SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MSM100652101
Czech Academy of Sciences
RVO:68081731
Czech Academy of Sciences
NU21-05-00341
Ministry of Health of the Czech Republic
PubMed
36831948
PubMed Central
PMC9954015
DOI
10.3390/bios13020182
PII: bios13020182
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, SERS-tag, sandwich immunoassay, single-cell detection,
- MeSH
- Escherichia coli MeSH
- kovové nanočástice * chemie MeSH
- protilátky chemie MeSH
- Ramanova spektroskopie * metody MeSH
- Staphylococcus aureus MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protilátky MeSH
- zlato MeSH
Efficient separation and sensitive identification of pathogenic bacterial strains is essential for a prosperous modern society, with direct applications in medical diagnostics, drug discovery, biodefense, and food safety. We developed a fast and reliable method for antibody-based selective immobilization of bacteria from suspension onto a gold-plated glass surface, followed by detection using strain-specific antibodies linked to gold nanoparticles decorated with a reporter molecule. The reporter molecules are subsequently detected by surface-enhanced Raman spectroscopy (SERS). Such a multi-functionalized nanoparticle is called a SERS-tag. The presented procedure uses widely accessible and cheap materials for manufacturing and functionalization of the nanoparticles and the immobilization surfaces. Here, we exemplify the use of the produced SERS-tags for sensitive single-cell detection of opportunistic pathogen Escherichia coli, and we demonstrate the selectivity of our method using two other bacterial strains, Staphylococcus aureus and Serratia marcescens, as negative controls. We believe that the described approach has a potential to inspire the development of novel medical diagnostic tools for rapid identification of bacterial pathogens.
Zobrazit více v PubMed
Nikaido H. Multidrug Resistance in Bacteria. Annu. Rev. Biochem. 2009;78:119–146. doi: 10.1146/annurev.biochem.78.082907.145923. PubMed DOI PMC
French K., Evans J., Tanner H., Gossain S., Hussain A. The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures. PLoS ONE. 2016;11:e0169332. doi: 10.1371/journal.pone.0169332. PubMed DOI PMC
Ruiz-Aragón J., Ballestero-Téllez M., Gutiérrez-Gutiérrez B., de Cueto M., Rodríguez-Baño J., Pascual Á. Direct Bacterial Identification from Positive Blood Cultures Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry: A Systematic Review and Meta-Analysis. Enfermedades Infecc. Microbiol. Clin. Engl. Ed. 2018;36:484–492. doi: 10.1016/j.eimc.2017.08.012. PubMed DOI
Ahmed A., Rushworth J.V., Hirst N.A., Millner P.A. Biosensors for Whole-Cell Bacterial Detection. Clin. Microbiol. Rev. 2014;27:631–646. doi: 10.1128/CMR.00120-13. PubMed DOI PMC
Samek O., Bernatová S., Dohnal F. The Potential of SERS as an AST Methodology in Clinical Settings. Nanophotonics. 2021;10:2537–2561. doi: 10.1515/nanoph-2021-0095. DOI
Dudak F.C., Boyacı İ.H. Rapid and Label-Free Bacteria Detection by Surface Plasmon Resonance (SPR) Biosensors. Biotechnol. J. 2009;4:1003–1011. doi: 10.1002/biot.200800316. PubMed DOI
Temur E., Boyacı İ.H., Tamer U., Unsal H., Aydogan N. A Highly Sensitive Detection Platform Based on Surface-Enhanced Raman Scattering for Escherichia Coli Enumeration. Anal. Bioanal. Chem. 2010;397:1595–1604. doi: 10.1007/s00216-010-3676-x. PubMed DOI
Maquelin K., Kirschner C., Choo-Smith L.-P., van den Braak N., Endtz H.P., Naumann D., Puppels G.J. Identification of Medically Relevant Microorganisms by Vibrational Spectroscopy. J. Microbiol. Methods. 2002;51:255–271. doi: 10.1016/S0167-7012(02)00127-6. PubMed DOI
