DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms

. 2019 Jun 24 ; 10 (6) : . [epub] 20190624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31238556

Grantová podpora
GA16-11140S Grantová Agentura České Republiky
W099109 "Foreign Experts Program" of P.R. China
ID LM2015041, MEYS CR, 2016-2019 CEITEC Nano Research Infrastructure

Dielectric particles in a non-uniform electric field are subject to a force caused by a phenomenon called dielectrophoresis (DEP). DEP is a commonly used technique in microfluidics for particle or cell separation. In comparison with other separation methods, DEP has the unique advantage of being label-free, fast, and accurate. It has been widely applied in microfluidics for bio-molecular diagnostics and medical and polymer research. This review introduces the basic theory of DEP, its advantages compared with other separation methods, and its applications in recent years, in particular, focusing on the different electrode types integrated into microfluidic chips, fabrication techniques, and operation principles.

Zobrazit více v PubMed

West J., Becker M., Tombrink S., Manz A. Micro total analysis systems: Latest achievements. Anal. Chem. 2008;80:4403–4419. doi: 10.1021/ac800680j. PubMed DOI

Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature. 2006;442:387–393. doi: 10.1038/nature05061. PubMed DOI

Dittrich P.S., Manz A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006;5:210–218. doi: 10.1038/nrd1985. PubMed DOI

El-Ali J., Sorger P.K., Jensen K.F. Cells on chips. Nature. 2006;442:403–411. doi: 10.1038/nature05063. PubMed DOI

Lichtenberg J., de Rooij N.F., Verpoorte E. Sample pretreatment on microfabricated devices. Talanta. 2002;56:233–266. doi: 10.1016/S0039-9140(01)00593-8. PubMed DOI

Razzacki S.Z., Thwar P.K., Yang M., Ugaz V.M., Burns M.A. Integrated microsystems for controlled drug delivery. Adv. Drug Deliv. Rev. 2004;56:185–198. doi: 10.1016/j.addr.2003.08.012. PubMed DOI

Lu X., Liu C., Hu G., Xuan X. Particle manipulations in non-Newtonian microfluidics: A review. J. Colloid Interface Sci. 2017;500:182–201. doi: 10.1016/j.jcis.2017.04.019. PubMed DOI

Roper M.G., Easley C.J., Landers J.P. Advances in polymerase chain reaction on microfluidic chips. Anal. Chem. 2005;77:3887–3893. doi: 10.1021/ac050756m. PubMed DOI

Sanghavi B.J., Moore J.A., Chavez J.L., Hagen J.A., Kelley-Loughnane N., Chou C.-F., Swami N.S. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens. Bioelectron. 2016;78:244–252. doi: 10.1016/j.bios.2015.11.044. PubMed DOI

Salafi T., Zeming K.K., Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2017;17:11–33. doi: 10.1039/C6LC01045H. PubMed DOI

Liang L.-G., Kong M.-Q., Zhou S., Sheng Y.-F., Wang P., Yu T., Inci F., Kuo W.P., Li L.-J., Demirci U., et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci. Rep. 2017;7:46224. doi: 10.1038/srep46224. PubMed DOI PMC

Dalili A., Samiei E., Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: Microfluidic approaches. Analyst. 2019;144:87–113. doi: 10.1039/C8AN01061G. PubMed DOI

Al-Faqheri W., Thio T.H.G., Qasaimeh M.A., Dietzel A., Madou M. Particle/cell separation on microfluidic platforms based on centrifugation effect: A review. Microfluid. Nanofluid. 2017;21:102. doi: 10.1007/s10404-017-1933-4. DOI

Hejazian M., Li W., Nam-Trung N. Lab on a chip for continuous-flow magnetic cell separation. Lab Chip. 2015;15:959–970. doi: 10.1039/C4LC01422G. PubMed DOI

Li P., Mao Z., Peng Z., Zhou L., Chen Y., Huang P.-H., Truica C.I., Drabick J.J., El-Deiry W.S., Dao M., et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA. 2015;112:4970–4975. doi: 10.1073/pnas.1504484112. PubMed DOI PMC

