DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
GA16-11140S
Grantová Agentura České Republiky
W099109
"Foreign Experts Program" of P.R. China
ID LM2015041, MEYS CR, 2016-2019
CEITEC Nano Research Infrastructure
PubMed
31238556
PubMed Central
PMC6630590
DOI
10.3390/mi10060423
PII: mi10060423
Knihovny.cz E-resources
- Keywords
- castellated electrodes, dielectrophoresis, interdigitated electrode, microfluidics, parallel electrodes, three-dimensional electrodes, two-dimensional electrodes,
- Publication type
- Journal Article MeSH
- Review MeSH
Dielectric particles in a non-uniform electric field are subject to a force caused by a phenomenon called dielectrophoresis (DEP). DEP is a commonly used technique in microfluidics for particle or cell separation. In comparison with other separation methods, DEP has the unique advantage of being label-free, fast, and accurate. It has been widely applied in microfluidics for bio-molecular diagnostics and medical and polymer research. This review introduces the basic theory of DEP, its advantages compared with other separation methods, and its applications in recent years, in particular, focusing on the different electrode types integrated into microfluidic chips, fabrication techniques, and operation principles.
See more in PubMed
West J., Becker M., Tombrink S., Manz A. Micro total analysis systems: Latest achievements. Anal. Chem. 2008;80:4403–4419. doi: 10.1021/ac800680j. PubMed DOI
Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature. 2006;442:387–393. doi: 10.1038/nature05061. PubMed DOI
Dittrich P.S., Manz A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006;5:210–218. doi: 10.1038/nrd1985. PubMed DOI
El-Ali J., Sorger P.K., Jensen K.F. Cells on chips. Nature. 2006;442:403–411. doi: 10.1038/nature05063. PubMed DOI
Lichtenberg J., de Rooij N.F., Verpoorte E. Sample pretreatment on microfabricated devices. Talanta. 2002;56:233–266. doi: 10.1016/S0039-9140(01)00593-8. PubMed DOI
Razzacki S.Z., Thwar P.K., Yang M., Ugaz V.M., Burns M.A. Integrated microsystems for controlled drug delivery. Adv. Drug Deliv. Rev. 2004;56:185–198. doi: 10.1016/j.addr.2003.08.012. PubMed DOI
Lu X., Liu C., Hu G., Xuan X. Particle manipulations in non-Newtonian microfluidics: A review. J. Colloid Interface Sci. 2017;500:182–201. doi: 10.1016/j.jcis.2017.04.019. PubMed DOI
Roper M.G., Easley C.J., Landers J.P. Advances in polymerase chain reaction on microfluidic chips. Anal. Chem. 2005;77:3887–3893. doi: 10.1021/ac050756m. PubMed DOI
Sanghavi B.J., Moore J.A., Chavez J.L., Hagen J.A., Kelley-Loughnane N., Chou C.-F., Swami N.S. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens. Bioelectron. 2016;78:244–252. doi: 10.1016/j.bios.2015.11.044. PubMed DOI
Salafi T., Zeming K.K., Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab Chip. 2017;17:11–33. doi: 10.1039/C6LC01045H. PubMed DOI
Liang L.-G., Kong M.-Q., Zhou S., Sheng Y.-F., Wang P., Yu T., Inci F., Kuo W.P., Li L.-J., Demirci U., et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci. Rep. 2017;7:46224. doi: 10.1038/srep46224. PubMed DOI PMC
Dalili A., Samiei E., Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: Microfluidic approaches. Analyst. 2019;144:87–113. doi: 10.1039/C8AN01061G. PubMed DOI
Al-Faqheri W., Thio T.H.G., Qasaimeh M.A., Dietzel A., Madou M. Particle/cell separation on microfluidic platforms based on centrifugation effect: A review. Microfluid. Nanofluid. 2017;21:102. doi: 10.1007/s10404-017-1933-4. DOI
