A phase III, open-label clinical trial evaluating pegunigalsidase alfa administered every 4 weeks in adults with Fabry disease previously treated with other enzyme replacement therapies
Language English Country United States Media print-electronic
Document type Journal Article, Clinical Trial, Phase III, Multicenter Study, Research Support, Non-U.S. Gov't
Grant support
Protalix Biotherapeutics
PubMed
39381863
PubMed Central
PMC11667655
DOI
10.1002/jimd.12795
Knihovny.cz E-resources
- Keywords
- Fabry disease, eGFR, enzyme replacement therapy, lysosomal storage disorders, lyso‐Gb3, pegunigalsidase alfa,
- MeSH
- alpha-Galactosidase * administration & dosage therapeutic use MeSH
- Adult MeSH
- Enzyme Replacement Therapy * methods MeSH
- Fabry Disease * drug therapy MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Polyethylene Glycols administration & dosage MeSH
- Recombinant Proteins * administration & dosage therapeutic use MeSH
- Drug Administration Schedule MeSH
- Aged MeSH
- Sphingolipids blood MeSH
- Trihexosylceramides blood MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- agalsidase alfa MeSH Browser
- agalsidase beta MeSH Browser
- alpha-Galactosidase * MeSH
- globotriaosyl lysosphingolipid MeSH Browser
- Polyethylene Glycols MeSH
- Recombinant Proteins * MeSH
- Sphingolipids MeSH
- Trihexosylceramides MeSH
Pegunigalsidase alfa, a PEGylated α-galactosidase A enzyme replacement therapy (ERT) for Fabry disease, has a longer plasma half-life than other ERTs administered intravenously every 2 weeks (E2W). BRIGHT (NCT03180840) was a phase III, open-label study in adults with Fabry disease, previously treated with agalsidase alfa or beta E2W for ≥3 years, who switched to 2 mg/kg pegunigalsidase alfa every 4 weeks (E4W) for 52 weeks. Primary objective assessed safety, including number of treatment-emergent adverse events (TEAEs). Thirty patients were enrolled (24 males); 23 previously received agalsidase beta. Pegunigalsidase alfa plasma concentrations remained above the lower limit of quantification throughout the 4-week dosing interval. Thirty-three of 182 TEAEs (in 9 patients) were considered treatment-related; all were mild/moderate. No patients developed de novo anti-drug antibodies (ADAs). In the efficacy analysis (n = 29), median (inter-quartile range) eGFR change from baseline over 52 weeks was -1.9 (-5.9; 1.8) mL/min/1.73 m2 (n = 28; males [n = 22]: -2.4 [-5.2; 3.2]; females [n = 6]: -0.7 [-9.2; 2.0]). Overall, median eGFR slope was -1.9 (-8.3; 1.9) mL/min/1.73 m2/year (ADA-negative [n = 20]: -1.2 [-6.4; 2.6]; ADA-positive [n = 9]: -8.4 [-11.6; -1.0]). Lyso-Gb3 concentrations were low and stable in females, with a slight increase in males (9/24 ADA-positive). The BRIGHT study results suggest that 2 mg/kg pegunigalsidase alfa E4W is tolerated well in stable adult patients with Fabry disease. Due to the low number of patients in this study, more research is needed to demonstrate the effects of pegunigalsidase alfa given E4W. Further evidence, outside of this clinical trial, should be factored in for physicians to prolong the biweekly ERT intervals to E4W. TAKE-HOME MESSAGE: Treatment with 2 mg/kg pegunigalsidase alfa every 4 weeks could offer a new treatment option for patients with Fabry disease.
Antwerp University Hospital UZA Edegem Belgium
Charles University General University Hospital Prague Czech Republic
Chiesi Farmaceutici S p A Parma Italy
Department of Human Genetics Emory University School of Medicine Atlanta Georgia USA
Department of Product Development Protalix Biotherapeutics Carmiel Israel
Department of Public Health University Federico 2 of Naples Naples Italy
LSDU Royal Free London NHS Foundation Trust and University College London London UK
Lysosomal and Rare Disorders Research and Treatment Center Fairfax Virginia USA
Pediatrics Medical Genetics University of Utah Salt Lake City Utah USA
University of Alabama at Birmingham Birmingham Alabama USA
University of Bergen and Haukeland University Hospital Bergen Norway
See more in PubMed
Mehta A, Hughes DA. Fabry disease. In: Adam MP, Mirzaa GM, Pagon RA, et al., eds. GeneReviews(®). University of Washington; 2002. (updated March 9, 2023).
National Institutes of Health . Fabry disease. 2022. https://medlineplus.gov/genetics/condition/fabry-disease/#frequency Accessed December 12, 2023.
Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. doi:10.1186/1750-1172-5-30 PubMed DOI PMC
Wanner C, Arad M, Baron R, et al. European expert consensus statement on therapeutic goals in Fabry disease. Mol Genet Metab. 2018;124(3):189‐203. doi:10.1016/j.ymgme.2018.06.004 PubMed DOI
Azevedo O, Gago MF, Miltenberger‐Miltenyi G, Sousa N, Cunha D. Fabry disease therapy: state‐of‐the‐art and current challenges. Int J Mol Sci. 2020;22(1):206. doi:10.3390/ijms22010206 PubMed DOI PMC
Germain DP, Charrow J, Desnick RJ, et al. Ten‐year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet. 2015;52(5):353‐358. doi:10.1136/jmedgenet-2014-102797 PubMed DOI PMC
Germain DP, Waldek S, Banikazemi M, et al. Sustained, long‐term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol. 2007;18(5):1547‐1557. doi:10.1681/asn.2006080816 PubMed DOI
Schiffmann R, Kopp JB, Austin HA 3rd, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285(21):2743‐2749. doi:10.1001/jama.285.21.2743 PubMed DOI
Genzyme Corporation . Fabrazyme (agalsidase beta) for injection, for intravenous use: prescribing information. 2021.
Shire Human Genetic Therapies AB . Replagal: summary of product characteristics. 2022.
Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18‐month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54(4):288‐296. doi:10.1136/jmedgenet-2016-104178 PubMed DOI PMC
Chiesi USA, Inc . Elfabrio (pegunigalsidase alfa‐iwxj) injection, for intravenous use: prescribing information. 2023.
Chiesi Farmaceutici S.p.A . Elfabrio: summary of product characteristics. 2023.
Kizhner T, Azulay Y, Hainrichson M, et al. Characterization of a chemically modified plant cell culture expressed human α‐galactosidase A enzyme for treatment of Fabry disease. Mol Genet Metab. 2015;114(2):259‐267. doi:10.1016/j.ymgme.2014.08.002 PubMed DOI
Schiffmann R, Goker‐Alpan O, Holida M, et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease provides sustained plasma concentrations and favorable pharmacodynamics: a 1‐year phase I/II clinical trial. J Inherit Metab Dis. 2019;42(3):534‐544. doi:10.1002/jimd.12080 PubMed DOI
Lenders M, Pollmann S, Terlinden M, Brand E. Pre‐existing anti‐drug antibodies in Fabry disease show less affinity for pegunigalsidase alfa. Mol Ther Methods Clin Dev. 2022;26:323‐330. doi:10.1016/j.omtm.2022.07.009 PubMed DOI PMC
Hughes D, Gonzalez D, Maegawa G, et al. Long‐term safety and efficacy of pegunigalsidase alfa: a multicenter 6‐year study in adult patients with Fabry disease. Genet Med. 2023;25:100968. doi:10.1016/j.gim.2023.100968 PubMed DOI
Linhart A, Dostálová G, Nicholls K, et al. Safety and efficacy of pegunigalsidase alfa in patients with Fabry disease who were previously treated with agalsidase alfa: results from BRIDGE, a phase III open‐label study. Orphanet J Rare Dis. 2023;18(1):332. doi:10.1186/s13023-023-02937-6 PubMed DOI PMC
Wallace EL, Goker‐Alpan O, Wilcox WR, et al. Head‐to‐head trial of pegunigalsidase alfa versus agalsidase beta in patients with Fabry disease and deteriorating renal function: results from the 2‐year randomised phase III BALANCE study. J Med Genet. 2023;61:530. doi:10.1136/jmg-2023-109445 PubMed DOI PMC
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604‐612. doi:10.7326/0003-4819-150-9-200905050-00006 PubMed DOI PMC
Kidney disease: improving global outcomes (KDIGO). KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int Suppl. 2012;2:337‐405.
National Cancer Institute . Common terminology criteria for adverse events (CTCAE). https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm Accessed December 12, 2023.
U.S. Food and Drug Administration . Immunogenicity testing of therapeutic protein products—developing and validating assays for anti‐drug antibody detection, guidance for industry. 2019.
European Medicines Agency . Guideline on immunogenicity assessment of therapeutic proteins. 2017.
Beck M. The Mainz severity score index (MSSI): development and validation of a system for scoring the signs and symptoms of Fabry disease. Acta Paediatr Suppl. 2006;95(451):43‐46. doi:10.1080/08035320600618825 PubMed DOI
Whybra C, Kampmann C, Krummenauer F, et al. The Mainz severity score index: a new instrument for quantifying the Anderson‐Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clin Genet. 2004;65(4):299‐307. doi:10.1111/j.1399-0004.2004.00219.x PubMed DOI
Cleeland CS. Brief Pain Inventory Short Form (BPI‐SF). 1991. https://www.mdanderson.org/documents/Departments‐and‐Divisions/Symptom‐Research/BPI_UserGuide.pdf Accessed December 12, 2023.
EuroQol Research Foundation . EQ‐5D‐5L user guide. 2019. https://euroqol.org/publications/user-guides/ Accessed December 12, 2023.