Laurell T., Petersson F., Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007;36:492–506. doi: 10.1039/B601326K. PubMed DOI

Ramsey J.D., Collins G.E. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal. Chem. 2005;77:6664–6670. doi: 10.1021/ac0507789. PubMed DOI

Lin S.-L., Lin T.-Y., Fuh M.-R. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: An update. Electrophoresis. 2014;35:1275–1284. doi: 10.1002/elps.201300415. PubMed DOI

Sahore V., Kumar S., Rogers C.I., Jensen J.K., Sonker M., Woolley A.T. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers. Anal. Bioanal. Chem. 2016;408:599–607. doi: 10.1007/s00216-015-9141-0. PubMed DOI PMC

Kohlheyer D., Eijkel J.C.T., van den Berg A., Schasfoort R.B.M. Miniaturizing free-flow electrophoresis—A critical review. Electrophoresis. 2008;29:977–993. doi: 10.1002/elps.200700725. PubMed DOI

Cetin B., Li D. Dielectrophoresis in microfluidics technology. Electrophoresis. 2011;32:2410–2427. doi: 10.1002/elps.201100167. PubMed DOI

Fernandez R.E., Rohani A., Farmehini V., Swami N.S. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal. Chim. Acta. 2017;966:11–33. doi: 10.1016/j.aca.2017.02.024. PubMed DOI PMC

Abd Rahman N., Ibrahim F., Yafouz B. Dielectrophoresis for Biomedical Sciences Applications: A Review. Sensors. 2017;17:449. doi: 10.3390/s17030449. PubMed DOI PMC

Mach A.J., Di Carlo D. Continuous Scalable Blood Filtration Device Using Inertial Microfluidics. Biotechnol. Bioeng. 2010;107:302–311. doi: 10.1002/bit.22833. PubMed DOI

Yamada M., Seki M. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip. 2005;5:1233–1239. doi: 10.1039/b509386d. PubMed DOI

Broyles B.S., Jacobson S.C., Ramsey J.M. Sample filtration, concentration, and separation integrated on microfluidic devices. Anal. Chem. 2003;75:2761–2767. doi: 10.1021/ac025503x. PubMed DOI

Helton K.L., Nelson K.E., Fu E., Yager P. Conditioning saliva for use in a microfluidic biosensor. Lab Chip. 2008;8:1847–1851. doi: 10.1039/b811150b. PubMed DOI

Wang L., Lu J., Marukenko S.A., Monuki E.S., Flanagan L.A., Lee A.P. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis. 2009;30:782–791. doi: 10.1002/elps.200800637. PubMed DOI

Quinn M.M., Jalalian L., Ribeiro S., Ona K., Demirci U., Cedars M.I., Rosen M.P. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 2018;33:1388–1393. doi: 10.1093/humrep/dey239. PubMed DOI

Yeo J.C., Kenry, Zhao Z., Zhang, P., Wang Z., Lim C.T. Label-free extraction of extracellular vesicles using centrifugal microfluidics. Biomicrofluidics. 2018;12:024103. doi: 10.1063/1.5019983. PubMed DOI PMC

Sun Y., Sethu P. Low-stress Microfluidic Density-gradient Centrifugation for Blood Cell Sorting. Biomed. Microdevices. 2018;20:77. doi: 10.1007/s10544-018-0323-3. PubMed DOI

Feshitan J.A., Chen C.C., Kwan J.J., Borden M.A. Microbubble size isolation by differential centrifugation. J. Colloid Interface Sci. 2009;329:316–324. doi: 10.1016/j.jcis.2008.09.066. PubMed DOI

Wu J., Cui Y., Xuan S., Gong X. 3D-printed microfluidic manipulation device integrated with magnetic array. Microfluid. Nanofluid. 2018;22:103. doi: 10.1007/s10404-018-2123-8. DOI

Zhi S., Sun X., Feng Z., Lei C., Zhou Y. An innovative micro magnetic separator based on 3D micro-copper-coil exciting soft magnetic tips and FeNi wires for bio-target sorting. Microfluid. Nanofluid. 2019;23:43. doi: 10.1007/s10404-019-2215-0. DOI