Hejazian M., Li W., Nam-Trung N. Lab on a chip for continuous-flow magnetic cell separation. Lab Chip. 2015;15:959–970. doi: 10.1039/C4LC01422G. PubMed DOI
Li P., Mao Z., Peng Z., Zhou L., Chen Y., Huang P.-H., Truica C.I., Drabick J.J., El-Deiry W.S., Dao M., et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA. 2015;112:4970–4975. doi: 10.1073/pnas.1504484112. PubMed DOI PMC
Laurell T., Petersson F., Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007;36:492–506. doi: 10.1039/B601326K. PubMed DOI
Ramsey J.D., Collins G.E. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal. Chem. 2005;77:6664–6670. doi: 10.1021/ac0507789. PubMed DOI
Lin S.-L., Lin T.-Y., Fuh M.-R. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: An update. Electrophoresis. 2014;35:1275–1284. doi: 10.1002/elps.201300415. PubMed DOI
Sahore V., Kumar S., Rogers C.I., Jensen J.K., Sonker M., Woolley A.T. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers. Anal. Bioanal. Chem. 2016;408:599–607. doi: 10.1007/s00216-015-9141-0. PubMed DOI PMC
Kohlheyer D., Eijkel J.C.T., van den Berg A., Schasfoort R.B.M. Miniaturizing free-flow electrophoresis—A critical review. Electrophoresis. 2008;29:977–993. doi: 10.1002/elps.200700725. PubMed DOI
Cetin B., Li D. Dielectrophoresis in microfluidics technology. Electrophoresis. 2011;32:2410–2427. doi: 10.1002/elps.201100167. PubMed DOI
Fernandez R.E., Rohani A., Farmehini V., Swami N.S. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal. Chim. Acta. 2017;966:11–33. doi: 10.1016/j.aca.2017.02.024. PubMed DOI PMC
Abd Rahman N., Ibrahim F., Yafouz B. Dielectrophoresis for Biomedical Sciences Applications: A Review. Sensors. 2017;17:449. doi: 10.3390/s17030449. PubMed DOI PMC
Mach A.J., Di Carlo D. Continuous Scalable Blood Filtration Device Using Inertial Microfluidics. Biotechnol. Bioeng. 2010;107:302–311. doi: 10.1002/bit.22833. PubMed DOI
Yamada M., Seki M. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip. 2005;5:1233–1239. doi: 10.1039/b509386d. PubMed DOI
Broyles B.S., Jacobson S.C., Ramsey J.M. Sample filtration, concentration, and separation integrated on microfluidic devices. Anal. Chem. 2003;75:2761–2767. doi: 10.1021/ac025503x. PubMed DOI
Helton K.L., Nelson K.E., Fu E., Yager P. Conditioning saliva for use in a microfluidic biosensor. Lab Chip. 2008;8:1847–1851. doi: 10.1039/b811150b. PubMed DOI
Wang L., Lu J., Marukenko S.A., Monuki E.S., Flanagan L.A., Lee A.P. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis. 2009;30:782–791. doi: 10.1002/elps.200800637. PubMed DOI
Quinn M.M., Jalalian L., Ribeiro S., Ona K., Demirci U., Cedars M.I., Rosen M.P. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 2018;33:1388–1393. doi: 10.1093/humrep/dey239. PubMed DOI
Yeo J.C., Kenry, Zhao Z., Zhang, P., Wang Z., Lim C.T. Label-free extraction of extracellular vesicles using centrifugal microfluidics. Biomicrofluidics. 2018;12:024103. doi: 10.1063/1.5019983. PubMed DOI PMC
Sun Y., Sethu P. Low-stress Microfluidic Density-gradient Centrifugation for Blood Cell Sorting. Biomed. Microdevices. 2018;20:77. doi: 10.1007/s10544-018-0323-3. PubMed DOI
Feshitan J.A., Chen C.C., Kwan J.J., Borden M.A. Microbubble size isolation by differential centrifugation. J. Colloid Interface Sci. 2009;329:316–324. doi: 10.1016/j.jcis.2008.09.066. PubMed DOI
Wu J., Cui Y., Xuan S., Gong X. 3D-printed microfluidic manipulation device integrated with magnetic array. Microfluid. Nanofluid. 2018;22:103. doi: 10.1007/s10404-018-2123-8. DOI
