tim.2022.08.008 PubMed DOI
Morandi SC, Herzog EL, Munk M et al (2024) The gut Microbiome and HLA-B27-associated anterior uveitis: a case-control study. J Neuroinflammation 21:120. https://doi.org/10.1186/s12974-024-03109-4 PubMed DOI PMC
Joubert M, André M, Barnich N, Billard E (2023) Microbiome and behçet’s disease: a systematic review. Clin Exp Rheumatol 41:2093–2104. https://doi.org/10.55563/clinexprheumatol/zbt4gx PubMed DOI
Shimizu J, Kubota T, Takada E et al (2016) Bifidobacteria Abundance-Featured gut microbiota compositional change in patients with behcet’s disease. PLoS ONE 11:e0153746. https://doi.org/10.1371/journal.pone.0153746 PubMed DOI PMC
Sternes PR, Martin TM, Paley M et al (2020) HLA-A alleles including HLA-A29 affect the composition of the gut microbiome: a potential clue to the pathogenesis of birdshot retinochoroidopathy. Sci Rep 10:17636. https://doi.org/10.1038/s41598-020-74751-0 PubMed DOI PMC
Ye Z, Zhang N, Wu C et al (2018) A metagenomic study of the gut Microbiome in behcet’s disease. Microbiome 6:135. https://doi.org/10.1186/s40168-018-0520-6 PubMed DOI PMC
Ye Z, Wu C, Zhang N et al (2020) Altered gut Microbiome composition in patients with Vogt-Koyanagi-Harada disease. Gut Microbes 11:539–555. https://doi.org/10.1080/19490976.2019.1700754 PubMed DOI PMC
Huang X, Ye Z, Cao Q et al (2018) Gut microbiota composition and fecal metabolic phenotype in patients with acute anterior uveitis. Invest Opthalmology Visual Sci 59:1523. https://doi.org/10.1167/iovs.17-22677 DOI
Kalyana Chakravarthy S, Jayasudha R, Sai Prashanthi G et al (2018) Dysbiosis in the gut bacterial Microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol 58:457–469. https://doi.org/10.1007/s12088-018-0746-9 PubMed DOI PMC
Yamamoto ML, Schiestl RH (2014) Intestinal Microbiome and lymphoma development. Cancer J 20:190–194. https://doi.org/10.1097/PPO.0000000000000047 PubMed DOI PMC
Yamamoto ML, Maier I, Dang AT et al (2013) Intestinal Bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res 73:4222–4232. https://doi.org/10.1158/0008-5472.CAN-13-0022 PubMed DOI PMC
Diefenbach CS, Peters BA, Li H et al (2021) Microbial dysbiosis is associated with aggressive histology and adverse clinical outcome in B-cell non-Hodgkin lymphoma. Blood Adv 5:1194–1198. https://doi.org/10.1182/bloodadvances.2020003129 PubMed DOI PMC
Yuan L, Wang W, Zhang W et al (2021) Gut microbiota in untreated diffuse large B cell lymphoma patients. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.646361
Lin Z, Mao D, Jin C et al (2023) The gut microbiota correlate with the disease characteristics and immune status of patients with untreated diffuse large B-cell lymphoma. Front Immunol 14. https://doi.org/10.3389/fimmu.2023.1105293
Stein-Thoeringer CK, Saini NY, Zamir E et al (2023) A non-antibiotic-disrupted gut Microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat Med 29:906–916. https://doi.org/10.1038/s41591-023-02234-6 PubMed DOI PMC
Zhang Y, Han S, Xiao X et al (2023) Integration analysis of tumor metagenome and peripheral immunity data of diffuse large-B cell lymphoma. Front Immunol 14. https://doi.org/10.3389/fimmu.2023.1146861
Yoon SE, Kang W, Choi S et al (2023) The influence of microbial dysbiosis on immunochemotherapy-related efficacy and safety in diffuse large B-cell lymphoma. Blood 141. https://doi.org/10.1182/blood.2022018831
Samalia PD, Solanki J, Kam J et al (2025) From dysbiosis to disease: the microbiome’s influence on uveitis pathogenesis. Microorganisms 13:271. https://doi.org/10.3390/microorganisms13020271 PubMed DOI PMC
Mumcu G, Direskeneli H (2019) Triggering agents and Microbiome as environmental factors on behçet’s syndrome. Intern Emerg Med 14:653–660. https://doi.org/10.1007/s11739-018-2000-1 PubMed DOI