Lee H., Xu L., Ahn B., Lee K., Oh K.W. Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform. Microfluid. Nanofluidics. 2012;13:613–623. doi: 10.1007/s10404-012-0978-7. DOI

Lehmann U., Vandevyver C., Parashar V.K., Gijs M.A.M. Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew. Chem. Int. Ed. 2006;45:3062–3067. doi: 10.1002/anie.200503624. PubMed DOI

Tran S.B.Q., Marmottant P., Thibault P. Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels. Appl. Phys. Lett. 2012;101:114103. doi: 10.1063/1.4751348. DOI

Baresch D., Thomas J.-L., Marchiano R. Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. Phys. Rev. Lett. 2016;116:024301. doi: 10.1103/PhysRevLett.116.024301. PubMed DOI

Ding X., Lin S.-C.S., Kiraly B., Yue H., Li S., Chiang I.K., Shi J., Benkovic S.J., Huang T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA. 2012;109:11105–11109. doi: 10.1073/pnas.1209288109. PubMed DOI PMC

Ding X., Li P., Lin S.-C.S., Stratton Z.S., Nama N., Guo F., Slotcavage D., Mao X., Shi J., Costanzo F., et al. Surface acoustic wave microfluidics. Lab Chip. 2013;13:3626–3649. doi: 10.1039/c3lc50361e. PubMed DOI PMC

Malmstadt N., Yager P., Hoffman A.S., Stayton P.S. A smart microfluidic affinity chromatography matrix composed of poly (N-isopropylacrylamide)-coated beads. Anal. Chem. 2003;75:2943–2949. doi: 10.1021/ac034274r. PubMed DOI

Bishop D.P., Blanes L., Wilson A.B., Wilbanks T., Killeen K., Grimm R., Wenzel R., Major D., Macka M., Clarke D., et al. Microfluidic high performance liquid chromatography-chip hyphenation to inductively coupled plasma-mass spectrometry. J. Chromatogr. A. 2017;1497:64–69. doi: 10.1016/j.chroma.2017.03.025. PubMed DOI

Lazar I.M., Trisiripisal P., Sarvaiya H.A. Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal. Chem. 2006;78:5513–5524. doi: 10.1021/ac060434y. PubMed DOI

Wouters S., De Vos J., Dores-Sousa J.L., Wouters B., Desmet G., Eeltink S. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules. J. Chromatogr. A. 2017;1523:224–233. doi: 10.1016/j.chroma.2017.05.063. PubMed DOI

Redman E.A., Mellors J.S., Starkey J.A., Ramsey J.M. Characterization of Intact Antibody Drug Conjugate Variants Using Microfluidic Capillary Electrophoresis-Mass Spectrometry. Anal. Chem. 2016;88:2220–2226. doi: 10.1021/acs.analchem.5b03866. PubMed DOI

Khatri K., Klein J.A., Haserick J.R., Leon D.R., Costello C.E., McComb M.E., Zaia J. Microfluidic Capillary Electrophoresis Mass Spectrometry for Analysis of Monosaccharides, Oligosaccharides, and Glycopeptides. Anal. Chem. 2017;89:6645–6655. doi: 10.1021/acs.analchem.7b00875. PubMed DOI PMC

Roper M.G., Shackman J.G., Dahlgren G.M., Kennedy R.T. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. 2003;75:4711–4717. doi: 10.1021/ac0346813. PubMed DOI

Jubery T.Z., Srivastava S.K., Dutta P. Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis. 2014;35:691–713. doi: 10.1002/elps.201300424. PubMed DOI

Viefhues M., Eichhorn R. DNA dielectrophoresis: Theory and applications a review. Electrophoresis. 2017;38:1483–1506. doi: 10.1002/elps.201600482. PubMed DOI

Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis. 2019 doi: 10.1002/elps.201900048. PubMed DOI

Khoshmanesh K., Nahavandi S., Baratchi S., Mitchell A., Kalantar-zadeh K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 2011;26:1800–1814. doi: 10.1016/j.bios.2010.09.022. PubMed DOI