Zhi S., Sun X., Feng Z., Lei C., Zhou Y. An innovative micro magnetic separator based on 3D micro-copper-coil exciting soft magnetic tips and FeNi wires for bio-target sorting. Microfluid. Nanofluid. 2019;23:43. doi: 10.1007/s10404-019-2215-0. DOI
Lee H., Xu L., Ahn B., Lee K., Oh K.W. Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform. Microfluid. Nanofluidics. 2012;13:613–623. doi: 10.1007/s10404-012-0978-7. DOI
Lehmann U., Vandevyver C., Parashar V.K., Gijs M.A.M. Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew. Chem. Int. Ed. 2006;45:3062–3067. doi: 10.1002/anie.200503624. PubMed DOI
Tran S.B.Q., Marmottant P., Thibault P. Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels. Appl. Phys. Lett. 2012;101:114103. doi: 10.1063/1.4751348. DOI
Baresch D., Thomas J.-L., Marchiano R. Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. Phys. Rev. Lett. 2016;116:024301. doi: 10.1103/PhysRevLett.116.024301. PubMed DOI
Ding X., Lin S.-C.S., Kiraly B., Yue H., Li S., Chiang I.K., Shi J., Benkovic S.J., Huang T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA. 2012;109:11105–11109. doi: 10.1073/pnas.1209288109. PubMed DOI PMC
Ding X., Li P., Lin S.-C.S., Stratton Z.S., Nama N., Guo F., Slotcavage D., Mao X., Shi J., Costanzo F., et al. Surface acoustic wave microfluidics. Lab Chip. 2013;13:3626–3649. doi: 10.1039/c3lc50361e. PubMed DOI PMC
Malmstadt N., Yager P., Hoffman A.S., Stayton P.S. A smart microfluidic affinity chromatography matrix composed of poly (N-isopropylacrylamide)-coated beads. Anal. Chem. 2003;75:2943–2949. doi: 10.1021/ac034274r. PubMed DOI
Bishop D.P., Blanes L., Wilson A.B., Wilbanks T., Killeen K., Grimm R., Wenzel R., Major D., Macka M., Clarke D., et al. Microfluidic high performance liquid chromatography-chip hyphenation to inductively coupled plasma-mass spectrometry. J. Chromatogr. A. 2017;1497:64–69. doi: 10.1016/j.chroma.2017.03.025. PubMed DOI
Lazar I.M., Trisiripisal P., Sarvaiya H.A. Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal. Chem. 2006;78:5513–5524. doi: 10.1021/ac060434y. PubMed DOI
Wouters S., De Vos J., Dores-Sousa J.L., Wouters B., Desmet G., Eeltink S. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules. J. Chromatogr. A. 2017;1523:224–233. doi: 10.1016/j.chroma.2017.05.063. PubMed DOI
Redman E.A., Mellors J.S., Starkey J.A., Ramsey J.M. Characterization of Intact Antibody Drug Conjugate Variants Using Microfluidic Capillary Electrophoresis-Mass Spectrometry. Anal. Chem. 2016;88:2220–2226. doi: 10.1021/acs.analchem.5b03866. PubMed DOI
Khatri K., Klein J.A., Haserick J.R., Leon D.R., Costello C.E., McComb M.E., Zaia J. Microfluidic Capillary Electrophoresis Mass Spectrometry for Analysis of Monosaccharides, Oligosaccharides, and Glycopeptides. Anal. Chem. 2017;89:6645–6655. doi: 10.1021/acs.analchem.7b00875. PubMed DOI PMC
Roper M.G., Shackman J.G., Dahlgren G.M., Kennedy R.T. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. 2003;75:4711–4717. doi: 10.1021/ac0346813. PubMed DOI
Jubery T.Z., Srivastava S.K., Dutta P. Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis. 2014;35:691–713. doi: 10.1002/elps.201300424. PubMed DOI
Viefhues M., Eichhorn R. DNA dielectrophoresis: Theory and applications a review. Electrophoresis. 2017;38:1483–1506. doi: 10.1002/elps.201600482. PubMed DOI
Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis. 2019 doi: 10.1002/elps.201900048. PubMed DOI
Khoshmanesh K., Nahavandi S., Baratchi S., Mitchell A., Kalantar-zadeh K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 2011;26:1800–1814. doi: 10.1016/j.bios.2010.09.022. PubMed DOI