Bernatová S., Samek O., Pilát Z., Šerý M., Ježek J., Jákl P., Šiler M., Krzyžánek V., Zemánek P., Holá V., et al. Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules. 2013;18:13188–13199. doi: 10.3390/molecules181113188. PubMed DOI PMC
Pilát Z., Bernatová S., Ježek J., Kirchhoff J., Tannert A., Neugebauer U., Samek O., Zemánek P. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. Coli under Antibiotic Stress. Sensors. 2018;18:1623. doi: 10.3390/s18051623. PubMed DOI PMC
Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Ježek J., Zemánek P., Holá V. Differentiation between Staphylococcus Aureus and Staphylococcus Epidermidis Strains Using Raman Spectroscopy. Future Microbiol. 2017;12:881–890. doi: 10.2217/fmb-2016-0224. PubMed DOI
Bernatová S., Rebrošová K., Pilát Z., Šerý M., Gjevik A., Samek O., Ježek J., Šiler M., Kizovský M., Klementová T., et al. Rapid Detection of Antibiotic Sensitivity of Staphylococcus Aureus by Raman Tweezers. Eur. Phys. J. Plus. 2021;136:233. doi: 10.1140/epjp/s13360-021-01152-1. DOI
Hakonen A., Svedendahl M., Ogier R., Yang Z.-J., Lodewijks K., Verre R., Shegai T., Andersson P.O., Käll M. Dimer-on-Mirror SERS Substrates with Attogram Sensitivity Fabricated by Colloidal Lithography. Nanoscale. 2015;7:9405–9410. doi: 10.1039/C5NR01654A. PubMed DOI
Woo M.-A., Lee S.-M., Kim G., Baek J., Noh M.S., Kim J.E., Park S.J., Minai-Tehrani A., Park S.-C., Seo Y.T., et al. Multiplex Immunoassay Using Fluorescent-Surface Enhanced Raman Spectroscopic Dots for the Detection of Bronchioalveolar Stem Cells in Murine Lung. Anal. Chem. 2009;81:1008–1015. doi: 10.1021/ac802037x. PubMed DOI
Lin C.-C., Yang Y.-M., Chen Y.-F., Yang T.-S., Chang H.-C. A New Protein A Assay Based on Raman Reporter Labeled Immunogold Nanoparticles. Biosens. Bioelectron. 2008;24:178–183. doi: 10.1016/j.bios.2008.03.035. PubMed DOI
Vo-Dinh T., Yan F., Stokes D.L. Plasmonics-Based Nanostructures for Surface-Enhanced Raman Scattering Bioanalysis. In: Vo-Dinh T., editor. Protein Nanotechnology: Protocols, Instrumentation, and Applications. Humana Press; Totowa, NJ, USA: 2005. pp. 255–283. Methods in Molecular BiologyTM. PubMed
Chan W.C.W., Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science. 1998;281:2016–2018. doi: 10.1126/science.281.5385.2016. PubMed DOI
Li Y., Wang Z., Mu X., Ma A., Guo S. Raman Tags: Novel Optical Probes for Intracellular Sensing and Imaging. Biotechnol. Adv. 2017;35:168–177. doi: 10.1016/j.biotechadv.2016.12.004. PubMed DOI
Shrivastav A.M., Cvelbar U., Abdulhalim I. A Comprehensive Review on Plasmonic-Based Biosensors Used in Viral Diagnostics. Commun. Biol. 2021;4:70. doi: 10.1038/s42003-020-01615-8. PubMed DOI PMC
Kim K., Kashefi-Kheyrabadi L., Joung Y., Kim K., Dang H., Chavan S.G., Lee M.-H., Choo J. Recent Advances in Sensitive Surface-Enhanced Raman Scattering-Based Lateral Flow Assay Platforms for Point-of-Care Diagnostics of Infectious Diseases. Sens. Actuators B Chem. 2021;329:129214. doi: 10.1016/j.snb.2020.129214. PubMed DOI PMC
Jarvis R.M., Brooker A., Goodacre R. Surface-Enhanced Raman Scattering for the Rapid Discrimination of Bacteria. Faraday Discuss. 2006;132:281–292. doi: 10.1039/B506413A. PubMed DOI
Kitahama Y., Itoh T., Pienpinijtham P., Ekgasit S., Han X.X., Ozaki Y. Biological Applications of SERS Using Functional Nanoparticles. In: Hepel M., Zhong C.-J., editors. ACS Symposium Series. Vol. 1113. American Chemical Society; Washington, DC, USA: 2012. pp. 181–234.