Milligan A, Hughes D, Goodwin S, Richfield L, Mehta A. Intravenous enzyme replacement therapy: better in home or hospital? Br J Nurs. 2006;15(6):330‐333. doi:10.12968/bjon.2006.15.6.20681 PubMed DOI
Bashorum L, McCaughey G, Evans O, Humphries AC, Perry R, MacCulloch A. Burden associated with Fabry disease and its treatment in 12–15 year olds: results from a European survey. Orphanet J Rare Dis. 2022;17(1):266. doi:10.1186/s13023-022-02417-3 PubMed DOI PMC
Arends M, Biegstraaten M, Wanner C, et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international cohort study. J Med Genet. 2018;55(5):351‐358. doi:10.1136/jmedgenet-2017-104863 PubMed DOI PMC
van der Veen SJ, Vlietstra WJ, van Dussen L, et al. Predicting the development of anti‐drug antibodies against recombinant α‐galactosidase A in male patients with classical Fabry disease. Int J Mol Sci. 2020;21(16):5784. doi:10.3390/ijms21165784 PubMed DOI PMC
Wang J, Lozier J, Johnson G, et al. Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention, and treatment. Nat Biotechnol. 2008;26(8):901‐908. doi:10.1038/nbt.1484 PubMed DOI PMC
Lenders M, Brand E. Mechanisms of neutralizing anti‐drug antibody formation and clinical relevance on therapeutic efficacy of enzyme replacement therapies in Fabry disease. Drugs. 2021;81(17):1969‐1981. doi:10.1007/s40265-021-01621-y PubMed DOI PMC
van der Veen SJ, Langeveld M. Antibodies against recombinant enzyme in the treatment of Fabry disease: now you see them, now you don't. Mol Ther Methods Clin Dev. 2022;27:324‐326. doi:10.1016/j.omtm.2022.10.007 PubMed DOI PMC
West M, Nicholls K, Mehta A, et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol. 2009;20(5):1132‐1139. doi:10.1681/asn.2008080870 PubMed DOI PMC
Carnicer‐Cáceres C, Arranz‐Amo JA, Cea‐Arestin C, et al. Biomarkers in Fabry disease. Implications for clinical diagnosis and follow‐up. J Clin Med. 2021;10(8):1664. doi:10.3390/jcm10081664 PubMed DOI PMC
Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry's disease with the pharmacologic chaperone migalastat. N Engl J Med. 2016;375(6):545‐555. doi:10.1056/NEJMoa1510198 PubMed DOI
Nowak A, Mechtler TP, Desnick RJ, Kasper DC. Plasma lyso‐Gb3: a useful biomarker for the diagnosis and treatment of Fabry disease heterozygotes. Mol Genet Metab. 2017;120(1–2):57‐61. doi:10.1016/j.ymgme.2016.10.006 PubMed DOI
Rombach SM, Dekker N, Bouwman MG, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta. 2010;1802(9):741‐748. doi:10.1016/j.bbadis.2010.05.003 PubMed DOI
van Breemen MJ, Rombach SM, Dekker N, et al. Reduction of elevated plasma globotriaosylsphingosine in patients with classic Fabry disease following enzyme replacement therapy. Biochim Biophys Acta. 2011;1812(1):70‐76. doi:10.1016/j.bbadis.2010.09.007 PubMed DOI
Hoffmann B, Garcia de Lorenzo A, Mehta A, Beck M, Widmer U, Ricci R. Effects of enzyme replacement therapy on pain and health‐related quality of life in patients with Fabry disease: data from FOS (Fabry outcome survey). J Med Genet. 2005;42(3):247‐252. doi:10.1136/jmg.2004.025791 PubMed DOI PMC
Schiffmann R, Ries M, Timmons M, Flaherty JT, Brady RO. Long‐term therapy with agalsidase alfa for Fabry disease: safety and effects on renal function in a home infusion setting. Nephrol Dial Transplant. 2006;21(2):345‐354. doi:10.1093/ndt/gfi152 PubMed DOI
Weidemann F, Niemann M, Störk S, et al. Long‐term outcome of enzyme replacement therapy in advanced Fabry disease: evidence for disease progression towards serious complications. J Intern Med. 2013;274(4):331‐341. doi:10.1111/joim.12077 PubMed DOI PMC
Meregaglia M, Nicod E, Drummond M. The estimation of health state utility values in rare diseases: do the approaches in submissions for NICE technology appraisals reflect the existing literature? A scoping review. Eur J Health Econ. 2022;24:1151‐1216. doi:10.1007/s10198-022-01541-y PubMed DOI PMC
Ramaswami U, Stull DE, Parini R, et al. Measuring patient experiences in Fabry disease: validation of the Fabry‐specific pediatric health and pain questionnaire (FPHPQ). Health Qual Life Outcomes. 2012;10:116. doi:10.1186/1477-7525-10-116 PubMed DOI PMC