Alazzam A., Mathew B., Alhammadi F. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J. Sep. Sci. 2017;40:1193–1200. doi: 10.1002/jssc.201601061. PubMed DOI
Regtmeier J., Eichhorn R., Viefhues M., Bogunovic L., Anselmetti D. Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis. 2011;32:2253–2273. doi: 10.1002/elps.201100055. PubMed DOI
Mohammadi M., Madadi H., Casals-Terre J., Sellares J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. Anal. Bioanal. Chem. 2015;407:4733–4744. doi: 10.1007/s00216-015-8678-2. PubMed DOI
Srivastava S.K., Artemiou A., Minerick A.R. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis. 2011;32:2530–2540. doi: 10.1002/elps.201100089. PubMed DOI
Li M., Li D. Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis. J. Chromatogr. A. 2017;1501:151–160. doi: 10.1016/j.chroma.2017.04.027. PubMed DOI
Crews N., Darabi J., Voglewede P., Guo F., Bayoumi A. An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics. Sens. Actuators B Chem. 2007;125:672–679. doi: 10.1016/j.snb.2007.02.047. DOI
Sadeghian H., Hojjat Y., Soleimani M. Interdigitated electrode design and optimization for dielectrophoresis cell separation actuators. J. Electrostat. 2017;86:41–49. doi: 10.1016/j.elstat.2017.01.012. DOI
Song H., Rosano J.M., Wang Y., Garson C.J., Prabhakarpandian B., Pant K., Klarmann G.J., Perantoni A., Alvarez L.M., Lai E. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip. 2015;15:1320–1328. doi: 10.1039/C4LC01253D. PubMed DOI PMC
Chen X., Ren Y., Liu W., Feng X., Jia Y., Tao Y., Jiang H. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Anal. Chem. 2017;89:9583–9592. doi: 10.1021/acs.analchem.7b02892. PubMed DOI
Xing X., Yobas L. Dielectrophoretic isolation of cells using 3D microelectrodes featuring castellated blocks. Analyst. 2015;140:3397–3405. doi: 10.1039/C5AN00167F. PubMed DOI
Adams T.N.G., Jiang A.Y.L., Vyas P.D., Flanagan L.A. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis. Methods. 2018;133:91–103. doi: 10.1016/j.ymeth.2017.08.016. PubMed DOI PMC
Zhu H., Lin X., Su Y., Dong H., Wu J. Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosens. Bioelectron. 2015;63:371–378. doi: 10.1016/j.bios.2014.07.072. PubMed DOI
Zhang J., Yuan D., Zhao Q., Yan S., Tang S.-Y., Tan S.H., Guo J., Xia H., Nam-Trung N., Li W. Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sens. Actuators B Chem. 2018;267:14–25. doi: 10.1016/j.snb.2018.04.020. DOI
D’Amico L., Ajami N.J., Adachi J.A., Gascoynecde P.R.C., Petrosino J.F. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip. 2017;17:1340–1348. doi: 10.1039/C6LC01277A. PubMed DOI PMC
Huang Y., Pethig R. Electrode design for negative dielectrophoresis. Meas. Sci. Technol. 1991;2:1142–1146. doi: 10.1088/0957-0233/2/12/005. DOI
Li Y., Dalton C., Crabtree H.J., Nilsson G., Kaler K.V.I.S. Continuous dielectrophoretic cell separation microfluidic device. Lab Chip. 2007;7:239–248. doi: 10.1039/B613344D. PubMed DOI
Li H.B., Bashir R. Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens. Actuators B Chem. 2002;86:215–221. doi: 10.1016/S0925-4005(02)00172-7. DOI
Yang L., Banada P.P., Chatni M.R., Lim K.S., Bhunia A.K., Ladisch M., Bashir R. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip. 2006;6:896–905. doi: 10.1039/b607061m. PubMed DOI
Demierre N., Braschler T., Muller R., Renaud P. Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens. Actuators B Chem. 2008;132:388–396. doi: 10.1016/j.snb.2007.09.078. DOI
Auerswald J., Knapp H.F. Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes. Microelectron. Eng. 2003;67:879–886. doi: 10.1016/S0167-9317(03)00150-3. DOI