Kirino Y, Ideguchi H, Takeno M et al (2016) Continuous evolution of clinical phenotype in 578 Japanese patients with behçet’s disease: a retrospective observational study. Arthritis Res Ther 18:217. https://doi.org/10.1186/s13075-016-1115-x PubMed DOI PMC
Chung Y-R, Lee E-S, Kim MH et al (2015) Changes in ocular manifestations of behçet disease in Korean patients over time: A Single-center experience in the 1990s and 2000s. Ocul Immunol Inflamm 23:157–161. https://doi.org/10.3109/09273948.2014.918154 PubMed DOI
Kim DY, Choi MJ, Cho S et al (2014) Changing clinical expression of < scp > b ehçet disease in < scp > k orea during three decades (1983–2012): chronological analysis of 3674 hospital-based patients. Br J Dermatol 170:458–461. https://doi.org/10.1111/bjd.12661 PubMed DOI
O’Reilly PG, Claffey NM (2000) A history of oral sepsis as a cause of disease. Periodontol 2000 23:13–18. https://doi.org/10.1034/j.1600-0757.2000.2230102.x PubMed DOI
Klimova A, Heissigerova J, Rihova E et al (2018) Combined treatment of primary vitreoretinal lymphomas significantly prolongs the time to first relapse. Br J Ophthalmol 102:1579–1585. https://doi.org/10.1136/bjophthalmol-2017-311574 PubMed DOI
Stehlikova Z, Tlaskal V, Galanova N et al (2019) Oral microbiota composition and antimicrobial antibody response in patients with recurrent aphthous stomatitis. Microorganisms 7:636. https://doi.org/10.3390/microorganisms7120636 PubMed DOI PMC
Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1. https://doi.org/10.1093/nar/gks808 PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303 PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07 PubMed DOI PMC
DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a Chimera-Checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05 PubMed DOI PMC
Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25. https://doi.org/10.18637/jss.v025.i01
Kassambara A, Mundt F (2016) Factoextra: extract and visualize the results of multivariate data analyses. Contributed Packages, CRAN
Wickham H (2009) ggplot2. Springer New York, New York, NY
Oksanen J, Simpson GL, Blanchet FG et al (2001) Vegan: community ecology package. Contributed Packages, CRAN
Essex M, Rios Rodriguez V, Rademacher J et al (2024) Shared and distinct gut microbiota in spondyloarthritis, acute anterior uveitis, and crohn’s disease. Arthritis Rheumatol 76:48–58. https://doi.org/10.1002/art.42658 PubMed DOI
Wang Q, Wu S, Ye X et al (2023) Gut microbial signatures and their functions in behcet’s uveitis and Vogt-Koyanagi-Harada disease. J Autoimmun 137:103055. https://doi.org/10.1016/j.jaut.2023.103055 PubMed DOI
Leccese P, Alpsoy E (2019) Behçet’s disease: an overview of etiopathogenesis. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01067
Ogunkolade W, Senusi AA, Desai P et al (2023) Profiling the Microbiome of oral and genital mucosal surfaces in behçet’s disease. Clin Immunol 253:109654. https://doi.org/10.1016/j.clim.2023.109654 PubMed DOI
Torres-Morales J, Mark Welch JL, Dewhirst FE, Borisy GG (2023) Site-specialization of human oral Gemella species. J Oral Microbiol 15. https://doi.org/10.1080/20002297.2023.2225261
Bik EM, Long CD, Armitage GC et al (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4:962–974. https://doi.org/10.1038/ismej.2010.30 PubMed DOI
Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human Microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7:e34242. https://doi.org/10.1371/journal.pone.0034242 PubMed DOI PMC
Klimesova K, Jiraskova Zakostelska Z, Tlaskalova-Hogenova H (2018) Oral bacterial and fungal Microbiome impacts colorectal carcinogenesis. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00774
Sukmana BI, Saleh RO, Najim MA et al (2024) Oral microbiota and oral squamous cell carcinoma: a review of their relation and carcinogenic mechanisms. Front Oncol 14. https://doi.org/10.3389/fonc.2024.1319777