Alazzam A., Mathew B., Alhammadi F. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J. Sep. Sci. 2017;40:1193–1200. doi: 10.1002/jssc.201601061. PubMed DOI

Regtmeier J., Eichhorn R., Viefhues M., Bogunovic L., Anselmetti D. Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis. 2011;32:2253–2273. doi: 10.1002/elps.201100055. PubMed DOI

Mohammadi M., Madadi H., Casals-Terre J., Sellares J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. Anal. Bioanal. Chem. 2015;407:4733–4744. doi: 10.1007/s00216-015-8678-2. PubMed DOI

Srivastava S.K., Artemiou A., Minerick A.R. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis. 2011;32:2530–2540. doi: 10.1002/elps.201100089. PubMed DOI

Li M., Li D. Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis. J. Chromatogr. A. 2017;1501:151–160. doi: 10.1016/j.chroma.2017.04.027. PubMed DOI

Crews N., Darabi J., Voglewede P., Guo F., Bayoumi A. An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics. Sens. Actuators B Chem. 2007;125:672–679. doi: 10.1016/j.snb.2007.02.047. DOI

Sadeghian H., Hojjat Y., Soleimani M. Interdigitated electrode design and optimization for dielectrophoresis cell separation actuators. J. Electrostat. 2017;86:41–49. doi: 10.1016/j.elstat.2017.01.012. DOI

Song H., Rosano J.M., Wang Y., Garson C.J., Prabhakarpandian B., Pant K., Klarmann G.J., Perantoni A., Alvarez L.M., Lai E. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip. 2015;15:1320–1328. doi: 10.1039/C4LC01253D. PubMed DOI PMC

Chen X., Ren Y., Liu W., Feng X., Jia Y., Tao Y., Jiang H. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Anal. Chem. 2017;89:9583–9592. doi: 10.1021/acs.analchem.7b02892. PubMed DOI

Xing X., Yobas L. Dielectrophoretic isolation of cells using 3D microelectrodes featuring castellated blocks. Analyst. 2015;140:3397–3405. doi: 10.1039/C5AN00167F. PubMed DOI

Adams T.N.G., Jiang A.Y.L., Vyas P.D., Flanagan L.A. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis. Methods. 2018;133:91–103. doi: 10.1016/j.ymeth.2017.08.016. PubMed DOI PMC

Zhu H., Lin X., Su Y., Dong H., Wu J. Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosens. Bioelectron. 2015;63:371–378. doi: 10.1016/j.bios.2014.07.072. PubMed DOI

Zhang J., Yuan D., Zhao Q., Yan S., Tang S.-Y., Tan S.H., Guo J., Xia H., Nam-Trung N., Li W. Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sens. Actuators B Chem. 2018;267:14–25. doi: 10.1016/j.snb.2018.04.020. DOI

D’Amico L., Ajami N.J., Adachi J.A., Gascoynecde P.R.C., Petrosino J.F. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip. 2017;17:1340–1348. doi: 10.1039/C6LC01277A. PubMed DOI PMC

Huang Y., Pethig R. Electrode design for negative dielectrophoresis. Meas. Sci. Technol. 1991;2:1142–1146. doi: 10.1088/0957-0233/2/12/005. DOI

Li Y., Dalton C., Crabtree H.J., Nilsson G., Kaler K.V.I.S. Continuous dielectrophoretic cell separation microfluidic device. Lab Chip. 2007;7:239–248. doi: 10.1039/B613344D. PubMed DOI

Li H.B., Bashir R. Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens. Actuators B Chem. 2002;86:215–221. doi: 10.1016/S0925-4005(02)00172-7. DOI

Yang L., Banada P.P., Chatni M.R., Lim K.S., Bhunia A.K., Ladisch M., Bashir R. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip. 2006;6:896–905. doi: 10.1039/b607061m. PubMed DOI

Demierre N., Braschler T., Muller R., Renaud P. Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens. Actuators B Chem. 2008;132:388–396. doi: 10.1016/j.snb.2007.09.078. DOI