Gascoyne P.R.C., Vykoukal J.V. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE. 2004;92:22–42. doi: 10.1109/JPROC.2003.820535. PubMed DOI PMC
Ho C.-T., Lin R.-Z., Chang W.-Y., Chang H.-Y., Liu C.-H. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip. 2006;6:724–734. doi: 10.1039/b602036d. PubMed DOI
Hu X.Y., Bessette P.H., Qian J.R., Meinhart C.D., Daugherty P.S., Soh H.T. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. USA. 2005;102:15757–15761. doi: 10.1073/pnas.0507719102. PubMed DOI PMC
Kim U., Qian J., Kenrick S.A., Daugherty P.S., Soh H.T. Multitarget Dielectrophoresis Activated Cell Sorter. Anal. Chem. 2008;80:8656–8661. doi: 10.1021/ac8015938. PubMed DOI PMC
Pommer M.S., Zhang Y., Keerthi N., Chen D., Thomson J.A., Meinhart C.D., Soh H.T. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis. 2008;29:1213–1218. doi: 10.1002/elps.200700607. PubMed DOI
Khoshmanesh K., Zhang C., Tovar-Lopez F.J., Nahavandi S., Baratchi S., Kalantar-zadeh K., Mitchell A. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis. 2009;30:3707–3717. doi: 10.1002/elps.200900079. PubMed DOI
Choi S., Park J.K. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip. 2005;5:1161–1167. doi: 10.1039/b505088j. PubMed DOI
Hunt T.P., Issadore D., Westervelt R.M. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip. 2008;8:81–87. doi: 10.1039/B710928H. PubMed DOI
Cetin B., Ozer M.B., Cagatay E., Buyukkocak S. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining. Biomicrofluidics. 2016;10:014112. doi: 10.1063/1.4940431. PubMed DOI PMC
Martinez-Duarte R., Camacho-Alanis F., Renaud P., Ros A. Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis. 2013;34:1113–1122. doi: 10.1002/elps.201200447. PubMed DOI
Iliescu C., Yu L., Tay F.E.H., Chen B. Bidirectional field-flow particle separation method in a dielectrophoretic chip with 3D electrodes. Sens. Actuators B Chem. 2008;129:491–496. doi: 10.1016/j.snb.2007.11.023. DOI
Iliescu C., Tresset G., Xu G. Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes. Biomicrofluidics. 2009;3:044104. doi: 10.1063/1.3251125. PubMed DOI PMC
Yu L., Iliescu C., Xu G., Tay F.E.H. Sequential field-flow cell separation method in a dielectrophoretic chip with 3-D electrodes. J. Microelectromech. Syst. 2007;16:1120–1129.
Iliescu C., Xu G.L., Samper V., Tay F.E.H. Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J. Micromech. Microeng. 2005;15:494–500. doi: 10.1088/0960-1317/15/3/009. DOI
Iliescu C., Tresset G., Xu G. Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes. Appl. Phys. Lett. 2007;90:234104. doi: 10.1063/1.2747187. DOI
Iliescu C., Yu L., Xu G., Tay F.E.H. A dielectrophoretic chip with a 3-D electric field gradient. J. Microelectromech. Syst. 2006;15:1506–1513. doi: 10.1109/JMEMS.2006.883567. DOI
Zeinali S., Cetin B., Oliaei S.N.B., Karpat Y. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining. Electrophoresis. 2015;36:1432–1442. doi: 10.1002/elps.201400486. PubMed DOI
Jia Y., Ren Y., Jiang H. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis. 2015;36:1744–1753. doi: 10.1002/elps.201400565. PubMed DOI
Wang Y., Wang J., Wu X., Jiang Z., Wang W. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip. Electrophoresis. 2019;40:969–978. doi: 10.1002/elps.201800302. PubMed DOI
Martinez-Duarte R., Gorkin R.A., III, Abi-Samra K., Madou M.J. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip. 2010;10:1030–1043. doi: 10.1039/b925456k. PubMed DOI
Integrated Electrochemical Biosensors for Detection of Waterborne Pathogens in Low-Resource Settings