Kearns H., Goodacre R., Jamieson L.E., Graham D., Faulds K. SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Anal. Chem. 2017;89:12666–12673. doi: 10.1021/acs.analchem.7b02653. PubMed DOI
Guven B., Basaran-Akgul N., Temur E., Tamer U., Boyacı İ.H. SERS-Based Sandwich Immunoassay Using Antibody Coated Magnetic Nanoparticles for Escherichia Coli Enumeration. The Analyst. 2011;136:740–748. doi: 10.1039/C0AN00473A. PubMed DOI
Huang K., Martí A.A. Recent Trends in Molecular Beacon Design and Applications. Anal. Bioanal. Chem. 2012;402:3091–3102. doi: 10.1007/s00216-011-5570-6. PubMed DOI
Heydari E. Nanoplasmonic Biodetection Based on Bright-Field Imaging of Resonantly Coupled Gold-Silver Nanoparticles. Photonics Nanostructures. 2019;36:100708. doi: 10.1016/j.photonics.2019.100708. DOI
Liu J., He H., Xiao D., Yin S., Ji W., Jiang S., Luo D., Wang B., Liu Y. Recent Advances of Plasmonic Nanoparticles and Their Applications. Materials. 2018;11:1833. doi: 10.3390/ma11101833. PubMed DOI PMC
Ma Y., Cai F., Li Y., Chen J., Han F., Lin W. A Review of the Application of Nanoparticles in the Diagnosis and Treatment of Chronic Kidney Disease. Bioact. Mater. 2020;5:732–743. doi: 10.1016/j.bioactmat.2020.05.002. PubMed DOI PMC
Fu X., Cai J., Zhang X., Li W.-D., Ge H., Hu Y. Top-down Fabrication of Shape-Controlled, Monodisperse Nanoparticles for Biomedical Applications. Adv. Drug Deliv. Rev. 2018;132:169–187. doi: 10.1016/j.addr.2018.07.006. PubMed DOI
Wang A.X., Kong X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Mater. Basel Switz. 2015;8:3024–3052. doi: 10.3390/ma8063024. PubMed DOI PMC
Rong Z., Wang C., Wang J., Wang D., Xiao R., Wang S. Magnetic Immunoassay for Cancer Biomarker Detection Based on Surface-Enhanced Resonance Raman Scattering from Coupled Plasmonic Nanostructures. Biosens. Bioelectron. 2016;84:15–21. doi: 10.1016/j.bios.2016.04.006. PubMed DOI
Han X.X., Kitahama Y., Itoh T., Wang C.X., Zhao B., Ozaki Y. Protein-Mediated Sandwich Strategy for Surface-Enhanced Raman Scattering: Application to Versatile Protein Detection. Anal. Chem. 2009;81:3350–3355. doi: 10.1021/ac802553a. PubMed DOI
Güçlü K., Özyürek M., Güngör N., Baki S., Apak R. Selective Optical Sensing of Biothiols with Ellman’s Reagent: 5,5′-Dithio-Bis(2-Nitrobenzoic Acid)-Modified Gold Nanoparticles. Anal. Chim. Acta. 2013;794:90–98. doi: 10.1016/j.aca.2013.07.041. PubMed DOI
Baniukevic J., Hakki Boyaci I., Goktug Bozkurt A., Tamer U., Ramanavicius A., Ramanaviciene A. Magnetic Gold Nanoparticles in SERS-Based Sandwich Immunoassay for Antigen Detection by Well Oriented Antibodies. Biosens. Bioelectron. 2013;43:281–288. doi: 10.1016/j.bios.2012.12.014. PubMed DOI
Tamer U., Boyacı İ.H., Temur E., Zengin A., Dincer İ., Elerman Y. Fabrication of Magnetic Gold Nanorod Particles for Immunomagnetic Separation and SERS Application. J. Nanoparticle Res. 2011;13:3167–3176. doi: 10.1007/s11051-010-0213-y. DOI
Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the Rolling-Circle Filter for Raman Background Subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. PubMed DOI
Salehi M., Mittelstaedt W., Packeisen J., Haase M., Hamann A. An Alternative Way to Prepare Biocompatible Nanotags with Increased Reproducibility of Results. J. Nanomater. Mol. Nanotechnol. 2016;5:1000181. doi: 10.4172/2324-8777.1000181. DOI
Le Ru E.C., Blackie E., Meyer M., Etchegoin P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C. 2007;111:13794–13803. doi: 10.1021/jp0687908. DOI
Bakshi S., Leoncini E., Baker C., Cañas-Duarte S.J., Okumus B., Paulsson J. Tracking Bacterial Lineages in Complex and Dynamic Environments with Applications for Growth Control and Persistence. Nat. Microbiol. 2021;6:783–791. doi: 10.1038/s41564-021-00900-4. PubMed DOI PMC
Lin Y.-C., Huang C., Lai H.-C. Revealing the Ultrastructure of the Membrane Pores of Intact Serratia Marcescens Cells by Atomic Force Microscopy. Heliyon. 2019;5:e02636. doi: 10.1016/j.heliyon.2019.e02636. PubMed DOI PMC
Jorge A.M., Hoiczyk E., Gomes J.P., Pinho M.G. EzrA Contributes to the Regulation of Cell Size in Staphylococcus Aureus. PLoS ONE. 2011;6:e27542. doi: 10.1371/journal.pone.0027542. PubMed DOI PMC