Auerswald J., Knapp H.F. Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes. Microelectron. Eng. 2003;67:879–886. doi: 10.1016/S0167-9317(03)00150-3. DOI

Gascoyne P.R.C., Vykoukal J.V. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE. 2004;92:22–42. doi: 10.1109/JPROC.2003.820535. PubMed DOI PMC

Ho C.-T., Lin R.-Z., Chang W.-Y., Chang H.-Y., Liu C.-H. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip. 2006;6:724–734. doi: 10.1039/b602036d. PubMed DOI

Hu X.Y., Bessette P.H., Qian J.R., Meinhart C.D., Daugherty P.S., Soh H.T. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. USA. 2005;102:15757–15761. doi: 10.1073/pnas.0507719102. PubMed DOI PMC

Kim U., Qian J., Kenrick S.A., Daugherty P.S., Soh H.T. Multitarget Dielectrophoresis Activated Cell Sorter. Anal. Chem. 2008;80:8656–8661. doi: 10.1021/ac8015938. PubMed DOI PMC

Pommer M.S., Zhang Y., Keerthi N., Chen D., Thomson J.A., Meinhart C.D., Soh H.T. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis. 2008;29:1213–1218. doi: 10.1002/elps.200700607. PubMed DOI

Khoshmanesh K., Zhang C., Tovar-Lopez F.J., Nahavandi S., Baratchi S., Kalantar-zadeh K., Mitchell A. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis. 2009;30:3707–3717. doi: 10.1002/elps.200900079. PubMed DOI

Choi S., Park J.K. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip. 2005;5:1161–1167. doi: 10.1039/b505088j. PubMed DOI

Hunt T.P., Issadore D., Westervelt R.M. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip. 2008;8:81–87. doi: 10.1039/B710928H. PubMed DOI

Cetin B., Ozer M.B., Cagatay E., Buyukkocak S. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining. Biomicrofluidics. 2016;10:014112. doi: 10.1063/1.4940431. PubMed DOI PMC

Martinez-Duarte R., Camacho-Alanis F., Renaud P., Ros A. Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis. 2013;34:1113–1122. doi: 10.1002/elps.201200447. PubMed DOI

Iliescu C., Yu L., Tay F.E.H., Chen B. Bidirectional field-flow particle separation method in a dielectrophoretic chip with 3D electrodes. Sens. Actuators B Chem. 2008;129:491–496. doi: 10.1016/j.snb.2007.11.023. DOI

Iliescu C., Tresset G., Xu G. Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes. Biomicrofluidics. 2009;3:044104. doi: 10.1063/1.3251125. PubMed DOI PMC

Yu L., Iliescu C., Xu G., Tay F.E.H. Sequential field-flow cell separation method in a dielectrophoretic chip with 3-D electrodes. J. Microelectromech. Syst. 2007;16:1120–1129.

Iliescu C., Xu G.L., Samper V., Tay F.E.H. Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J. Micromech. Microeng. 2005;15:494–500. doi: 10.1088/0960-1317/15/3/009. DOI

Iliescu C., Tresset G., Xu G. Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes. Appl. Phys. Lett. 2007;90:234104. doi: 10.1063/1.2747187. DOI

Iliescu C., Yu L., Xu G., Tay F.E.H. A dielectrophoretic chip with a 3-D electric field gradient. J. Microelectromech. Syst. 2006;15:1506–1513. doi: 10.1109/JMEMS.2006.883567. DOI

Zeinali S., Cetin B., Oliaei S.N.B., Karpat Y. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining. Electrophoresis. 2015;36:1432–1442. doi: 10.1002/elps.201400486. PubMed DOI

Jia Y., Ren Y., Jiang H. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis. 2015;36:1744–1753. doi: 10.1002/elps.201400565. PubMed DOI

Wang Y., Wang J., Wu X., Jiang Z., Wang W. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip. Electrophoresis. 2019;40:969–978. doi: 10.1002/elps.201800302. PubMed DOI

Martinez-Duarte R., Gorkin R.A., III, Abi-Samra K., Madou M.J. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip. 2010;10:1030–1043. doi: 10.1039/b925456k. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...